
Software Component Synthesis Tools

Dick Hamlet

Department of Computer Science

Portland, OR 97207 USA

hamlet@cs.pdx.edu

Supported by NSF CCR-0112654 and SFI E.T.S. Walton Fellowship

From a Modern Beastiary

THE GRIFFIN is a fabulous animal
with the body of a lion and the
head of an eagle. The griffin is

powerful and fierce because of its parts.
It will tear to pieces
any human being it
comes across. Soft-
ware developers
should pay attention
to this, because

software also may tear people to pieces.
Software made from components has
the properties of its parts.

NSFAQ

• What are software tools? (Who builds them?)

• What is a software component? (And why bother?)

• How is software tested?

• How are components combined into systems? (Do the
systems work?)

Software Development “Tools”

TOOL: An instrument for performing mechanical operations;
anything used like a tool to effect some result.

Hence, programs that are used to help develop other programs.
For example, an editor, a compiler, a linker, etc.

This talk is about Perl programs (mostly written by high school
interns!) that help develop component-based software systems.

Software Components: What and Why

Definition: A software component is an executable program that
obeys a set of conventions for its interface with other programs.

Rationale:

• Components can be developed (and tested) in isolation,
then later assembled into systems.

• System code is easier to understand because its
“statements” are its components.

• If the components work properly, the system is more
likely to work, too.

Subdomain Testing

Testing a component:

co
m
p
on

en
t

Subdomain Testing

Testing a component:

co
m
p
on

en
t

Subdomain testing it:

co
m
p
on

en
t

Testing a Simple Component: Bell

Component ‘Bell’ measurement
Gaussian, µ = 6.6, σ = 2.7, 142 equispaced tests:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

O
ut

pu
t

Input

Testing a Simple Component: Bell

Approximation measurements
(Average of 3 samples in each of 48 subdomains):

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

O
ut

pu
t

Input showing subdomains

R-M-S error ranges from 0.1% to 4.3% by subdomain

Composing Components

A B

S

Composing Components

A B

S

Test Test

Predict

Tests Don’t Compose

Testing two components A and B separately:

co
m
p
A

co
m
p
B

Tests Don’t Compose

Testing two components A and B separately:

co
m
p
A

co
m
p
B

Tests Don’t Compose

Testing two components A and B separately:

co
m
p
A

co
m
p
B

Series combination doesn’t match at the interface

co
m
p
A

co
m
p
B

Subdomains to the Rescue!

Subdomain testing two components A and B separately:
co
m
p
A

co
m
p
B

co
m
p
A

co
m
p
B

Subdomains to the Rescue!

Subdomain testing two components A and B separately:
co
m
p
A

co
m
p
B

Subdomains to the Rescue!

Subdomain testing two components A and B separately:
co
m
p
A

co
m
p
B

Never an interface mismatch!

co
m
p
B

co
m
p
A

Example: Chop; Bell

You remember ‘Bell’:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

O
ut

pu
t

Input

Example: Chop; Bell

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

O
ut

pu
t

Input showing subdomains

Example: Chop; Bell

Component ‘Chop’ measurement:
Chopping function, 142 equispaced tests:

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

O
ut

pu
t

Input

Example: Chop; Bell

Approximation measurements
(3 samples in each of 48 subdomains):

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

O
ut

pu
t

Input showing subdomains

R-M-S error ranges from 0 to 1.1% by subdomain

Example: Chop; Bell

Prediction for system Chop; Bell:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

O
ut

pu
t

Input showing subdomains

Synthesis is fast (5X execution)
R-M-S prediction error 0.1% – 4.5%

Tool-supported Component-based

Development

1 Develop components → Repository
• Write component code
• Test code to specification
• Choose good subdomains
• Approximate with subdomain test

Key:
(Blue) Human, by-hand (Red slant) Tools, automatic

Tool-supported Component-based

Development

1 Develop components → Repository
• Write component code
• Test code to specification
• Choose good subdomains
• Approximate with subdomain test

2 Design system
• Describe system and get component approximations
• Synthesize system approximation
• Compare with system specification

Key:
(Blue) Human, by-hand (Red slant) Tools, automatic

Tool-supported Component-based

Development

1 Develop components → Repository
• Write component code
• Test code to specification
• Choose good subdomains
• Approximate with subdomain test

2 Design system
• Describe system and get component approximations
• Synthesize system approximation
• Compare with system specification

3 Buy components, build system
• Test system against specification

Key:
(Blue) Human, by-hand (Red slant) Tools, automatic

Programming in Computer Science

Research

These tools were developed over about 10 years.
High school apprentices did a lot of the programming.

The research resulted in the publication of about 6 conference
papers, 2 journal papers, and a monograph, about one
publication/year – low productivity!

Programming is fun, but don’t give up your day job...

More Information

Get the free tools:

www.cs.pdx.edu/

∼hamlet/

components.html

Read the book:

