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ABSTRACT

An abstract of the thesis of Christian Leland Hansen for the Master of Science

in Computer Science presented October 30, 2001.

Title:  Towards Comparative Profiling of Parallel Applications with PPerfDB

Due to the complex nature of parallel programming, it is difficult to diagnose

and solve performance related problems.  Knowledge of program behavior is obtained

experimentally, with repeated  runs of a slightly modified version of the application or

the same code in different environments.  In these circumstances, comparative perfor-

mance analysis can provide meaningful insights into the subtle effects of system and

code changes on parallel program behavior by highlighting the difference in perfor-

mance results across executions.

I have designed and implemented modules which extend the PPerfDB perfor-

mance tool to allow access to existing performance data generated by several com-

monly used tracing tools.  Access occurs from within the experiment management

framework provided by PPerfDB for the identification of system parameters, the repre-

sentation of multiple sets of execution data, and the formulation of data queries.  Fur-

thermore, I have designed and implemented an additional module that will generate

new data using dynamic instrumentation under the control of PPerfDB. This was done

to enable the creation of novel experiments for performance hypothesis testing and to

ultimately automate the diagnostic and tuning process.



As data from such diverse sources has very different representations, various

techniques to allow comparisons are presented. I have generalized the definition of the

Performance Difference operator, which automatically detects divergence in multiple

data sets, and I have defined an Overlay operation to provide uniform access to both

dynamically generated and tracefile based data.  The use and application of these new

operations along with an indication of some of the issues involved in the creation of a

fully automatic comparative profilier is presented via several case studies performed on

an IBM SP2 using different versions of an MPI application.



CONTENTS

1  INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2  THE FRAMEWORK FOR COMPARATIVE ANALYSIS  . . . . . . . . . . . . . 5

2.1  PPerfDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2  Tracing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3  Dynamic Instrumentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3  COMPARATIVE PERFORMANCE ANALYSIS . . . . . . . . . . . . . . . . . . . . . 18

3.1  Performance Difference Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2  Overlays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4  CASE STUDIES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 SMG98  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Compiler Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Communication Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Shared Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5  RELATED WORK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6  CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7  REFERENCES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



TOWARDS COMPARATIVE PROFILING OF PARALLEL APPLICATIONS

WITH PPERFDB

by

CHRISTIAN LELAND HANSEN

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Portland State University

2001



TABLES

Metrics in Common to VT, Vampir, and CLOG . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

VT specific metrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



FIGURES

An EventMap for BSMPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Structural Merge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Structural Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Bridging Effect of an Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Collating Effect of an Overlay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Renaming Effect of an Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SMG98 SpaceMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Merged EventMap for Two VT Tracefiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CPU Idle Rates for Minimal and Aggressive Compiler Optimizations  . . . . . . . . . 29

Vampir Tracefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

DPCL Control with Program Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

DPCL view of SMG98  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Data Overlay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

MPI_Waitall Times for US and IP Communication Protocols . . . . . . . . . . . . . . . . 35

Profile of main for Shared Memory and Network Inter-node Communication  . . . 37

Profile of hypre_SMGSolve for Shared Memory and Network Inter-node Communica-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



1  INTRODUCTION

Optimizing parallel code to take full advantage of a system’s theoretical compu-

tational power and approach perfect parallel speedup is a notoriously difficult task.

With the wide variety of platforms, system configurations, communication libraries,

and computational models in use, simply increasing the processor count or decreasing

the cost of a particular function call rarely results in the expected drop in execution

time.  Achieving optimal performance requires an understanding of the complex inter-

dependencies between the various hardware and software elements which influence

code behavior. Solutions are reached experimentally, by modifying specific parameters

of the system and executing the application in a controlled environment.  Ideally, what

we learn under a certain set of assumptions will be applicable in future situations, such

as when porting the application to a different architecture or trying out a novel commu-

nication paradigm.  However, to ascertain the effects certain changes have on the over-

all performance requires the ability to meaningfully compare two or more executions of

an application.

Currently, there are a host of performance tools in existence providing detailed

trace or log based information, including AIMS [1], Jumpshot [2], Paragraph/MPICL

[3,4], Vampir[5], and VT[6].  This information can be used in an iterative form of tun-

ing where the application is run, the logs analyzed, the code modified, and the cycle

repeated. This method is only sufficient when considering applications of a very small
1



size, as it becomes very costly when the application in question needs hours or days to

run and requires a large amount of dedicated, high-demand resources.  Furthermore,

this method generates and then neglects an often massive amount of data which has

gathered over the lifetime of a particular piece of code as it is run under various condi-

tions. Other tools [7] have made attempts to relieve the burden of large amounts of data

collecting found in trace based tools by supporting dynamic instrumentation [8].

Libraries based on this technology, such as Dyninst [9] or DPCL [10], provide an inter-

face for inserting and removing small pre-defined pieces of code into the in-memory

image of a running application. The advantage to this method is that it allows the mea-

surement timing to be more flexible, targeting only the more interesting parts of an exe-

cution and adjusting the granularity to fit the problem.  Coupled with more intelligent

instrumentation management, this can drastically reduce the volume of recorded data.

One drawback to both types of tools is their lack of comparative techniques.

While the analyst can bring up and visually compare a pair of execution traces by run-

ning two instances of the analysis tool, the tools themselves provide no information

beyond a single iteration of the turning cycle.  With whatever experience in tuning a

particular application they may have, the analyst is left on their own in terms of qualify-

ing and attributing the change. To address this concern, the PPerfDB research tool pro-

vides an experimental framework necessary for identifying the free parameters in a

tuning environment and for formulating and testing performance hypotheses.
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With PPerfDB as a foundation, I have created the framework necessary for a

comparative profiler which can be used to identify and quantify the concrete effects of

code and system adjustment on application performance.  I have extended the capabili-

ties of the original tool with several modules that analyze data gathered by three com-

monly available tracing tools, Jumpshot, Vampir, and VT, and an additional module

which can generate performance data for new experiments using dynamic instrumenta-

tion.  Comparative studies are possible between existing executions in the database,

between reference, database executions and new executions run under the auspices of

the tool, between two running executions, and between two or more processes in a sin-

gle execution.  Furthermore, as run-time application control and measurements will be

done through the use of the DPCL instrumentation library, comparisons can be limited

to particular phases of an application, thereby reducing the amount of data store and

instrumentation perturbation.

Since an application may well undergo rather radical changes during its life-

time, differences across executions are first identified with the abstract representations

and associated operations defined by PPerfDB.  However, to obtain a more detailed

comparison encompassing a diverse set of data sources, I have created the Overlay

operation, which unifies the various data formats available to the tool with a single rep-

resentation, and I have generalized the Performance Difference operator, which per-

forms an automated search for discrepancies in performance data. Further qualification
3



and quantification of such discrepancies can then be done by side-by-side comparison

of flat profiles, call graph profiles, or event traces.

In the next section, I describe the concepts behind and function of PPerfDB.

This section includes a discussion of the type of data available from the tracefile for-

mats selected for inclusion in the tool and how this data fits into the given model. This

is followed by a brief explanation of the principles behind dynamic instrumentation and

how it was incorporated into the model.  Section 3 defines the Performance Difference

and Overlay operations.  Section 4 covers several case studies highlighting what infor-

mation can be obtained from such comparative studies and the issues involved in doing

so, and Sections 5 and 6 list related work and future plans.
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2  THE FRAMEWORK FOR COMPARATIVE ANALYSIS

 To meaningfully compare performance data from two or more executions,

there must exist a framework capable of abstracting away the different formats in

which this data is reported, of compensating for partial data or different metric types,

and for classifying and managing this data.  To meet these requirements, the current

comparative studies and data analyses rely upon the PPerfDB tool.  Specifically, the

tool provides a high level representation of individual executions, methods for querying

and displaying underlying performance data for multiple executions at once, and opera-

tions for comparing and contrasting executions at an abstract level.  As this tool ini-

tially only handled post-mortem data obtained via the Paradyn tool, extensions to

PPerfDB were devised to generalize its data extraction and manipulation facilities to

include several common tracefile formats and data created from within PPerfDB using

its dynamic instrumentation capabilities.

2.1  PPerfDB

The PPerfDB research tool as conceived and implemented follows the original

proposal of experiment management support for parallel application tuning [11].  The

proposal defines an experiment space formed on the basis of the tuning parameters of

the program and system under evaluation.  At one level, the experiment space allows

for the formalization of performance related hypotheses and subsequent testing; at
5



another, it provides an organizational facility for multiple executions of a single appli-

cation.  I call the tuning parameters attributes, and they can also be considered as the

categories of descriptive data ascribed to individual executions. Attributes identify the

circumstances of the execution and may include such items as the number of processes,

the platform, the communication library, or any other user-defined features common

across experimental scenarios.  By selection of a single attribute value, the analyst can

limit their consideration to a subset of the total number of executions, i.e. only those

executions that share that particular value. In this regard, if we are interested in quanti-

fying the scalability of our code and we have defined attributes for the number of pro-

cessors and the platform, we might select only a single platform, thereby reducing the

list of free parameters in our experiments so that we examine only those that vary in the

number of processors used.  The execution space has been realized as the SpaceMap,

where each execution is assigned a unique identifier (EID).

At the next level of detail, individual executions are represented by a hierarchi-

cal collection of resources, or identifiable elements of the runtime system.  Resource

hierarchies most commonly include, but are not limited to, code modules, processes in

the computation, and message tags, although the actual components and their organiza-

tion is dependent on the underlying system and the tool used to generate the perfor-

mance data.  To represent an entire execution, the various resource hierarchies are

unified into a single tree structure called an EventMap under a virtual root node.  A
6



sample of an EventMap for CLOG data from a very simple parallel bucket sort algo-

rithm using MPI, called BSMPI,  is presented in Figure 1.

Two operations have been defined on resource hierarchies, the Structural Merge

and the Structural Difference. The Structural Merge is an algorithm that traverses both

trees in a recursive top down fashion merging nodes with equivalent names and posi-

tions in the hierarchy, starting with the root node.  Unmatched nodes are simply

appended to the new tree in their original position. As EIDs are assigned to executions

and their associated resources as powers of 2, the merged EventMap and its merged

nodes are distinguished from the originals by their own unique EID obtained from sum-

ming the EIDs of the sources. Thus examination of the merged tree gives the analyst a

glimpse into what changed and what remained the same from one execution to the next.

A sample of a Structural Merge for partial EventMaps is shown in Figure 2.

Figure 1: An EventMap for BSMPI
In this screenshot, the number 4 proceeding each node name is the EID of the execution.  The

ROOT node is a lighter color than the others to indicate that it is a placeholder.
7



However, the merging process is quite simplistic, and there often arise situa-

tions in which nodes representing equivalent components remain unmatched. This can

occur if the spelling of a function name changes, or in cases where a program runs on

different, yet identical nodes of the same machine. In such cases, it is possible to create

mappings, allowing two nodes of different executions to be manually merged into a sin-

gle node or to allow a parent and its only child of the same hierarchy to collapse into a

single level.  This is useful when the distinction between the two is unnecessary and

prevents mapping between executions.

The Performance Difference operation takes a merged EventMap as its starting

point and, again proceeding in a top down manner, removes all the nodes which were

common to both executions except in the instance where a non merged node lies

beneath it in the hierarchy and it must be retained as a placeholder.  The intention of

Figure 2: Structural Merge
For this series of screenshots, the SpaceMaps of two operand executions, EID 1 and 2, have

nodes with equivalent names, resulting in merged nodes with EID 3.

+ =
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this operation is to provide immediate access into what has changed from one execu-

tion to the next by highlighting those components which were not in common.  An

example of this using the previous partial EventMaps is given in Figure 3.

Another aspect to the representation of execution data is a list of metrics, the

contents of which are statically determined by the tool used to generate performance

measurements.  For any basic profiling tool with default settings in a parallel environ-

ment, this list includes at least function call and message counts, as well as function

costs and message sizes. More advanced tools or further user configuration will expand

this list significantly.  As a set of metrics is associated with each execution, the exten-

sion of the Structural Merge and Structural Difference Operations to encompass metric

lists is simply a union of the two sets.

Figure 3: Structural Difference
In this series of screenshots, the operand execution EID 2 does not share several nodes found in

EID 1.  Since these nodes are the children of a common Process node, this node has been

retained as a placeholder, indicated by its lighter color.

- =
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Apart from EventMaps and their operations giving a high level view of the run-

time changes, they form the basis for queries into data files for performance informa-

tion or requests for instrumentation when source files are non-existent. Selecting a sin-

gle resource from each hierarchy in the representation, we create a focus, which

combined with a metric and a time period, references a particular set of performance

data. This operation defines what is known as the Performance Result function.  In the

case of a merged EventMap, the Performance Result function returns several sets of

data, one for each operand execution of the merged EventMap.

A prototype of PPerfDB was developed in Tcl/Tk and currently allows the cre-

ation of an application specific SpaceMap, the definition of attributes, the loading of

any number of executions, and the means to select multiple executions at once on the

basis of their attribute values.  Extensions to Tcl, written in C++, also provide an

abstract class interface for executions, for the storage and management of execution

specific EventMaps, including the Structural Merge and Difference Operations, and for

the storage and handling of metric lists.  EventMaps are visualized via the Tree [12]

widget along with associated information presented through standard Tk objects.

2.2  Tracing Tools

In the original prototype of PPerfDB, only Paradyn data was accessible through

the Performance Result function. While of demonstrated utility [13], one goal of PPer-
10



fDB is to provide a single point of access to a diverse body of performance data.  Par-

ticularly, this includes historical data, which consists of the existing files generated

primarily by trace or log based libraries. To this end, several common tracefile formats

were examined and incorporated into the current model.

Tracing libraries linked into application code timestamp events, such as func-

tion calls or message sends, as they occur, so that on completion of the execution the

behavior of the application can be recreated.  In general, from the region defining

beginning and ending marks provided by these event logs, it is a relatively simple mat-

ter to calculate function count and cost information, point-to-point message delivery

times, and from the extra information accompanying send and receive calls, message

sizes. However, I have not restricted myself to this basic set but rather define the list on

a case by case basis.  This is the result of an effort not to discard available data by

enforcing a particular model over all event formats, as a more detailed tracefile format

may allow a richer set of metrics.  As such, the set of metrics available to a particular

execution are determined statically and are dependent on the library used to generate

the tracefile.

The use of a particular tracefile library also determines the type of resource

hierarchies available, although it does not determine their actual content.  While we

may know that a particular tracefile provides memory allocation information, we do not

know a priori the actual addresses and sizes of the allocated blocks.  Therefore, the
11



EventMap associated with an execution is determined on an individual tracefile by

tracefile basis. In practical terms, this means that the tracefile must be scanned to deter-

mine these values and that precisely one pass over the entirety of each tracefile is

required when it is first loaded into the system.

Of the large variety of these libraries and their associated formats, the PPerfDB

tool currently supports tracefiles in the CLOG [2] format as generated by the extension

library that comes as part of MPICH [12] and Compaq’s MPI [14]; the log format gen-

erated by Pallas’ Vampirtrace [17]; and the default tracing library that comes with

IBM's Parallel Operating Environment, at one time associated with the now deprecated

tool VT [6].

Of the three formats, the first two are available on a number of systems and con-

cern themselves primarily with the MPI communication paradigm.  As a result, these

two very similar formats by default report only on MPI function calls. With event data

equivalent to that mentioned in the general case, they provide only the basic set of met-

rics previously described and summarized in Table 1. For the EventMap, both generate

Metric Description

func_calls The number of function calls

func_duration The cost of a function

msg_bytes The number of bytes in a message

msg_deliv_time The point-to-point delivery time of a message

Table 1: Metrics in Common to VT, Vampir, and CLOG
12



a code hierarchy which includes MPI calls, a process hierarchy that includes tasks in

the computation, and a synchronization hierarchy that includes message tags.  As it is

possible in both cases to have user-inserted calls to the profiling library provide addi-

tional information on other functions and user-defined blocks, these will occasionally

appear in the code hierarchy.

The VT format, also concerned with the MPI paradigm, includes the same set

of metrics and resource hierarchies found in the other two formats. However, by being

tied to a particular system, both aspects of the representation have the ability to be far

more comprehensive. With the tracing level set accordingly, the VT format can include

Metric Description

cpu_user Percentage of user CPU utilization

cpu_kernel Percentage of kernel CPU utilization

cpu_wait Percentage of wait CPU utilization

cpu_idle Percentage of idle CPU utilization

io_read Number of blocks read from disk

io_write Number of writes made to disk

io_xfer Number of transfers to and from disk

io_sent TCP/IP packets sent

io_recv TCP/IP packets received

proc_ctxtsw Process context switches

proc_syscall Process system calls

proc_pgflt Process page faults

Table 2: VT specific metrics
13



periodic samples of process state information such as CPU, I/O, socket, and memory

usage statistics.  These additional metrics are presented in Table 2.  Additionally, hav-

ing knowledge of the SP2 architecture, the VT format presents a deeper process hierar-

chy with an intermediate level providing the actual node names to which processes

were assigned.  An example of this can be seen in Figure 8.

To add these components to the existing prototype, tracefile specific Perl mod-

ules were written, along with a generic interface for generating resource hierarchies,

providing metric lists, and extracting performance results. Perl was chosen for its ease

and agility in handling text strings, as all three formats are first translated into their

ASCII equivalents for portability reasons.  The interface scripts are called by Tcl code

and the performance data that is returned can be visualized through standard means,

such as graphs, histograms, and tables.  At the moment, each new performance result

query requires a single pass through the associated tracefile. Considering the extremely

large size of the majority of these files, the time required to extract the relevant data for

multiple queries of several executions can become unacceptable.  Thus, once data has

been requested, it is now cached, providing a significant reduction in the amount of

time processing data.  Work is underway both to further reduce the number of passes

required over a tracefile and to automate the extraction process so that cached data is

used even for the first request, however, that effort goes beyond the scope of this thesis.
14



2.3  Dynamic Instrumentation

As scalability is an important consideration of any parallel performance tool,

one limitation of relying exclusively on tracefiles for analysis is that these tracefiles can

become very large, and require a substantial amount of time simply for post-process-

ing.  An alternative, called dynamic instrumentation, implemented by the Dyninst [9]

and DPCL [10] libraries, gives the user and tool designer the ability to insert and

remove instrumentation at will during an application’s execution, rather than establish-

ing when and where to record events beforehand.  By formulating the instrumentation

code as an abstract syntax tree, the instrumentation library can compile this code for the

target architecture and modify the running image to branch to the instrumentation code

while in process [8].  It is possible to allocate variables, perform simple logical and

arithmetic calculations, or to call more complex functions which are part of a dynami-

cally loaded instrumentation library.  By being able to report back the values of tool-

created and application variables and to stop and start the application at will, a wide

degree of flexibility is available for application tuning.

As part of the goal to support hypothesis testing and the launching of new

experiments for the collection of missing or incomplete performance data, dynamic

instrumentation was incorporated into the existing PPerfDB framework.  Although

both the libraries mentioned arise from a common code base, for the purposes of this

project the DPCL library was chosen over Dyninst as it has already incorporated sup-
15



port for parallel applications by handling some of the more complex communication

issues and data management techniques required when running a multiprocess applica-

tion on remote nodes of a computational cluster.  A detailed discussion of DPCL’s

structure and its library interface can be found in IBM’s literature [10].

In terms of implementation, DPCL support was included as a separate, indepen-

dent library interface component written in C++, which is started only when the need

for its services is indicated. This can be done by adding a new dataless execution to the

database and then requesting a view of the EventMap which can either start the target

application using the DPCL library or connect to an already running application by

additionally providing the library with the PIDs of the computation. Once communica-

tion with the target is established, the number of processes is reported back to the user

interface and the object code is explored in order to build an EventMap for the execu-

tion.  Since DPCL allows instrumentation to be inserted at the entry and exit of func-

tion calls and it allows the inspection of program variables, this translates into the

presence of code and memory hierarchies in the EventMap.

The list of metrics available to a dynamic execution corresponds directly to the

instrumentation probes implemented by the library interface component and a support-

ing probe library. Currently, PPerfDB includes function and message counts, and func-

tion costs.  Each probe, when activated by the occurrence of a specified event, reports

back to the user interface a timestamped data value appropriate to the metric in ques-
16



tion.  To approximate the time of an event relative to the start of the application, times-

tamps are generated from a sum of the user and system times reported from the

getrusage() system call.  Counts are calculated by simply marking the time of

function entry, and message counts are obtained in an identical fashion, but only for

message passing routines.  Functional costs are calculated by timestamping the entry

and exit points of a function call and reporting the difference.

Instrumentation is requested through the composition of a performance query,

which is translated by the library interface module into the appropriate probe type and

insertion point(s).  As data is reported back to the tool interface, updates are made to

the display chosen to initiate the request.  Since PPerfDB allows a single visualization

to display information from more than one execution ata time, this means it is possible

to display dynamic data against a background of tracefile data, or to simultaneously

display data from two instances of the library interface module, each monitoring a sep-

arate execution of the target application.  When the application terminates or when

instrumentation is removed and PPerfDB disconnects from the running program as per

user action, the reported performance data and EventMaps are automatically stored for

later retrieval and analysis.
17



3  COMPARATIVE PERFORMANCE ANALYSIS

3.1  Performance Difference Operator

While post-mortem analysis and run-time feedback and control are useful in

and of themselves, additional insight can be gained by expanding analysis to include

the changes witnessed over several executions.  The performance difference operator

was defined as a starting point for this type of analysis.  It is an algorithm for locating

points of interest in the resource hierarchy indicated by divergent results between two

or more executions. After being characterized by the selection of a metric and a thresh-

old value, the algorithm starts by obtaining a performance result for an application level

focus, i.e. the children of the root node, then obtains a performance result for each

source execution of a merged EventMap, and finally compares the distance between

results to the theshold value.  If this distance falls within the threshold, the process is

stopped.  However, if the threshold is exceeded, a process of focus expansion is under-

gone, in which each node of the current focus is replaced successively by its child

nodes, creating a list of new foci which are used in turn to generate performance

results.  For each set of results, a comparison is made between their difference and the

threshold value, and those which exceed the value are appended to a list of failed foci

and further expanded.  This process is repeated until either all the calculated distances

lie within the threshold or the leaf nodes of the tree are reached.  Effectively, this algo-

rithm performs a breadth first traversal of our resource hierarchy, obtaining perfor-
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mance results for every possible combination of foci, and returning a list of foci which

fail the threshold check. This list is useful in that it highlights the sources of divergence

between execution times, greatly narrowing our further studies.

Unfortunately, this simple explanation belies some of the complex consider-

ations underlying the operation.  The actual mechanisms for calculating the difference

between two different executions is not a trivial operation in the case of diverse data

sources.  An event based sequence of records, such as returned from the tracing tools

and dynamic instrumentation as implemented in PPerfDB has no unifying time basis.

This problem can be alleviated in one of two ways.  The first is to define some type of

summarizing operation on the data returned from the performance result operation,

essentially converting it to profiled data.  For some of the existing metrics, such as

function counts or cost, or communication loads, this may indicate that a sum over the

data is in order. For data sampled at a regular interval, such as seen in the system infor-

mation provided in VT tracefiles and Paradyn histograms, a comparison of means may

be more appropriate.  To keep the operation as general as possible, several functions

have been defined, such as the sum, the mean, the minimum, the maximum, and the

standard deviation, any of which can further qualify the performance difference opera-

tion.  In this regard, the distance between two performance results is defined as the

algebraic difference between the results of the given summing operation applied to

them.  The second method is to divide the timeline up into discrete intervals and inter-

polate event results to match these intervals. This would allow the performance results
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to be treated as discrete functions and the difference defined as the distance between

two functions, thereby providing time specific information into when deviations occur.

Two more difficulties with the performance difference operator arise when the

time scales of two executions differ greatly or when we are faced with partial or incom-

plete data, such as that generated by the dynamic instrumentation of DPCL or Paradyn.

The first of these situations occurs when we are comparing across platforms. Here, we

may face a situation in which our application runs in a dedicated environment one sys-

tem, but on another it may suffer the effects of time sharing.  Or, we have less expen-

sive, more frequent access to a slower machine, and therefore a richer set of results,

which we would like to use in the context of a newer, faster, but similar system. In such

instances, it is reasonable to normalize the timelines and associated timing values and

support for this operation is provided.  Currently, incomplete or absent data is handled

by leaving the performance difference operator undefined for those segments. Thus for

summary and functional comparisons the tool only reports partially defined results.

3.2  Overlays

These is another limitation to the application of the Performance Difference

operator and to data queries on multiple executions in general.  Once we have chosen

an axis of variation among the available executions and would like to look beyond the

EventMap and at the differences specifically related to individual performance results,
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we are presented with the problem of how to reconcile possibly very different represen-

tations of our application.  Among the tracefiles themselves, there are differences in

resource naming and in the depth of information available.  Between tracefiles and

dynamically gathered data, there is an even greater difference in representation, partic-

ularly in the arena of code resources, as DPCL provides listings organized in terms of

object code modules, the functions defined therein, and then the functions called from

within these functions, resulting in multiple locations for a single function.

While correlation between representations can handled in a manual, bottom-up

fashion by merging, renaming, and collapsing levels of a merged EventMap until a

final, common representation is obtained, it is also possible to do this automatically in a

top-down manner with the use of Overlays.  Overlays are essentially a set of bridging,

collating, and renaming directives implemented as an artificial resource hierarchy, a list

of equivalencies, and a minimal set of metrics, all of which are user configurable. Con-

ceptually, Overlays represent what is considered “interesting” for study by the analyst

and as such they can correspond to various commonly used parallel computational par-

adigms.

At the level of implementation, application of an Overlay to an execution con-

sists of forming the intersection of the two sets of metrics and aliasing the resources in

the Overlay’s hierarchy to those in the execution (represented by a dotted line in the

following figures).  Aliasing occurs during a breadth first traversal of the Overlay hier-
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archy alongside the executions, when links are created between nodes with identical

names or with those matching a pair of equivalencies found in the accompanying list.

If a match is not found at the same level in both trees, nodes deeper in the executions’s

subtree are searched.

If nothing is found to match a Overlay node, that node is dropped from the rep-

resentation.  Allowing the algorithm to descend further into the execution’s tree to

search for matches allows for the bridging of nodes (Figure 4) when a richer represen-

tation is given than is common across executions, and continuing the search after a sin-

gle match is found, so that multiple links are established implements the idea of

collating data (Figure 5).  Providing a list of equivalencies enabled me to actuate the

renaming of nodes to a standard scheme (Figure 6).  This is useful in light of the origi-

nal impetus to represent the hierarchies as close to the original data source as possible.

Figure 4: Bridging Effect of an Overlay
This diagram shows the links made between nodes of an Overlay and those of an executions

EventMap.  The links are represented by dotted lines.
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Figure 5: Collating Effect of an Overlay
This diagram shows the multiple links made between an Overlay and those of an executions

EventMap.  The links are represented by dotted lines.

Figure 6: Renaming Effect of an Overlay
This diagram shows the links made between an Overlay and two different executions Event-

Maps when applied successively.  The equivalencies frame shows the provided name map-

pings used in creating the links.
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Thus, on a performance result query, a focus is generated in the standard, pre-

defined fashion, but before the actual data store is probed, this query undergoes a trans-

lation into a representation known to the original data store.  Each one of the focus

generates a list of aliases of which all the combinations are used to generate perfor-

mance data on a per execution basis.  The various results are then merged into a single

result.
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4  CASE STUDIES

In the following section, the use of the PPerfDB will be demonstrated along

with some examples of how this information can be useful for performance tuning.

PPerfDB runs on Solaris, AIX, and Linux, but with DPCL support currently only avail-

able for AIX, AIX was used in these studies. Throughout the examples, a single repre-

sentative application was used for study, called SMG98.

4.1 SMG98

SMG98 is a semicoarsening multigrid solver developed at Lawrence Livermore

National Laboratories [17]. The algorithm was designed to solve the systems of linear

equations involved in finite difference, finite volume, or finite element discrete diffu-

sion equations on distributed memory architectures.   Parallelism is achieved by data

decomposition according to the specified processor topology. The application’s behav-

ior is common to many parallel scientific codes in that its performance is dependant on

how the data is partioned and distributed among the computational elements. The code

was written in C and can be used for 2D and 3D problems, where the problems size per

processor and processor topology can be specified on the command line.  A thorough

study of this algorithm’s scalability on ASCI Blue can be found in [17].
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Figure 7 shows the starting SpaceMap for the SMG98 application with six

experiments already added.  All of these were obtained by running the application on

ASCI Blue, which is located at LLNL.

Several attributes have also been defined, such as whether or not shared mem-

ory was used for communication, the problem size per processor, the platform, the

communication protocol, the number of processors used, and the compiler optimization

level.  A discussion of how the represented values apply to the executions of the study

is covered in more detail in the following cases.

Figure 7: SMG98 SpaceMap
This screenshot shows the various attributes defined for this application along with the associ-

ated values assigned to individual executions of the application.
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4.2 Compiler Optimization

For this initial example, SMG98 was run twice on ASCI Blue using a single 4-

processor node. The program was compiled once with a basic level of optimization and

a second time with very aggressive optimization (EIDs 1 and 2, respectively).  The

IBM version of MPI and their VT tracing facility was used for both cases.  When run,

the processor topology was set to 4x1x1 and the problem size to 40x10x10. The expec-

tation in this test was that compiler optimization should generally provide for better

CPU utilization, and with all other code and system paramemters being equal, a faster

running program.  However, being a parallel application, there was a possibility that

this benefit may be offset by increased synchronization time.

As a starting point, the merged EventMap was created and is shown in Figure 8.

A plot of executions times showed that I had indeed obtained a modest 1% speedup by

using more rigorous optimization.  Since an improvement in processor utilization

should show a decrease in CPU wait and idle times, these two metrics were considered

for the Performance Difference operator.
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Before being able to proceed, however, it was noted in the Machine hierarchy

that a different host was used for each execution, spoiling comparisons between like

numbered processes.  As the nodes of ASCI Blue are architecturally equivalent, this

distinction was unnecessary for the current study and these nodes were merged.  Run-

ning the performance difference operator with a comparison between statistical means

and a threshold value set to 5%, a short list of foci that exceeded the threshold was

returned.  The list showed that this size of a discrepancy had occurred for all the pro-

cesses in the computation, but not specifically within any particular MPI function call.

Figure 8: Merged EventMap for Two VT Tracefiles
This screenshot shows the merged EventMap of EID 1 and 2 in the left frame and the list of

available metrics in the right frame.  The chosen time interval is found below the list of met-

rics and the selected focus can be seen at the very bottom.
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Examination of the CPU idle time for a single process over the entire run of the appli-

cation is provided in Figure 9.

As the graph shows, there was decent savings in idle cycles at around the 5 sec-

ond mark, where the more optimized code took full advantage of the CPU.  This

allowed it to finsh the computation faster, thus reaching the final data gathering phase

where the processor went almost entirely idle at about the 7.16 second mark, approxi-

mately 1.2 seconds before the less optimized run.  To more specifically locate the area

of code that received the greatest benefit from optimization, the performance difference

operator was repeated down to a percentage point in difference, but with no change in

Figure 9: CPU Idle Rates for Minimal and Aggressive Compiler Optimizations
In this screenshot, the CPU_Idle rate for minimal optimization is drawn in black and aggressive

optimization in white.
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the result.  Unfortunately, the optimization was not particular to any MPI call, and

therefore the VT tracefile format was not able to pinpoint the particular function.  To

obtain this information, further studies using Paradyn or a DPCL module enhanced

with CPU statistics were warranted.  Unfortunately, I was unable to pursue this route

due to time constraints.

4.3 Communication Protocol

In the second scenario, SMG98 was run again on ASCI Blue, this time with the

intention of observing the effects of using different network protocols on communica-

tion times. Two runs of the application were done, one using Vampir to gather data and

another in which DPCL was used. Both run were done with 8 processors, a topology of

2x2x2, and an problem size of 40x40x40 per processor. The IBM SP2 has two network

protocols available for MPI communication, the proprietary US protocol over a dedi-

cated switch and the more widely used IP which is shared among jobs.  In this study,

Vampir was used to measure US performance and DPCL to measure IP.

Since the code was unmodified for the run, Vampir trace data only reported on

MPI calls, leaving a short list of possible candidates for profile comparisons (Figure

10).
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As non-blocking sends and receives were used for communication,

MPI_Waitall was by far the most significant contributor to communication time and

was selected for this initial study.  Dynamic instrumentation was thus inserted to mea-

sure the duration of each MPI_Waitall call (Figure 11), and to limit overhead, this

instrumentation was limited to a single process in the computation.

Figure 10: Vampir Tracefile
This screenshot shows the EventMap and list of metrics for a single execution, EID 4.
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As in the previous case, there were a number of discrepancies between Event-

Maps, but unfortunately at a much less manageable scale.  Figure 12 shows just a por-

tion of the EventMap created using DPCL.  As can be seen from the image, DPCL

provides access to the entirety of the code, including libraries added by default by the

system, plus it allows access to program variables, represented in the EventMap by a

Memory hierarchy.

Figure 11: DPCL Control with Program Output
This screenshot shows application controls along the top, the status of the instrumentation in the

middle frame, and the target application’s output in the bottom frame.
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As a Performance Merge operation would find nothing in common between

these representations and manually merging and renaming nodes would be restrictively

time consuming, an Overlay was applied.  As the Vampir EventMap was already quite

close to the minimal description of resources common between the two executions, its

Code and MPI nodes were merged into a single Code node, and the whole EventMap

Figure 12: DPCL view of SMG98
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was saved as an Overlay.  An equivalency was also created between Process and

Machine, so that the Machine node would be mapped to the Process node of the Over-

lay. Once applied (Figure 13), it was a simple matter to see what data was available in

common, and to create displays based on the data.

The final difficulty that remained to a direct comparsion between performance

data from the two formats was the perturbation caused by instrumentation overhead.

To compensate for this, the solve time of another run using DPCL and the US protocol

was recorded, and this time, 36.16s, compared against the Vampir time, 38.71s pro-

vided a scaling factor of 0.93 which was applied to all Vampir reported times.  Figure

Figure 13: Data Overlay
In this screenshot, the results of applying an Overlay (always assigned EID 0) are shown.
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14 gives the results for a comparison between functional costs for a single process in

the computation.

 As the plot shows there was an improvement in communication times, and

from the summary statistics provided, there was an improvement of approximately 2.0s

for this process by using the US protocol.

4.4 Shared Memory

For the previous two studies, the limitations of the tracefile data gave little pro-

filing information outside of the MPI calls.  Part of the motivation for inclusion of

Figure 14: MPI_Waitall Times for US and IP Communication Protocols
In this screenshot, the MPI_Waitall time for the US protocol is drawn in black and for the IP

protocol in white.  The summary statistics for the IP protocol can be seen to the right of the

graph.
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dynamic instrumentation in PPerfDB is to provide data unavailable through existing

sources.  In this particular example, I have examined the use of shared memory on

communication from an application level standpoint.  Again SMG98 was run twice,

both runs done with 8 processors, a topology of 2x2x2, and an problem size of

40x40x40 per processor.  For the first run, shared memory was used for inter-node

communication, and for the second, this communication was routed over the network.
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Instrumentation was inserted into a single process in the computation to obtain

functional cost information for all of the functions called from main, and the function

in which most of the computation and communication was to occur during the solve

Figure 15: Profile of main for Shared Memory and Network Inter-node
Communication

This screenshot shows the times in seconds for each indicated function.  The column headings

indicated the EIDs of the execution, shared memory was used for EID 16 and not for EID 32.
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phase, hypre_SMGSolve.  The results for functions consuming more than a micro-

second of the total execution time are tabulated in Figure 15 and Figure 16.  As can be

seen from the data, a modest gain of 0.77s was made in the problems setup phase

(HYPRE_StructSMGSetup) and, more importantly, 3.12s during its solve phase

(HYPRE_StructSMGSolve).  As the hypre_SMGSolve is called from

HYPRE_StructSMGSolve and comprises the main part of the solver, an examina-

tion of its results indicated that the benefit was distributed throughout the parts of the

calculation.

Figure 16: Profile of hypre_SMGSolve for Shared Memory and Network Inter-
node Communication
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5  RELATED WORK

Although there are relatively few performance tools that allow simultaneous

comparisons between multiple data sets, there has been quite a bit of work on providing

a unified representation of diverse tracefile formats.

As a self-described meta-format for tracefiles generated by various tracing

libraries, SDDF [18] is the data source for the wide array of the Pablo [19] project’s

performance tools. This Self-Defining Data Format stores the syntactic structure of the

trace events within the tracefile, thereby allowing a single C++ API for the extraction of

different types of data from multiple converted formats.  Visualization of SDDF data

can be done through SvPablo [20], which also provides the means to graphically

browse the source code, automatically or manually instrument the code, rerun the

application, and then annotate the source with the count and duration information for

each instrumented construct.  SvPablo allows one to distinguish different runs of an

application by execution environments, so that different runs in different "contexts" can

be compared, but on a case by case basis.

As a language definition for tracefile analysis, EARL [21] also provides uni-

form access to several tracefile formats.  It has four predefined event types correspond-

ing to code region entry, region exit, message sends and message receives with

associated attributes such as the time, the processing node, and the type. Implemented

as an extension of the Tcl scripting language, it is possible to use the existing and
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extended features of this language to combine extracted events into more meaningful

metrics, and then analyze the results.  This is precisely what has been done with

EXPERT [22], an extensible tool which searches for pre-defined behavioral patterns in

parallel execution traces.  EXPERT’s design follows the APART [23] group’s object-

oriented specification of performance data, both static and dynamic, and of the well-

known bottlenecks occurring in parallel code.  While EARL allows programmers the

ability to examine data from more than a single tracefile at a time, pursual of these

types of investigations has not yet occurred.

Another tool for the visualization and analysis of tracefile data created by multi-

ple libraries is MEDEA [25].  Modular in design, MEDEA uses a filtering module to

extract tracefile information on the basis of a specified level of detail and a metric.

Available metrics include the number of processors involved in execution, I/O, message

transmission, message reception,  and overall communication rates, and computation

vs. execution times. Once filtered, basic statistical analysis of the performance data can

be achieved with the clustering module.  Speculation into application’s behavior for

instances for which tracefile data does not exists is done through a fitting module which

attempts to match a curve to the available data.  Finally, the visualization module

graphs the results of filtering, clustering, and fitting modules.  MEDEA provides the

user the ability to save previous analyses from different executions under the heading

of a single session.    When a session contains similar metrics from two or more execu-
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tions, MEDEA can further derive metrics of application speedup, efficiency, efficacy,

and total execution time vs. number of processors.

The current tool differs from these approaches in terms of generality. While

EARL and MEDEA provide functionality similar to components of PPerfDB, they do

not integrate this into an environment which can analyze tracefile data, dynamic instru-

mentation data, and other types of profiling reports.  This is also true of tools using

dynamic instrumentation, of which there are a couple with similar functionality.

The Paradyn [7] performance tool represents a very thorough exploration of the

features available from dynamic instrumentation.  Paradyn implements a wide assort-

ment of metrics providing detailed timing information and usage statistics, and a Met-

ric Definition Language for the creation of more.  Various visualization modules

provide runtime feedback for on-line performance monitoring and an automatic data

folding technique keeps data collection within bounds for a high degree of scalability.

The Performance Consultant component of Paradyn performs automatic searches for

bottlenecks by inserting instrumentation at continually more refined points in the pro-

gram as hypothesis about potential bottlenecks are accepted or rejected.

Tool Gear [26], currently under development at Lawrence Livermore National

Laboratory, functions as in intermediary between various performance tools, offering a

database of stored performance results and the ability to view this and newly measured

data via a source code browser. With underlying support for code instrumentation pro-
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vided by DPCL and the PAPI library for accessing hardware performance counters, it is

possible to measure function calls and cache utilization.

Finally, comparative studies between two running parallel applications have

been undergone with the Guard [27] debugger.  It provides two directives for correct-

ness checking, an ‘assert’ statement which  performs some operation on the basis of a

conditional expression between two equivalent data structures in  both programs as

they are running, and ‘compare’ statement which can be used to examine data values

once the application is paused.  Relative debugging differs from the current study in

that it is concerned with program correctness, rather than performance.
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6  CONCLUSION AND FUTURE WORK

In this study, I endeavored to provide access to performance data stored in a

variety of formats and to present this data in an analytical environment which would

allow the identification and quantification of adjustments made to the system and code

of parallel applications. Additionally, I wanted to provide the framework necessary for

further exploration of application behavior under novel circumstances, the definition of

which would be perhaps motivated by previous analysis.  As a result, I have added to

PPerfDB support for data extraction from three common types of tracefiles, the means

to generate new data using dynamic instrumentation, and the ability to access this data

through a uniform interface. Using this tool in the context of several performance stud-

ies, the current prototype of PPerfDB has shown that it can successfully help locate and

identify performance perturbations due to code and system changes. It has also shown

that it can be used for experiment definition and hypothesis testing.

However, to both broaden and deepen the scope of the kinds of studies that can

be done in this framework, there remain several places that increased functionality

would be helpful.  These include:

• Increasing the range of the dynamic instrumentation to include system level

information, such as the kernel statistics provided in the VT tracefiles and the

data available from hardware performance counters.
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• Finer granularity to the data available through dynamic instrumentation, so that

instrumentation is not limited to function level measurements, but code blocks

and lines as well.

• A broader range of automated methods for data analysis and performance diag-

nosis.  This would include the ability to summarize results and their differences

for multiple foci and multiple metrics at once, and to be able to derive application

level metrics, such as application speedup, efficiency, network bandwidth, and

communication vs. computation rates.

• Extended visualization techniques that would allow a greater breadth of summary

type information to be presented at once, including the application specific met-

rics previously mentioned.
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