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Abstract

 The transportation of prerecorded, compressed video data without loss of picture quality
requires the network and video servers to support large fluctuations in bandwidth requirements.
Fully utilizing a client-side buffer for smoothing bandwidth requirements can limit the
fluctuations in bandwidth required from the underlying network and the video-on-demand
servers. This paper shows that for a fixed size buffer constraint, the critical bandwidth allocation
technique results in plans for continuous playback of stored video that have (1) the minimum
number of bandwidth increases, (2) the smallest peak bandwidth requirements, and (3) the
largest minimum bandwidth requirements. In addition, this paper introduces anoptimal
bandwidth allocationalgorithm which, in addition to the three critical bandwidth allocation
properties, minimizes the total number of bandwidth changes necessary for continuous playback.
A comparison between the optimal bandwidth allocation algorithm and other critical bandwidth
based algorithms using 17 full-length movie videos and 3 seminar videos is also presented.
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1.0  Introduction
Video applications, such as video-on-demand services, rely on both high-speed networking and

data compression. Data compression can introduce burstiness into video data streams which can

complicate the problem of network and server resource management. For live-video applications,

the problem of video delivery is constrained by the requirement that decisions must be made on-line

and that the delay between sender and receiver must be minimized. As a result, live video applica-

tions may have to settle for weaker guarantees of service or for some degradation in quality of ser-

vice. Work on problems raised by the requirements of live video includes work on statistical
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multiplexing[2,11], smoothing in exchange for delay[8], jitter control[13,15], and adjusting the

quality of service to fit the resources available[10]. Stored video applications, on the other hand, can

take a more flexible approach to the latency of data delivery. In particular, they can make use of

buffering to smooth the burstiness introduced by data compression. Because the entire video stream

is knowna priori, it is possible to calculate a complete plan for the delivery of the video data that

avoids both the loss of picture quality and theloss of network bandwidth due to overstatement of

bandwidth requirements, making network and server scheduling easier.

The utility of prefetching is quite simple to explain. Since the bytes for any given frame can be

supplied either by the network or by a prefetch buffer, the burstiness of the network bandwidth require-

ment can be controlled by filling the prefetch buffer in advance of each burst by delivering more bytes

across the network than needed, and draining it in the course of the burst. The size of the prefetch

buffer, of course, determines the size of burst that can be averaged out in this way. With a small buffer,

only a limited amount of data can be prefetched without overflowing the buffer, so the bandwidth

required of the network will remain relatively bursty. With a larger buffer, on the other hand, there is

the possibility that most of the burstiness of a video clip can be eliminated through prefetching. This,

however, requires a plan for prefetching the data that ensures that the large buffer is filled in advance of

bursts which place high demand upon the buffer.

In a previous paper, we introduced the notion ofcritical bandwidth allocation(CBA), which pro-

vides plans for smoothing the network bandwidth by utilizing a buffer of a fixed size [6]. The critical

bandwidth algorithm allows for long sequences of monotonically decreasing bandwidth requirements,

such that, at any point during playback, the bandwidth allocated is the minimumconstant bandwidth

necessary to play back the video without buffer overflow or underflow. In this paper, we first show that

the critical bandwidth allocation algorithm results in plans for the continuous playback of video that

have (1) the minimum number of bandwidth increases, (2) the smallest peak bandwidth requirements,

and (3) the largest minimum bandwidth requirements. We then introduce (and prove) anoptimal band-

width allocation algorithm for stored video which, in addition to the properties of the critical band-

width allocation algorithm, minimizes the total number of bandwidth changes for continuous,
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uninterrupted video playback. That is, the algorithm guarantees that the plan does not cause the avail-

able buffer to underflow or to overflow while producing the fewest possible changes in bandwidth.

In the following section, a description of the original critical bandwidth algorithm is presented

along with an optimal version of the algorithm. A proof of optimality is also presented for the optimal

bandwidth algorithm. The evaluation section compares and contrasts the alternative smoothing algo-

rithms using 17 full-length Motion-JPEG encoded movies. Finally, a summary and conclusions about

the importance of smoothing to the design of network services is presented.

2.0  Bandwidth Allocation Algorithms
In dealing with compressed video data, smoothing techniques attempt to remove the burstiness

with appropriate prefetching and delay. An understanding of how burstiness is introduced into a video

stream can provide insight into the effectiveness of the various smoothing algorithms. For pre-recorded

streams compressed with algorithms such as MPEG[1,9], burstiness occurs at two scales: in small runs

of frames as a result of the pattern of frame types (I, P, or B) used in compression and at a larger scale

with variations in scene content. As was originally shown, the critical bandwidth allocation algorithm

can be an effective algorithm in smoothing variations in both pattern and scene content burstiness[7].

In this section we review the critical bandwidth algorithm and prove several of its key results. In addi-

tion, we introduce and prove the optimal bandwidth allocation algorithm.

2.1  Critical Bandwidth Allocation
The critical bandwidth allocation algorithm without regard to the smoothing buffer size creates a

bandwidth allocation plan for video data which containsno increases in bandwidth requirements for

continuous playback and does not require any prefetching of data before playback can begin. By calcu-

lating such a bandwidth plan, admission control is greatly simplified. That is, the network manager

needs to only ask - “Is there enough bandwidth to start the flow of data?”. Because the CBA algorithm

calculates the minimum bandwidths that are necessary for continuous playback, the buffer size

requirement for continuous playback, may be fairly substantial for long video clips. The buffer size

requirement, however, is not as large as one required by a single constant bandwidth allocation for the
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entire video. For clarity, we say that a bandwidth allocation plan consists ofruns of constant band-

width allocations.

We can describe the intuition behind the CBA algorithm with a geometric model. Given any map

of frame sizes for a particular movie, a graph can be drawn that has the following function:

This function is the running summation of frame sizes for the movie, and must be a monotonically

increasing function (see Figure 1). To avoid buffer underflow, any correct plan must have the total

bandwidth received (TBR) at framei, such that the following condition holds for all frames, i, within

the movie:

The critical bandwidth allocation algorithm allocates a decreasing sequence of constant band-

widths at the minimum bandwidths necessary to play back the video without buffer underflow. This

corresponds to creating a convex arc from the beginning of the movie to the end of the movie with each

run starting and ending on the function Fmovie(i), where the slope of each line (run) determines the

Fmovie i( ) FrameSizej
j 1=

i

∑=

Fmovie(i)

Frame Number

Figure 1: Critical Bandwidth Allocation Example. The solid line in the graph shows a possible
graph for Fmovie(i), while the dotted line shows a plan determined by the CBA algorithm. The
dotted set of lines show the CBA algorithm’s bandwidth plan that requires 4 decreases in
bandwidth, while the squares on the dotted lines show the junctures between runs. The slope of
each dotted line is the bandwidth requirement for that run. The minimum buffer size is
represented by the maximum vertical distance between the critical bandwidth allocation plan
and the function Fmovie(i).
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bandwidth allocation that is required for that run (see Figure 1). As a result, the CBA algorithm results

in a plan with monotonically decreasing bandwidths [7]. While the CBA algorithm does not observe

any limits in available buffer space, it does calculate the minimum necessary buffer to play the video

clip with a single monotonically decreasing sequence of bandwidth allocations. The required buffer

size is determined by the maximum vertical distance between the bandwidth allocation plan and the

function Fmovie(i). The magnitude of this minimum buffer size may vary for the same clip, depending

on the encoding scheme used and the long term burstiness that results. Note that a plan that has a single

constant bandwidth requirement would have a minimum buffer size of at least this amount but is gen-

erally much higher.

Formally, letCB0, CB1, ..., CBk be the runs created by the CBA algorithms. Then the critical band-

width CB0, in bytes per frame, is defined as

whereN is the number of frames in the video clip andframej is the size in bytes of frame numberj.

Thus, the critical bandwidth is determined by the frame,i, for which the average frame size fori and

all prior frames in the video clip is maximized. We call framei, which sets the critical bandwidth, the

critical point in the video clip, or CP0. In the case where the maximum is achieved multiple times, we

chooseCP0 to be the last frame at which it is achieved.

Starting at frameCP0+1, we apply the definition of thecritical bandwidth to the rest of the clip,

resulting inCB1 andCP1. Thus, the critical bandwidths,CBn, are determined by a sequence of critical

pointCPn, where

The use of the critical bandwidth allocation algorithm is an effective technique to use for systems

that have appropriate amounts of buffering for several reasons. First, the playback of the video can

commence immediately. Second, the admission control algorithm is simple -Is there enough band-
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width to start the channel? Third, these bandwidths are the minimum constant bandwidth necessary

for continuous playback without requiring an increase in the bandwidth allocation. Finally, we note

that is possible to reduce the beginning bandwidth requirement by prefetching data for the initial run.

2.2  Critical Bandwidth Allocation with Maximum Buffer Constraint
Using the critical bandwidth algorithm results in the calculation of the minimum buffer size neces-

sary to treat the entire video clip as a monotonically decreasing sequence of bandwidth allocations. In

the event that this minimum buffer size exceeds the buffer space available, then the client must

increase the bandwidth in the middle of the video clip, substituting increased network bandwidth for

missing buffer bandwidth. The critical bandwidth allocation with a maximum buffer constraint has the

same properties as the CBA algorithm but increases bandwidthonly when necessary. As a result, the

CBA algorithm with a maximum buffer constraint (referred to from now on as the CBA algorithm),

results in a plan that:

1) requires no prefetching of data before playback begins
2) has the minimum number of bandwidth increase changes
3) has the smallest peak bandwidth requirement
4) has the largest minimum bandwidth requirement

Using our geometric model, we can graph the functions, Fhi(i) and Flow(i), where Flow(i) is the

same as Fmovie(i) from the last section and Fhi(i) is Flow(i) offset by the buffer size (see Figure 2). That

is,

and

Any valid plan must have the following condition hold for all frames,i, within the movie:

Fhi i( ) FrameSizej
j 1=

i

∑
 
 
 

BufferSize+=

F low i( ) FrameSizej
j 1=

i

∑= .

F low i( ) TBR i( ) Fhi i( )≤ ≤ .
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Thus, any bandwidth allocation plan must stay between Flow(i) and Fhi(i) to ensure that the buffer

neither overflows nor underflows in the course of playing the video. In the presence of a maximum

buffer constraint, the critical bandwidth allocation plans must be modified in the runs that violate the

buffer limitations.

In our discussion, we modify the definition of critical points and critical bandwidths to work with

a maximum buffer constraint. Given some starting point and the buffer occupancy at the starting point,

the critical bandwidth is the bandwidth such that the buffer limitations are not violated for the largest

number of frames. This results in a unique run, given the initial starting conditions. Figure 3 shows two

representative examples of critical points for runs that require a decrease and increase in bandwidth in

the following run and have an initial buffer occupancy of 0 bytes. For a run which requires a bandwidth

increase in thenext run, the critical point is determined by a point on Fhi(i), while for a run which

requires a bandwidth decrease in thenext run, the critical point is determined by a point on Flow(i).

Finally, as shown in Figure 3, we use the termhub to refer to the part of the run that precedes the criti-

cal point and the termfrontier to refer to the trajectory of the run past the critical point.

To create a bandwidth plan, the CBA algorithm starts at frame 0 with no initial buffer and calcu-

lates the critical bandwidth and critical point for the next run. Note we can generally reduce the ini-

Flow(i)

Fhi(i)

Frame Number

Finish line

Figure 2: Critical Bandwidth Allocation with a Maximum Buffer Constraint. This figure shows
a possible graph for Fhi(i) and Flow(i). The total delivered bandwidth (up to some frame i), must
lie between Fhi(i) and Flow(i) or buffer overflow or underflow will occur. The dotted lines
represents a critical bandwidth allocation plan that does not consider buffer overflow. Any time
the allocation plan goes above Fhi(i), buffer overflow will occur.

End of movie

Start point

Buffer overflow!
B
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tially high bandwidth requirement by starting with an initial buffer size > 0, but it requires that the start

playback of video to be delayed. If the critical point is on Flow(i), then a decrease in bandwidth is

required in the next run and the critical point is used as the starting point for the next run. If the critical

point for the run is on Fhi(i), then an increase in bandwidth is required in the next run. A search on the

frontier of the run is performed for a starting point such that the next run results in a critical point that

is as far out as possible. Thus, bandwidth decreases result in a convex arc around points on Flow(i),

while increases involve a slightly more complicated search.

For a runk+1 that requires an increase in bandwidth from the last runk, the bandwidth is allocated

at a slope such that the run extends as far out in time as possible. To implement this, a search is per-

formed on the frontier of runk as shown in Figure 4. The actual search algorithm is not of great impor-

Critical Point

Starting Point

Critical Point

Starting Point

(a) Bandwidth Decrease (b) Bandwidth Increase

Figure 3: Critical Bandwidth and Critical Point Example. On the left is an example calculation
of a critical point using the maximum buffer constraint in which a bandwidth decrease is
required in the next run, while on the right is a similar calculation for the case where a
bandwidth increase is required in the following run. Thefrontiers of the runs are shown with
dashed lines, while thehubs are represented by the thin solid lines.

Furthest Frame
Reachable

Without Overflow

Furthest Frame
Reachable

Without Underflow

Figure 4: Bandwidth Increase Search Example. For the calculation of run k+1 a search is
performed on the line (frontier) connecting Fhi(i) and Flow(j) to find a starting point such that
the critical point for the next run is as far out in time as possible.

Flow(j)

Fhi(i)

run k
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tance in the usual case since these searches are relatively infrequent. One can choose to implement

either a linear or binary search. This search results in one of two cases (if it is not the last run in the

movie): either an increase or decrease in the bandwidth allocation is required for the next run. Exam-

ples of these are shown in Figure 5 and Figure 6, respectively. This results in the following two band-

width increase search properties:

Property 1 : For a run k which (1) increases the bandwidth requirement over run k-1 and (2) requires
an increase in bandwidth in run k+1, the search for run k results in a unique run which is deter-
mined by the slope between the points Flow(m) and Fhi(n) where m < n.

This property essentially says that the search for runk as shown in Figure 5, which results in a

bandwidth increase in runk+1, is defined by two points, one from Flow(i) and the other from Fhi(i). In

addition, because runk+1 requires an increase in bandwidth, the frontier of runk must end on a point

on Flow(i).

Figure 5: Bandwidth Search Example. This figure shows the two representative cases that arise
when the search for runk results in another bandwidth increase required in runk+1. In (a),
Flow(m) lies on the line created by runk-1. In (b), Flow(m) does not lie on runk-1.

run k

run k-1

run k-1

run k

Flow(m)

Fhi(n)

Flow(m)

Fhi(n)

(a) (b)

Flow(n)

Fhi(m)

Flow(n)

Fhi(m)

run k-1 run k-1

run k

run k

Figure 6: Bandwidth Search Example. This figure shows the two representative cases that arise
when the search for runk results in a bandwidth decrease required in runk+1. In (a), Flow(m)
lies on the line created by runk-1. In (b), Flow(m) does not lie on runk-1.

(a) (b)
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Property 2 : For a run k which (1) increases the bandwidth requirement over run k-1 and (2) requires
an decrease in bandwidth in run k+1, the search for run k results in a run which is determined by
a slope between the points Fhi(m) and Flow(n), where m < n.

This property is the similar result for bandwidth decreases. That is, the search in runk is defined by

two points, one from Fhi(i) and the other from Flow(i).  Figure 7 shows a sample construction using the

critical bandwidth algorithm with maximum buffer constraint

To recap, the CBA algorithm consists of allocating runs at their critical bandwidths. For bandwidth

decreases, the end of the run is set to the critical point and the next run is started on the next frame. For

bandwidth increases, a search is performed on the frontier of the last run to find a starting point such

that the critical point of the next run is maximized. By searching for a starting point such that the criti-

cal point is as far out in time as possible for bandwidth increases, an important theorem about the crit-

ical bandwidth algorithm can be derived:

Theorem 1 : The critical bandwidth allocation algorithm with a fixed maximum buffer constraint
results in a plan for playback of video without buffer starvation or buffer overflow that has (1) the
smallest number of bandwidth increases possible, (2) the smallest peak bandwidth requirement,
and (3) the largest minimum bandwidth requirement.

Proof: Let the CBA plan consist ofn runs, each with a constant bandwidth allocation. We
prove the above theorem by showing that all other plans (1) must have at least as many
bandwidth increases, (2) cannot have a smaller peak bandwidth, and (3) cannot have a
larger minimum bandwidth.

We first break then runs into sets of consecutive runs which increase the bandwidth

Figure 7: Critical Bandwidth Allocation with Maximum Buffer Example. This figure shows a
sample construction of the CBA algorithm with a maximum buffer constraint. The dotted lines
represent the runs within the bandwidth plan.

Flow(i)

Fhi(i)

Frame Number

Finish line

End of movie
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requirements from the previous run in the CBA plan. Let runi be the first run in each set,
and let each set be numbered fromi to k, i<k. Because runi is the first run in a set of
bandwidth increases, runi-1 must have decreased the bandwidth over runi-2. This implies
that runi-2 is determined by a critical point on Flow(i) and that run i-1 starts on Flow(i). In
addition, the critical point for runi-1 must be on Fhi(i). This situation is shown in Figure 8.

We now note that because runi-1 connects Flow(m) and Fhi(n) for somem < n, any other
bandwidth plan not co-linear with runi-1 must have a run that has a slope less than that
chosen by runi-1, resulting in a smaller bandwidth. By showing this for all the sets of
consecutive bandwidth increases, part 3 of the proof is shown. That is, any other bandwidth
plan cannot have a higher minimum bandwidth than the CBA plan.

To show part 1 of the theorem (CBA results in the minimum number of bandwidth
increases), we first consider runi-1. We note that any other plan not co-linear with runi-1
must have a run that crosses run i-1 with a lower bandwidth requirement (smaller slope).
As a result, any other planCANNOT have a run that starts on or behind the hub of run i-1
and cross the frontier of runi-1. Thus, any other bandwidth plan must also increase the
bandwidth requirementbefore crossing the frontier of runi-1 (see Figure 8). In the search
for a runi, the CBA plan maximizes the distance reachable by runi by performing a search
along the frontier of runi-1. Because any other bandwidth plan must increase its bandwidth
before crossing the frontier of runi-1, it CANNOT cross the frontier created by run i,
otherwise, the CBA algorithm would have found the same run in its search along the
frontier of runi-1. Because at each step the other bandwidth plans also require an increase
in bandwidth and can never pass the frontier created by that of the CBA plan, the set of
consecutive increases is minimum. Applying this to all the sets of consecutive increases
allows us to prove part 1 of the theorem. That is, the CBA plan results in the minimum
number of bandwidth increases.

Finally, to show that the CBA results in the minimum peak bandwidth requirement, let
us examine runk of each set of consecutive bandwidth increases. Because the set of runs
are grouped into runs that consecutively increase the bandwidth requirements, runk+1
must decrease the bandwidth requirement from runk. Using Property 2, we note that the
search for runk is performed along the frontier of runk-1, and that run k connects Fhi(m)
and Flow(n) for somem < n. Because this run connects Fhi(i) and Flow(i), any other
bandwidth plan not co-linear with runk must have a higher slope which crosses run k. By

...
CPi-1

CPi-2

B
yt

es
Frame Number

runi-1

runi-2

Figure 8: This figure shows a runi-1 that (1) requires a decrease in bandwidth from the
previous run and (2) requires an increase in the next run.

Flow(i)

Fhi(i)
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showing for each set of consecutive runs that other plans cannot have a minimum peak
bandwidth less than the CBA plan, the CBA plan results in the minimum peak bandwidth
requirement, thus, proving part 2 of the theorem. //

To algebraically calculate the CBA plan requires the allocation of constant bandwidth runs. The

calculation of a run requires the starting point for the run,Framestart, and the initial buffer occupancy,

Buffinit, at that starting point. To calculate a run starting fromFramestart with initial bufferBuffinit, let

• FrameAvei be the average frame size from the beginning of the run to theith frame within
the run. This can be defined as:

• MaxBWi be the maximum average bandwidth sustainable from the beginning of the run to
the ith frame that does not overflow the buffer. This can be defined as

Then, the critical bandwidth for a run is defined as a set ofk frames such that the following holds

for all frames within the run:

and such that

The critical bandwidth for the run is then

To calculate the critical bandwidth plan, we start with the first frame with no initial buffer and then

calculate the critical bandwidth for the first run. If the critical point for the first run is along Flow(i),

then a decrease in bandwidth is necessary or the buffer will eventually overflow. The next run is then

started at the critical point with initial buffer 0. If the critical point for the first run is along Fhi(i), then

a bandwidth increase is necessary for the next run. As described earlier, a search is then performed on

FrameAvei

j i+

j Framestart=∑ FrameSizej 
  Buf f init–

i
--------------------------------------------------------------------------------------------------------

 
 
 
 
 

=

MaxBwi
min

1 j i≤ ≤
FrameAvej

BufferSize
j

---------------------------+
 
 
 

=

max

1 j k≤ ≤
FrameAvej MaxBWk≤

max

1 j k 1+≤ ≤
FrameAvej MaxBWk 1+

> .

CB max

1 j k≤ ≤
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the frontier of the run for a starting point that maximizes the point reached by the next run using the

above equations. Note that this search involves a fairly trivial calculation to find the appropriate initial

buffer for the next run.

Using the critical bandwidth algorithm with a fixed size buffer minimizes the number of band-

width increases required during the playback of a video clip. In addition, it also has the smallest peak

bandwidth requirement and the largest minimum bandwidth requirement. An example of CBA

smoothing can be found in Figure 9.

2.3  An Optimal Bandwidth Allocation Algorithm
Using the critical bandwidth based algorithm, it is possible to minimize the total number of band-

width increases for the continuous playback of video. The CBA plans, however, may require many

adjustments that decrease the bandwidth requirement. For networks that place a premium on interact-

ing as little with the clients as possible, the CBA can be extended to have all the properties from

Theorem 1 while also minimizing the total number of bandwidth changes required. Theoptimal band-

width allocation(OBA) algorithm results in the same number of increases in bandwidth, the same

Figure 9: This figure shows the same sample clip from the movieSpeed. The solid line shows the
bandwidth allocation plan using the OBA algorithm and a 2 MB buffer, while the heavier
dotted line shows the CBA algorithm. The main difference between the algorithms is that the
OBA algorithm combines all the bandwidth decreases into a few request.
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smallest peak bandwidth, and the same largest minimum bandwidth as the CBA algorithm. The OBA

algorithm differs from the CBA algorithm by not returning bandwidth to the network as soon as it has

passed the critical point that required the bandwidth. Instead, the OBA algorithm may hold the band-

width past the critical point for a run in order to reduce the number of decreases in bandwidth required,

and, hence, minimizes the interactions with both the network and server. As a result of this, the OBA

algorithm has very few changes in bandwidth for a moderately sized buffer. In the rest of this section,

we describe the optimal bandwidth allocation strategy for the delivery of prerecorded video. We con-

tinue to use the definitions of critical bandwidths and critical points stated in the last section.

For our geometric model, the OBA algorithm allocates runs by performing a search on the frontier

of each run such that the critical point for the next run is maximized. As a result, the OBA algorithm

attempts to allocate runs such that each run maximizes the point reachable. At the end of a particular

line (run), there are two possibilities for the next run, either increase or decrease the bandwidth

requirement. For our discussion, we ignore a run which can reach the end of the movie. The actual

bandwidth used for the last run can be chosen so that it falls within the range of bandwidth allocations

already used, or it can be chosen in such a way as to minimize the bandwidth or minimize the alloca-

tion time of the channel.

For runs which require a bandwidth increase in the next run, the same search is performed as in the

CBA algorithm, resulting in a search on a line connecting Fhi(m) and Flow(n) with m < n (see Figure 5

and Figure 6). For runs which require a bandwidth decrease in the next run, a search at the end of the

current run results in four other possible outcomes. These representative outcomes, which are essen-

tially mirror images of the 4 bandwidth increase cases, are shown in Figure 10 and Figure 11. For a run

k which decreases the bandwidth from the last run, a search along a line that touches Flow(m) and

Fhi(n), with m < n is performed to find a starting point for the next run that maximizes the point reach-

able for runk. This new line segment maximizes the critical point for the next run, while providing a

transition from the last run to the current run. This leads to two bandwidth decrease search properties

that are parallel to Properties 1 and 2:
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Property 3 : For a run k which (1) decreases the bandwidth requirement over run k-1 and (2) requires
an increase in bandwidth in run k+1, the search for run k results in a run which is determined by
the slope between the points Flow(m) and Fhi(n) where m< n.

This property essentially says that the search for runk as shown in Figure 10, which results in a

bandwidth increase in runk+1, is defined by two points, one from Flow(i) and the other from Fhi(i). In

addition, because runk+1 requires an increase in bandwidth, the frontier of runk must end on a point

on Flow(i).

Property 4 : For a run k which (1) decreases the bandwidth requirement over run k-1 and (2) requires
an decrease in bandwidth in run k+1, the search for run k results in a run which is determined by
a slope between the points Fhi(m) and Flow(n), where m < n.

Figure 10: Bandwidth Search Example. This figure shows the two representative cases that may
result for run k which decreases the bandwidth requirement from runk-1, but requires a
bandwidth increase for run k+1.

run k

run k-1run k-1

run k

Flow(m)

Fhi(n)

Flow(m)

Fhi(n)

(a) (b)

run k

run k-1
run k-1

run kFlow(n)

Fhi(m)

Flow(n)

Fhi(m)

Figure 11: Bandwidth Search Example. This figure shows the two representative cases that
arise when the search for runk results in another bandwidth decrease required in runk+1. In
(a), Fhi(m) lies on the frontier created by runk-1. In (b), Fhi(m) does not lie on the frontier of run
k-1.

(a) (b)



16

This property is the similar result for bandwidth decreases. That is, the search in runk is defined by

two points, one from Fhi(i) and the other from Flow(i). See Figure 11. A sample construction is shown

in Figure 12. Using this “greedy” approach in the allocation of each run within the OBA plan results in

the following theorem:

Theorem 2 : For video playback allocation plans using a fixed size buffer, for which (a) the bytes
deliverable are equal to the aggregate size of the video clip and (b) where prefetching at the start
of the movie are disallowed, the OBA algorithm results in (1) the smallest peak bandwidth, (2) the
largest minimum bandwidth, and (3) the fewest possible bandwidth changes.

Proof: To prove this theorem, we use the notation

[inc, inc] - for a run which increases the bandwidth from the last run and
requires an increase in bandwidth in the next run

[inc, dec] - for a run which increases the bandwidth from the last run and
requires a decrease in bandwidth in the next run

[dec, inc] - for a run which decreases the bandwidth from the last run and
requires an increase in bandwidth in the next run

[dec, dec] - for a run which decreases the bandwidth from the last run and
requires a decrease in bandwidth in the next run

To prove part 1 of the theorem (smallest peak bandwidth), let us consider all of the [inc,
dec] runs within the OBA plan. That is, the runs that are surrounded by runs of smaller
bandwidths. Let the [inc, dec] run be runi. By Property 2, runi is determined by a hub that
runs from Fhi(m) to Flow(n) for some m < n. We then note that any other plan that is not co-
linear with runi, must have a run that crosses the hub of run i. Because this slope must be

Flow(i)

Fhi(i)
Available buffer size

Finish line

End of movie

Frame Number

Start point

Figure 12: Optimal Bandwidth Allocation Construction Example. This figure shows a sample
construction of the optimal bandwidth allocation algorithm. Note, this plan includes only 4
runs while the same plan in Figure 7 required 6 runs using the CBA algorithm. The heavy solid
lines show Fhi(i) and Flow(i), while the light solid lines show the slopes (bandwidths) selected by
the optimal critical bandwidth allocation algorithm. The dotted lines show the lines along
which the searches were performed to maximize the critical points of the following runs.
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greater than that from Fhi(m) to Flow(n) in order to cross it, no other run can have a smaller
bandwidth requirement that crosses the hub of runi.

To prove part 2 of the theorem, the mirror of part 1 is used. Let us consider all of the
[dec, inc] runs within the OBA plan. That is, the runs surrounded by runs of larger
bandwidths. Let the [dec, inc] run be runi. By Property 3, runi is determined by a hub that
runs from Flow(m) to Fhi(n) for some m < n. We then note that any other plan that is not co-
linear with runi, must have a run that crosses the hub of run i. Because this slope must be
smaller than that from Flow(m) to Fhi(n) in order to cross it, no other run can have a larger
bandwidth requirement that crosses the hub of runi.

To prove part 3 of the theorem, we show by contradiction that the OBA algorithm
results in the minimum number of bandwidth changes. Suppose the OBA algorithm creates
a bandwidth plan,planopt, that hasX bandwidth changes in it. Further, suppose that this
plan is not optimal in the number of bandwidth changes. Therefore, another plan, planbetter,
must exist that hasfewer thanX bandwidth changes in it. As a result, there must exist at
least one run inplanbetterthat spans greater than one run fromplanopt. As will be shown,
this cannot happen.

For algorithms that do not allow prefetching, both bandwidth plans must start on the
first frame and have nothing in the smoothing buffer. As a result,planopt, whether it
requires an increase or decrease in bandwidth in the next run, results in a plan that has a
critical point greater than or equal to the first run inplanbetter. If an increase in bandwidth is
required in the next run,planopt picks the bandwidth such that any more bandwidth would
result in buffer overflow before the critical point of the first run inplanopt. Any less
bandwidth results in a critical point that is before the critical point of the first run inplanopt.
If a decrease in bandwidth is required in the next run, then by definition,planopt has chosen
the minimal bandwidth necessary without overflow resulting in the furthest critical point
possible. Thus,planbetter cannot have a critical point that is further out thanplanopt for the
first run, and hence, cannot cross the frontier of the first run inplanopt in the first run.

For each run after the first run,planopt starts by examining the frontier of the last run
and finds a starting frame that maximizes the critical point of the current run. This search is
always performed a line connecting Flow(i) and Fhi(i) OR Fhi(i) and Flow(i). Because this
search is on a line that connectsFhi andFlow whichplanbetter must cross,planbetter cannot
pick a next run that is longer than the one chosen byplanopt. Otherwise,planopt would have
found it in its search. We continue this process for all runs within theplanopt. Because
everyith run inplanbetter cannot have a critical point further than theith run inplanopt,
planbetter must have at least as many runs asplanopt. Therefore,planopt results in the fewest
number of bandwidth changes.//

In order to algebraically construct the optimal bandwidth allocation plan, we use the same algo-

rithm for finding the critical bandwidth and critical point for a run as defined in Section 2.2. The OBA

plan then consists of three types of allocations: the beginning run, a run that decreases the bandwidth

allocation, and a run that increases the bandwidth allocation.

The beginning run does not have any prefetch in order to minimize the latency between channel

set-up and the beginning of playback. Therefore, the first run, is set to the critical bandwidth and criti-
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cal point for the run starting at the beginning of the movie with an initial buffer of 0. Next, if the criti-

cal point for the run lies on Flow(i) a bandwidth decrease is required in the second run. If the critical

point for the run lies on Fhi(i) a bandwidth increase is required in the second run.

In the calculation of a run that decreases the bandwidth allocation, a search on the frontier of the

previous run is performed to determine how long the bandwidth should be held past the previous run’s

critical point (See Figure 10 and Figure 11). The search finds a frame,j, such that using the same band-

width allocation from the end of the last run results in the critical point in the current run to be as far

out as possible. The bandwidth for the run is then set to the critical bandwidth of the last run up to, and

including, framej, while the bandwidth from framej+1  to the critical point is set to the critical band-

width for the run starting on framej+1 , with the appropriate initial buffer.

In the calculation for a run that increases the bandwidth allocation, a search on the frontier of the

previous run is performed to find a frame,k, such that the current run reaches as far a frame as possi-

ble. The current run is then started on framek and has its bandwidth allocation set to the critical band-

width starting from framek.

For each subsequent run, we simply apply the same algorithm to determine which of the calcula-

tions to use (whether for increasing or decreasing the bandwidth). A sample allocation plan is shown in

Figure 9.

3.0  Evaluation of Algorithms
From the point of view of network and server management, load estimation and admission control

are crucial to providing guarantees of service. These can be greatly simplified if all channels exhibit

constant behavior. In the absence of an entirely constant bandwidth allocation, the amount each chan-

nel strays from this constant allocation will determine the network’s performance. Several measures

that influence this performance are the frequency of requests for increased bandwidth, the size of these

increase, and the peak bandwidth requirements. The frequency and size of decreases can be interesting

as well if the network management makes some provision for lowering a bandwidth reservation.
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To compare and contrast the differences between the critical bandwidth allocation based

approaches, we digitized and Motion-JPEG compressed 17 full-length movies and 3 seminars pre-

sented in our department to use as test data. Our experiments confirmed our theoretical hypothesis and

showed that for a small amount of client-side buffering we can indeed reduce the number of bandwidth

changes necessary to a small number. To our surprise, we found that having 20 MBytes of buffer space

on the client-side could reduce the total number of changes for any of the clips tested to less than 10.

We expect that with tighter video encodings that take advantage of temporal redundancy between

frames, such as MPEG, that similar numbers can be achieved with smaller buffers. In the rest of this

section, we describe our experimental set-up and the video clips that were digitized. In addition, a

more in-depth look at the performance of the critical bandwidth allocation based algorithms is pre-

sented.

3.1  Experimental Set-up
To test the effectiveness of the various smoothing algorithms, we needed to digitize a few full-

length movies. In previous work, we found that using the critical bandwidth allocation approach on

smaller clips created plans that required no increases in bandwidth and required small amounts of buff-

ering to achieve this. To get a better representation of how the algorithms perform, we needed to cap-

ture a larger set of full-length movies.

Our PC testbed consists of a Pioneer Laser Disc player, a MiroVideo DC1tv capture board, and a

Pentium 90 processor with 32 MB of memory. The MiroVideo Capture board is a Motion-JPEG com-

pression board. We do not have the equipment to perform rapid MPEG encodings. Because the basic

routine for encoding I-frames within an MPEG video are derived from the JPEG compression stan-

dard, the frame sizes for our experimental video data are roughly equivalent to all I-frame encoded

MPEG video movies. The CBA and OBA algorithms are most sensitive to scene content changes and

not pattern burstiness, however, the size of the resulting streams strongly affects the buffer require-

ments. MPEG encoded video could achieve the same performance with buffers that are approximately

4-6 times smaller. We, therefore, expect that the results presented here are somewhat conservative
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compared to a system using MPEG as its compression standard. The Miro Video board digitized the

movies at 640x480 and then subsampled them to 320x240 with guaranteed VHS picture quality.

Using our testbed, we captured 17 full-length movies at a range of 0.85 to 1.61 bits per pixel. The

statistics for these videos are shown in Table 1. In digitizing the video data, we attempted to capture a

variety of different movies in order to examine the effects each had on the smoothing algorithms. The

Beauty and the Beast video is an animated Walt Disney movie, resulting in scenes with a lot of high

frequency components as well as scenes that had large areas of constant color. The1993 NCAA Final

Four video is a documentary describing the NCAA Final Four basketball tournament, resulting in

many of the scenes with lots of detail. As a result, the1993 NCAA Final Four video had the highest

Table 1: This table shows the statistics of the Motion-JPEG video clips that were digitized
with the MiroVideo capture board and used in the evaluation of the critical bandwidth
algorithms.

Video Clip Name Quality
Length
(min)

Ave. Bit Rate
(Mbits/sec)

Max Frame
Size (bytes)

Min Frame
Size (bytes)

Std. Dev.
(bytes)

Beauty and Beast 90 80 3.04 30367 2701 3580

Big 90 102 2.96 23485 1503 2366

Crocodile Dundee 90 94 2.59 19439 1263 2336

ET 75 75 110 1.51 14269 1153 1840

ET 90 90 110 2.17 19961 2333 2574

ET100 100 110 3.78 30553 6827 3294

Home Alone II 90 115 2.73 22009 3583 2480

Honey, I Blew Up the Kid 90 85 3.32 23291 3789 3183

Hot Shots, Part Duex 90 84 3.06 29933 3379 3240

Jurassic Park 90 122 2.73 23883 1267 3252

Junior 90 107 3.36 25119 1197 3188

Rookie of the Year 90 99 2.98 27877 3531 2731

Seminar 90 63 2.07 10977 7181 592

Seminar2 90 68 2.12 12309 1103 608

Seminar3 90 52 2.26 11167 7152 690

Sister Act 90 96 2.86 24907 1457 2608

Sleepless In Seattle 90 101 2.28 16617 3207 2459

Speed 90 110 2.97 29485 2741 2707

Total Recall 90 109 2.88 24769 2741 2692

1993 Final Four Video 90 41 3.95 29565 2565 4138
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average bit rate. The rest of the movies are a mix of conventional entertainment containing a wide

range of scene content, including digital effects and animations. TheSeminar videos, as previously

mentioned, contain single scenes and, thus, have the smallest variation in frame sizes.

3.2  Critical Bandwidth Allocation without Buffer Constraint
When sufficient buffering is available, allocating the bandwidth plan using the critical bandwidth

algorithm without a buffer constraint is useful because in a system where all streams are using this

algorithm, admission control becomes trivial. The admission control algorithm simply sees if there is

enough bandwidth to start the flow of data. Recall that the critical bandwidth algorithm results in a

monotonically decreasing sequence of bandwidth allocations. In addition, the playback of the video

can start once the video has been accepted to the network.

As shown in Figure 13, the amount of buffer required to play back the sample videos varies quite a

bit. The total amount of buffering depends primarily on three factors, the average size of the frames,

the length of the video, and the long-term burstiness of the video. If the movie has a sustained area of
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Figure 13: Critical Bandwidth Allocation Minimum Buffer Requirement. This figure shows the
maximum buffer requirements for the movies encoded using the CBA algorithm with no buffer
limitation.
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smaller frames followed by a sustained area of larger frames, the amount of buffering tends to be much

higher. As examples, the seminar videos require much smaller buffer sizes because both the size and

variation of frames sizes are small in these videos. TheE.T. videos require proportionately larger buff-

ers as the quality is increased. Because these videos exhibit the same long term burstiness, the differ-

ences are due mostly to the increase in the frame sizes within the videos. Just the average size of

frames, however, is not indicative of the minimum buffer requirements. The movieSpeed requires a

larger buffer than theE.T. (Quality 100) video even though both the variance in frame sizes and the

average frame sizes are smaller in theSpeed video. Thus, the buffer size is primarily due to the long

term burstiness, and to a lesser degree, the length and average frame sizes of the videos.

3.3  Bandwidth Changes
As Figure 14 shows, the OBA algorithm results in a fewer number of bandwidth changes than the

CBA algorithm for a given buffer size, as expected. As an example, using theSpeed video, a 5 MByte

smoothing buffer, and the OBA algorithm results in 21 bandwidth changes over the 110 minute movie,

while the critical bandwidth algorithm requires 37 changes in bandwidth. On average the optimal

bandwidth allocation algorithm requires a bandwidth change approximately every 5 minutes. After the
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Figure 14: Bandwidth Change Requests. The graphs above show the total number of required
bandwidth allocation change requests for the movie Speed. The OBA and CBA algorithms were
run on the entire video clip for varying buffer sizes in one MByte increments.
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initial start of the movie, theSpeed movie using the OBA algorithm has a minimum run length of

approximately 1 minute and 45 seconds and a maximum run length of approximately 14 minutes. By

using a 10 MByte buffer for buffering, the shortest and longest run lengths grow to 13 minutes and

25.5 minutes, respectively. As a result, a modest amount of buffering can reduce the number of interac-

tions required from the network to the order of tens of minutes.

As shown in Figure 15, the total number of bandwidth changes required for the rest of the video

data are relatively small even for a 10 MByte buffer with loosely encoded video. For a 10 MByte

smoothing buffer, the movieE.T. (Quality 100) requires 23 bandwidth changes with the OBA algo-

rithm, which is the maximum number of changes required for all the movies using the OBA algorithm.

On average, the OBA algorithm results in 73% fewer bandwidth changes than the CBA algorithm for a

10 MByte smoothing buffer and 63% fewer bandwidth changes at 30 MBytes. The distinction between

increases and decreases in the bandwidth allocation plan can be useful because the requests for
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changes required for all of the sample movies using a 10 and 30 MB buffer and the OBA and
CBA Algorithms.
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decreases in bandwidth can generally be satisfied, while increases may require further negotiations

with the network. In addition, it highlights the main differences between the various algorithms.

3.4  Bandwidth Decrease Requests
As shown in Figure 16, the total number of bandwidth decreases for theSpeedvideo are similar to

the total number of bandwidth change graph (Figure 14). This is not entirely unexpected because the

CBA and OBA algorithms result in the minimum number of bandwidth increases necessary for contin-

uous playback. Thus, a large percentage of the bandwidth changes are due to decreases in bandwidth,

which from a network point of view should be easier to satisfy. In comparing the optimal bandwidth

algorithm with the critical bandwidth algorithm, we see that the main difference between these algo-

rithms is in the number of bandwidth decreases (as shown by the same relative differences in total

bandwidth changes and total number of decreases). The critical bandwidth allocation algorithm allo-

cates each run at the minimum bandwidth requirement to avoid underflow, while the optimal band-

width starts each run at the minimum bandwidth requirement but holds the bandwidth past the critical

point of the run to prefetch data for the next run.
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Figure 16: Bandwidth Decrease Requests. The graphs above show the total number of
bandwidth allocation decrease requests for the movieSpeed. The CBA and OBA algorithms
were applied to the movie segment with different buffer capacities.
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3.5  Bandwidth Increase Requests
For bandwidth increases, using the CBA and OBA algorithms result in the same number of

increases across all buffer size constraints for each movie, as expected. As shown in Figure 18, the

number of increases required for the movieSpeeddrops to 5 increases for buffers greater than 8

MBytes and drops to only 2 increases for buffers greater than 14 MBytes. As a result, interactions with

the network for more bandwidth are required, on average, every 21 and 55 minutes for an 8 and 14

Mbyte smoothing buffer, respectively! As shown in Figure 19, all the other movies exhibit similar

behavior to theSpeedvideo.

3.6  Peak Bandwidth Requirements
For systems that allocate resources based on the peak bandwidth requirements, the peak bandwidth

requirement can be an important measure. While the peak bandwidth requirement gives the amount of

resources necessary, it does not give a method for comparing the results of different movies. To show

the effects of smoothing on our sample movies, we have assumed that the peak bandwidth requirement
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Figure 17: Bandwidth Decreases for All Movies. This graph show the number of bandwidth
decreases required by the OBA and CBA algorithms for 10 and 30 MB buffers for all the
sample movies.
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Figure 18: Bandwidth Increase Requests. The graph above shows the total number of
bandwidth allocation increase requests for the movieSpeed. The CBA and OBA algorithms
were applied to the video with different buffer capacities, all resulting in the same number of
bandwidth increases as shown above.

Figure 19: Bandwidth Increases for All Movies. This graph shows the number of bandwidth
increases required using the OBA and CBA algorithms with a 10MB and 30 MB buffer.
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is used for the entire movie and then calculated the utilization of the bandwidth reserved. The peak

bandwidth utilization measurements are shown in Figure 20. From this graph, we see that some mov-

ies (particularly the ones with low utilization) do not improve their utilization of bandwidth between

10MBytes and 30 MBytes of buffering. The main reason for this is that the optimal bandwidth algo-

rithm may have an initially high bandwidth requirement in order to satisfy a low latency start of the

video, however, once this initially high bandwidth requirement is passed, a lower peak bandwidth

requirement results for the rest of the movie. To show this, we have also graphed what we call thetum-

bling utilization measurement, which measures the utilization of the bandwidth reserved in the same

way as the peak bandwidth utilization measurement with one exception. Once the peak bandwidth

requirement has passed for the entire movie, the bandwidth can be reduced to the peak bandwidth for

the rest of the movie. An example of the tumbling bandwidth utilization calculation is shown in

Figure 21. As Figure 22 shows, the tumbling bandwidth utilizations are much higher than the peak

bandwidth utilization measurements, mostly due to the initially high bandwidth requirement of the

optimal bandwidth allocation plans. The movieJunior has the lowest utilization of all the movies. This
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Figure 20: Peak Bandwidth Utilization for All Movies. This figure shows the utilization of
resources allocated using the peak bandwidth requirement and the OBA and CBA algorithms
(with no initial prefetching at the start of the movie).
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CBA Plan = 15 units

Tumbling plan = 21 units

Peak plan = 24 units

Peak Plan

Tumbling Plan

Peak Util = 15/24

Tumbling Util = 15/21

Figure 21: Peak Utilization vs. Tumbling Utilization. This figure shows the difference between
the peak and tumbling utilization calculations. The CBA plan (heavy solid line) requires 15
units of bandwidth (represented by squares). The tumbling utilization plan always results in a
utilization greater than or equal to the peak utilization.
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Figure 22: Tumbling Bandwidth Utilization for All Movies. This figure shows the tumbling
utilization for the OBA and CBA algorithms on the sample movies. The tumbling utilization is
the same as the peak bandwidth requirement utilization except once the peak bandwidth
requirement is passed, a channel may reduce its peak bandwidth requirement once the peak
has passed.
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movie has a large burst of frames at the end of the movie, resulting in the peak bandwidth requirement

at the end of the movie, resulting in a lower utilization than exhibited by the other movies. With the

exception ofJunior, it is interesting to note that the optimal bandwidth algorithm result in utilizations

between 94% and 100%, with 10 of the movies having greater than 99% utilization.

4.0 Summary and Conclusions
The smoothing of video data will play an important role in the design of video playback systems.

Smoothing of compressed video data through prefetching allows the data delivery service to substitute

buffer bandwidth for network bandwidth. By smoothing the rate of video transmission through buffer-

ing, network and server scheduling can be simplified. In this paper, we have proven that the critical

bandwidth allocation algorithm results in plans for the continuous playback of stored video that have

(1) the minimum number of bandwidth increases, (2) the smallest peak bandwidth requirements, and

(3) the largest minimum bandwidth requirements. We have also introduced the notion of the optimal

bandwidth allocation algorithm which is based on the critical bandwidth algorithm. As we have

shown, this optimal bandwidth allocation algorithm, in addition to having the three critical bandwidth

allocation properties, also minimizes the total number of bandwidth changes required, making the best

use of the available buffer bandwidth.

Many live video applications have fairly consistent bandwidth requirements across time, although

compression will lead to pattern burstiness at a small scale. This sort of video stream can be smoothed

by an algorithm with a narrow window [8]. On the other hand, streams such as stored movies are inho-

mogeneous at the level of scenes within the movie. To effectively smooth such streams, it is necessary

to examine longer segments within the stream. This is the approach taken by the critical bandwidth and

the optimal bandwidth allocation algorithms. Both algorithms aggressively prefetch data to smooth

network bandwidth requirements and differ on the approach used in returning bandwidth back to the

network. The critical bandwidth algorithm calculates a bandwidth plan such that the bandwidth is

returned as soon as the critical point that forced the bandwidth is passed. The optimal bandwidth allo-

cation algorithm, on the other hand, continues to hold the bandwidth until the optimal amount of
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prefetch for the next run is obtained, minimizing the number of interactions necessary with the net-

work and server.

The choice between using the optimal bandwidth allocation algorithm and the critical bandwidth

algorithm with a maximum buffer constraint depends on the network cost model. In some cases, it may

be more beneficial for the network to have the clients allocate at their minimum constant bandwidth

requirements, making the critical bandwidth algorithm more useful. In other cases, it may be more

beneficial for the network to have as few interactions with the video application as possible, in which

case, the optimal bandwidth allocation algorithm may be the appropriate choice.

The amount of buffering needed in any system depends upon the size of the data stream and the

effectiveness of encoding. The video clips used in our analysis do not take advantage of interframe

dependencies, however, these interframe dependencies tend to reduce the number of bandwidth

changes required as long as the pattern of frame types is repeating. Nonetheless, our results are indica-

tive of the resources required for smooth video delivery. These requirements are not large in terms of

today’s workstations and should be achievable for tomorrow’s televisions.

In the playback of video, VCR functions such as stop, pause, rewind, and fast-forward may be

required. For accesses that occur around the point of playback such as pause or a short rewind, the

buffer can be used to service some of the requests. For these local requests, the only change necessary

to the bandwidth plan is that the reservations must be moved forward in time. Because the CBA based

algorithms have nearly constant bandwidth allocations (as exhibited by their 90+% utilizations), these

interactions can be efficiently handled. For accesses that are more random, the use of contingency

channels can be used to return the user to the originally agreed upon bandwidth reservation level [3]. A

more in-depth handling of VCR-functions in bandwidth smoothing environments can be found in [4]

and [5].
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