
Meta-Matters in Squeak
Andew P. Black

1

CS410/510 Advanced Programming

What's Meta?

• Metaprogramming is the act of writing a
program that writes or manipulates
another program… or itself

• Why not? After all programs are just
data!

2

Example: named colors

3

Named Colors (cont)

• Each named color, e.g., yellow
• should have a class method, so that we can write

Color yellow
• should be in the collection ColorNames, so that

the name method works
• should have a corresponding class variable, e.g.,

Yellow, whose value is the right rgb triple

4

• How can we make sure that these
invariants hold?

• Metaprogramming!

Constructing the Color Names

5

Simple Example
• In the visitor pattern from last class:

Solution (continued)

2. Every concrete class Foo in the Expression
hierarchy gets a method accept: aVisitor
defined as follows:

– Note how the selector of the message tells the visitor
what kind of node it is visiting

– Do this for Foo = Difference, Product, Quotient, Sum,
etc.

7

 Foo ›› accept: aVisitor

↑ aVisitor visitFoo: self

6

I wrote these methods with a metaprogram:

Expression allSubclassesDo: [:each | each compile: 'accept: aVisitor
 ↑ aVisitor visit', (each name), ': self ' classified: 'visiting']

Alternative Solution
• Instead of writing a separate program to

write our program, we could make the
program write itself:
• Put the following single method at the root of

the hierarchy:

7

Expression ›› accept: aVisitor
↑ aVisitor perform: ('visit', (self class name), ':') asSymbol

 with: self

• This is a reflective program — one that
writes itself dynamically

Example Problem
• suppose that you want to do some action

before and after every method on an object
e.g.,

OrderBean ›› orderNumber
 ↑orderNumber

becomes
OrderBean ›› orderNumber
 logger logSendOf: #orderNumber.
 result := orderNumber.
 logger logAnswerOf: #orderNumber as: result.
 ↑result

8

9

Patterns of Aspect-Oriented Design EuroPLOP Version

Spectator aspects can be implemented using a range of different language constructs. Pointcut-based
languages such as AspectJ offer direct support for them, while others provide it indirectly through special
purpose preprocessors, virtual machine support (such as .Net’s Interception interface) and various object-
oriented design patterns (typically Proxy, also known as Interceptor, Encapsulator, or Wrapper). From
our perspective, whether or not we are using a language with direct support for AOP is secondary to the
question of whether we are implementing an aspect-oriented design. This is analoguous to the idea that
an object-oriented design can be implemented in a procedural language such as Pascal or C, or even in
assembly language.

Spectators are indeed common in non-aspect-oriented languages. Many Lisp systems provide a trac-
ing facility that is implemented by re-writing the source code of the function being traced. APB !I know
this was true of LISP/370 around 1981, but hopefully someone will have a more current reference!" .
Squeak Smalltalk implements services such as the ObjectTracer and the ObjectViewer using wrappers.
The same technique can be applied to the problem of logging all operations on a Beanz. All that need be
done is to wrap it in another object of class BeanzWrapper, which defines the following two methods.

doesNotUnderstand: aMessage
”Do logging and forward message”
↑(tracedObject respondsTo: aMessage selector)

ifTrue: [self pvtDoAround: aMessage]
ifFalse: [super doesNotUnderstand: aMessage]

pvtDoAround: aMessage
| result |
logger logSendOf: aMessage.
[↑result := aMessage sendTo: tracedObject]

ensure: [logger logAnswerOf: aMessage as: result]

(The Smalltalk bodyStatements ensure: finalStatements first executes bodyStatements and then ensures
that finalStatements are executed afterwards, even if bodyStatements terminates abnormally.) APB

!This seemed like the right thing to do in Smalltalk; the corresponding Java would use a try . . . finally,
I believe. Do we want to put the corresponding Java in the AspectJ example?"

Any messages (other than these two) sent to the wrapped object will not be understood, triggering
the doesNotUnderstand: method. Provided that the wrapped object can indeed respond to the message,
the message pvtDoAround: is sent to implement the “around advice”. (The pvt prefix designates a private
method). pvtDoAround: delegates the actual logging actions to a logger object; this makes it possible to
re-use the wrapper mechanism for other purposes.

If, as in the AspectJ example, the application requires that all messages on all instances of all sub-
classes of Beanz be logged, then all of those instances must be wrapped. This is easily accomplished by
overriding the new method on Beanz:

new
↑BeanzWrapper wrap: super new

Alternatively, wrappers can be installed more selectively if that is what the application requires.

Discussion

The Spectator pattern seems to capture one of the most straightforward and most common kinds of
aspect-oriented design. The name “Spectator” comes from Clifton and Leavens’ analysis of meta-level
facilities [13]; we discuss the relationship between meta-programming and aspects further in section 7.5.
Katz defines “Spectative aspects” with respect to properties of a base program, rather than with respect
to the program itself [33]. Thus, a particular piece of advice might be spectative with respect to one

G3–5

Solution: a Wrapper Object
• Define a class BeanWrapper with the following

methods:

Deploying the wrappers
• Wrappers can be deployed selectively

on some particular Bean objects:
 b := OrderBean new.
 w := BeanWrapper wrap: b.

• Or, they can be deployed on every Bean
 Bean ›› new
 ↑BeanWrapper wrap: super new

• re-defining new is itself a form of
metaprogramming

10

Another Example

• We know that we can write this:
(1 to: 10) select: [:x | x even]

• How about this?
(1 to: 10) select even

• Can we make this work? What about
other unary messages (odd, isPrime, …)?

11

Summary of Solution

• (1 to: 10) select must answer an object that
"remembers" the collection and the fact that we
plan to do a select: operation

• This object is called a Trampoline

• How can we make the trampoline understand
even, odd, isPrime, factorial …

• Reflection!

12

Structural Equality

• We saw how to build a recursive
equality operation in Haskell that
reaches down into the structure of a
data type

• Can we do the same in Squeak?
• How is equality defined in Object?

13

Try a new Equality Operation

14

How does === work out?

15

What about zipAllWith: ?

16

• We would like to be able to write
{ $a to: $z . $A to: $Z } zipAllWith:
 [:lo :up｜String with: lo with: up]

for n collections and any n argument
block

• Can we do it?

Smalltalk Browsers

• There are lots of different browsers in the
Smalltalk environment
• system browser, hierarchy browser, protocol browser,

inheritance browser, … inspector, explorer, change set
browser, file system browser

• Each one “knows” about the structure that it is
browsing
• e.g., the system browser has hardwired into its code the

facts that Categories contain Classes and Classes contain
Protocols and Protocols contain methods

17

The OmniBrowser
• The OmniBrowser is a browser for everything

and nothing in particular
• it doesnʼt “know” about any system structure

• instead, it is driven by metadata that describes the
thing that it is browsing

• The metadata takes the form of a graph of
objects — the metagraph

• The domain that the browser navigates is
also a graph of objects — the subject graph

18

A File System Browser
• We will build an instance of the OmniBrowser

that examines the file system

• The file system is not a graph of objects

• Thatʼs OK: we build OBNodes to represent the
entities that we are browsing

• We define two subclasses of OBNode:
OBDirectoryNode and OBFileNode

• What do these OBNodes have to do?

• that is defined by the metagraph

19

File System: Graph & Metagraph

20

File

Directory

#files

N metanode

is a child of

#directories

N object node

/

/temp pic1.jpg

pic2.jpg pic3.jpg

(a) (b)

Figure 2: A graph describing a filesystem (a) and its corresponding metagraph
(b).

FileNode>>setPath: newPath
path := newPath

FileNode>>path
^ path

FileNode class>>on: path
^ self new setPath: path

FileNode>>name
^ (FileDirectory directoryEntryFor: self path) name.

FileNode subclass: #DirectoryNode
instanceVariableNames: ’’ ...

The abstract relationships between different types of nodes within the browser
are defined using another type of graph, a metagraph. In a metagraph each type
of node of an object graph is represented by a metanode. As a whole, the meta-
graph describes the structure of the object graph navigated by the browser.
Edges between metanodes define which kinds of nodes may be connected to
which other kinds of nodes.“Kind of node” is a notion that is formalized by
object node classes; typically, there is a metanode for each node class, as is the
case in our file browser.

The metagraph for the file browser is shown in Figure 2 (b). There are two
metanodes for the two types of nodes in the object graph. A directory may
contain other directories and files, the two edges in the metagraph represent
these two relationships.

OmniBrowser opts to store metagraphs in a central place. New metagraphs
should be returned from class methods of the class OBMetagraph. Thus we
construct the file browser metagraph in the method #fileBrowser:

5

directory

directory

Metagraph as data

21

File

Directory

#files

#directories

