
2007.05.07 18:53:53AbstractFSM.oo3

1

Topic

7th May 2007
Finite State Machines revisited

Adding a class for DFSMs
as sibling of NFSM, with new abstract superclass
You can use the refactoring browser to help create the sibling class. It's important to look
at each method in NFSM, and decided if it should be promoted to the superclass, or
whether a new (and different) version should be created in the DFSM subclass

as subclass of NFSM. DFSMs are, after all, a specialization of NFSMs. I don't think that
there is anything wrong with this, even "purists" would chose to pursue the above
alternative. However, if you pursue this one, it's really important to cancel (= override
with self shouldNotImplement) any methods that are not appropriate for the subclass.

NFSM

DFSM

Simple and clean way of writing the DFSM>>newFrom: aNFSM method
Can't really disregard efficiency when we changing the "big O" runtime.

Adding visualization to State Machines
As far as possible, don't change the code of the machine itself

Separate out the View — what's show on the GUI, from
the Model — the underlying logic of the FSM.

Since we have a working model, don't change it.
but we may have to refactor it a bit …

Add a class to view the whole machine, a class to view the states, and a class to view the
transitions

Some of these can be existing views (Morphs)
Use the Observer pattern to notify views of changes in their model

Make each View object a dependent of the corresponding model object
modelObject addDependent: viewObject

Model objects send self changed when something interesting changes
view objects get an update: message

They can then ask their model for whatever they need to know
Break up accept: into pieces

so that each step can be visualized.

