Parser Combinators

in Smalltalk

IIIIIIIIII

Tim’s Trick

e What's so cool about functional
programming?
e referential transparency

e |f Xx = foo stuff, then
X + X = foo stuff + foo stuff

 =|s mathematical equality, and you can replace
equal by equal

Portland State

IIIIIIIIII

What about effects?

e Suppose that x is not just a value but
has an effect:

iIf X = nextint input, then

X + X Z nextint input + nextint input

* |n the presence of effects, you can't
replace equals by equals

e Say bye bye to equational reasoning

Portland State

IIIIIIIIII

How does Haskell combine
equational reasoning and effects?

* Monads separate the definition of
commands from the execution of

commands Monads

e Command definition is still referentially
transparent

» Command execution is “special’

* do syntax

Portland State

IIIIIIIIII

What about other languages?

 Can we separate command definition
and command execution in Java, or In
Smalltalk?

e Yes!

* but the defaults are backwards compared to
Haskell

e methods can be executed (= do),
e but that’s the default !

e How can they be manipulated?

Portland State

IIIIIIIIII

We have sequential composition

e BNF:

fStmnt ;= if boolean then stmits* else stmts™ fi

e code:

parselfStmnt

parseKeyword: #if.
parseBoolean.
parseKeyword: #then.
parseStatements.
parseKeyword: #else.
parseStatements.
parse: #fi

Portland State

IIIIIIIIII

but that’s not enough

e BNF:
stmts* ::= ¢ | stmt stmt”*
* code:
parseStatements

??

Portland State

IIIIIIIIII

How can we define Squeak
combinators for Parsers?

* make the parsers objects, not methods

* the parser objects can be

1. run, to perform the parse, or

2. combined, to make more complex parsers

IIIIIIIIII

First attempt

 What kind of Squeak object will perform
an action when run?

e blocks

IIIIIIIIII

What about the input ?

* We need a way of representing a
sequence of objects along with the
current position in that sequence

e Streams provide exactly that
functionality

e Compare Streams with lterators

Portland State 10

IIIIIIIIII

lterating with do: and with a Stream

e |nitialize the collection
c = 'abcde’.
« with an internal iterator:

c do: [: each | Transcript show: each]. Transcript cr.

» with a Stream (external iterator)

s .= ReadStream on: c.
[s atEnd] whileFalse: [Transcript show: s next |.
Transcript cr.

Portland State .

IIIIIIIIII

Implementing Parsers

 Aparseris implemented as a block.

* The result of evaluating the block is:

- If the parse succeeds: a sequence of correctly
parsed items

- if the parse fails: nil.

* The effect of evaluating the block is to:

- advance the underlying stream if the parse succeeds,
and

- not to advance it if the parse fails.

e This invariant must be maintained across
compound parsers.

Portland State

IIIIIIIIII

