
Parser Combinators
in Smalltalk

1

Tim’s Trick

• What’s so cool about functional
programming?
• referential transparency

• if x = foo stuff, then
x + x = foo stuff + foo stuff

• = is mathematical equality, and you can replace
equal by equal

2

What about effects?

• Suppose that x is not just a value but
has an effect:

if x = nextInt input, then
x + x ≠ nextInt input + nextInt input

• In the presence of effects, you can’t
replace equals by equals
• Say bye bye to equational reasoning

3

How does Haskell combine
equational reasoning and effects?

• Monads separate the definition of
commands from the execution of
commands

• Command definition is still referentially
transparent

• Command execution is “special”
• do syntax

4

Monads

What about other languages?
• Can we separate command definition

and command execution in Java, or in
Smalltalk?

• Yes!
• but the defaults are backwards compared to

Haskell

• methods can be executed (= do),
• but that’s the default !

• How can they be manipulated?

5

We have sequential composition

• BNF:
ifStmnt ::= if boolean then stmts* else stmts* fi

• code:
parseIfStmnt

parseKeyword: #if.
parseBoolean.
parseKeyword: #then.
parseStatements.
parseKeyword: #else.
parseStatements.
parse: #fi

6

but that’s not enough

• BNF:
stmts* ::= ε | stmt stmt*

• code:
parseStatements

??

7

How can we define Squeak
combinators for Parsers?

• make the parsers objects, not methods

• the parser objects can be
1. run, to perform the parse, or
2. combined, to make more complex parsers

8

First attempt

• What kind of Squeak object will perform
an action when run?

• blocks

9

What about the input ?

• We need a way of representing a
sequence of objects along with the
current position in that sequence

• Streams provide exactly that
functionality

• Compare Streams with Iterators

10

Iterating with do: and with a Stream

• initialize the collection
c := 'abcde'.

• with an internal iterator:
c do: [: each | Transcript show: each]. Transcript cr.

• with a Stream (external iterator)
s := ReadStream on: c.
[s atEnd] whileFalse: [Transcript show: s next].
Transcript cr.

11

Implementing Parsers
• A parser is implemented as a block.
• The result of evaluating the block is:

- if the parse succeeds: a sequence of correctly
parsed items

- if the parse fails: nil.

• The effect of evaluating the block is to:
- advance the underlying stream if the parse succeeds,

and
- not to advance it if the parse fails.

• This invariant must be maintained across
compound parsers.

12

