Parser Combinators

in Smalltalk
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Tim’s Trick

e What's so cool about functional
programming?
e referential transparency

e |f Xx = foo stuff, then
X + X = foo stuff + foo stuff

 =|s mathematical equality, and you can replace
equal by equal
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What about effects?

e Suppose that x is not just a value but
has an effect:

iIf X = nextint input, then

X + X Z nextint input + nextint input

* |n the presence of effects, you can't
replace equals by equals

e Say bye bye to equational reasoning
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How does Haskell combine
equational reasoning and effects?

* Monads separate the definition of
commands from the execution of

commands Monads

e Command definition is still referentially
transparent

» Command execution is “special’

* do syntax
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What about other languages?

 Can we separate command definition
and command execution in Java, or In
Smalltalk?

e Yes!

* but the defaults are backwards compared to
Haskell

e methods can be executed (= do),
e but that’s the default !

e How can they be manipulated?
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We have sequential composition

e BNF:

fStmnt ;= if boolean then stmits* else stmts™ fi

e code:

parselfStmnt

parseKeyword: #if.
parseBoolean.
parseKeyword: #then.
parseStatements.
parseKeyword: #else.
parseStatements.
parse: #fi
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but that’s not enough

e BNF:
stmts* ::= ¢ | stmt stmt”*
* code:
parseStatements

??
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How can we define Squeak
combinators for Parsers?

* make the parsers objects, not methods

* the parser objects can be

1. run, to perform the parse, or

2. combined, to make more complex parsers
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First attempt

 What kind of Squeak object will perform
an action when run?

e blocks
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What about the input ?

* We need a way of representing a
sequence of objects along with the
current position in that sequence

e Streams provide exactly that
functionality

e Compare Streams with lterators
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lterating with do: and with a Stream

e |nitialize the collection
c = 'abcde’.
« with an internal iterator:

c do: [ : each | Transcript show: each ]. Transcript cr.

» with a Stream (external iterator)

s .= ReadStream on: c.
[ s atEnd ] whileFalse: [ Transcript show: s next |.
Transcript cr.
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Implementing Parsers

 Aparseris implemented as a block.

* The result of evaluating the block is:

- If the parse succeeds: a sequence of correctly
parsed items

- if the parse fails: nil.

* The effect of evaluating the block is to:

- advance the underlying stream if the parse succeeds,
and

- not to advance it if the parse fails.

e This invariant must be maintained across
compound parsers.
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