
The Smalltalk Environment,
SUnit, and Inheritance

1

2

Creating Objects in Smalltalk

• Object are created by sending a
message to some other (exisiting!)
object called a factory
‣ Usually, the factory object is a class, e.g.

OrderedCollection new.
Array with: 'one' with: 'two' with: 'three'.
s := Bag new.

‣ The object will be deallocated automatically
when it's no longer needed (garbage collected)

Blocks
• Blocks are Smalltalk objects that represent Smalltalk code

[1 + 2]

They can have arguments:

[:x ⎮ 1 + x] compare with λ x. 1 + x

• Blocks understand messages in the value family:
value value:
value: value: value: value: value:

• The Block is not evaluated until it receives a value
message

3

Examples of Blocks

• If-then-else is not a built-in control
structure: itʼs a message

aBoolean ifTrue: trueBlock ifFalse: falseBlock
discountRate := (transactionValue > 100)
 ifFalse: [0.05] ifTrue: [0.10]

• You can build your own control structures:
(keyEvent controlKeyPressed)
 and: [keyEvent shiftKeyPressed]

4

5
18 of 28CSE 420/520: Object-Oriented Programming

Returning an Answer

! returns an answer from a method

– if there is no !, the method returns self

– ! is very useful to return from a block

– ! in a block returns from the method in which the
block is defined

- not the method that evaluates the block!

color

color ifNil: [!!Color black].
! color

6
19 of 28CSE 420/520: Object-Oriented Programming

The Smalltalk Collections

Q: What is a Collection?

A: An object that understands (some of)

the following methods:

isEmpty do: asSet

size select: asBag

includes: collect: asOrderedCollection

occurencesOf: reject: asSortedCollection

detect:

detect:ifNone:

inject:into:

7
20 of 28CSE 420/520: Object-Oriented Programming

Collections (cont.)

Q: Which classes have these methods?

A: Lots! In particular, most subclasses of

Collection

Set Bag

Interval Dictionary

Array SortedCollection

Ordered Collection LinkedList

String

8
21 of 28CSE 420/520: Object-Oriented Programming

What’s the Difference?

Each of these classes has some

interesting refinement of the basic protocol

• Indexed Collections

– map an index to a value with at: (also at: put:)

• Extensible Collections

– size can be changed with add: (and remove:)

• Sequenceable Collections

– Indexed Collections on which we can sequence
through the index set; supports first:, do:, collect: …

9
22 of 28CSE 420/520: Object-Oriented Programming

• Ordered Collections

– access, insertion and removal based on the order are
allowed: after: before: add:before: add:beforeIndex:

• Sorted Collections

– The order is maintained by a relation (block) supplied
explicitly with sortBlock: . at:put: is not understood.

If we regard these classes as a way of

specifying interfaces (aka protocols) we

can arrange them in a lattice by inclusion.

23 of 28CSE 420/520: Object-Oriented Programming

Collection

Indexed
Collection

Set

Updatable
Collection

Dictionary

Array
Interval Sorted

Collection

Ordered Collection

Sequenceable
Collection

Bag

Interfaces of the Collections

11
24 of 28CSE 420/520: Object-Oriented Programming

Abstract Classes in Smalltalk

Smalltalk classes are sometimes used to

group behavior that is not complete enough

to build an object! Such classes are called:

• abstract classes, or abstract superclasses

– collection>>add: newObject
 “include newObject as one of my elements.

Answer newObject...”
self subclassResponsibility

– collection>>addAll: aCollection
aCollection do: [:each ! self add: each].
! aCollection

12
26 of 28CSE 420/520: Object-Oriented Programming

Inheritance in Action!

• Subclasses of Collection don’t need to
implement addAll:

– it will be “inherited”

– it will work if and only if they implement add:

• Partially abstract superclasses are a
convenient place to put common code

• It can be hard to know if a class is abstract
or concrete

– Hint: try sending new or new: to the class

13

2006.04.11 0:17:17Untitled

1

Topic

ProtoObject

Object

Collection

Bag

IdentityBag

CharacterSet

Matrix

SequenceableCollection

ArrayedCollection

Array

Bitmap

ByteArray

FloatArray

IntegerArray

RunArray

ShortIntegerArray

ShortRunArray

SparseLargeTable

String

Text

Heap

Interval

LinkedList

MappedCollection

OrderedCollection

SortedCollection

2006.04.11 0:17:17Untitled

2

Topic

ProtoObject

Object

Collection

SequenceableCollection

OrderedCollection

SortedCollection

Set

Dictionary

IdentityDictionary

PluggableDictionary

RBSmallDictionary

WeakKeyDictionary

WeakIdentityKeyDictionary

WeakKeyToCollectionDictionary

WeakValueDictionary

IdentitySet

KeyedSet

KeyedIdentitySet

PluggableSet

WeakSet

SkipList

IdentitySkipList

Squeakʼs
Collection
Hierarchy

14

Arrays
• Arrays in Smalltalk are Objects
‣ Array is a subclass of Collection

‣ Arrays are “special” in 2 ways
1. there is language syntax to create them

#(1 3.4 #thing) an array literal

{4–3 . 17/5 asFloat . ('thi','ng') asSymbol}
 a dynamically constructed array

Array with: 4–3 with: 17.0/5 with: #symbol the same

2. there are ByteArrays, FloatArrays as well as Arrays

Characters & Strings
• Characters are also objects

$H is the literal for the character H
$H asciiValue is 72
$H digitValue is 17, $3 digitValue is 3

• collect: creates a new array by applying a
function to all elements of the receiver

'01234567890ABCDEF' asArray
 collect: [:each | each digitValue]
evaluates to #(0 1 2 3 4 5 6 7 8 9 0 10 11 12 13 14 15)

• collect: is part of the enumeration protocol

15

Other enumeration methods

anArray do: aBlock
applies aBlock to each element of anArray, and
answers anArray

anArray withIndexCollect: a2ArgumentBlock
answers the new array containing the results of
applying a2ArgumentBlock to each element of anArray,
together with its index.

anArray withIndexDo: a2ArgumentBlock

16

Examples

#(#one #two #three #four) withIndexCollect:
 [:each :i |
 each,' = ', i asString]
evaluates to #('one = 1' 'two = 2' 'three = 3' 'four = 4')

#(#one #two #three #four) withIndexDo:
 [:each :i |
 Transcript nextPutAll: each,' = '; show: i; cr]
evaluates to #(#one #two #three #four), i.e., the receiver

17

Indexing Arrays

• {#eins. #zwei. #drei} at: 1

• {#eins. #zwei. #drei} first

• {#eins. #zwei. #drei} third

• {#eins. #zwei. #drei} at: 2 put: #deux
modifies the receiver, and answers #deux

18

Names
• Names are the primary means of

communication
‣ Smalltalkers are fanatic about good names

• Capitalization conventions
‣ local variables start with a lower-case letter
‣ non-locals start with an upper-case letter
‣ new words are capitalized

° pairwise + product => pairwiseProduct

° with + all + subclasses => withAllSubclasses

19

Naming Guidelines

• Name methods after what they
accomplish
‣ … not after the mechanism used in the

implementation

‣ imagine a very different implementation.
° could you name this imagined method the same?

• Use the same name as the method in
the other class that does a similar thing

20

Example

• whatʼs the meaning of
aSwitch on , or
aSwitch setState: true ?

• What about:
aSwitch isOn
aSwitch turnOn
aSwitch toggle ?

21

Naming Guidelines

• Name variables after their roles
‣ instance variables and temporary variables

should be named after their role
sum result bounds

‣ donʼt add a temporary variables unless there is
a reason to do so!

b := self bounds.
children do: [:each | … b topLeft … b bottomRight …]

22

Unit Testing

• Code that isnʼt tested doesnʼt work
‣ Well, itʼs true of my code — with the exception

of simple accessors

• Two kinds of testing
‣ Unit testing

‣ Functional testing

23

What are test for?
• Tests are an executable specification of the

functionality that they cover
- always synchronized with the code

• Tests increase the likelihood that the code is correct.
- When you introduce a bug, you are more likely to find it very

quickly, while it is still easy to fix

• Writing “tests first” improves your interfaces
- you see your code from the clientʼs point of view

• The presence of tests gives you the courage to make
structural changes to the code: refactoring

- refactoring is essential to prevent creeping entropy

24

Test-driven Development

• When creating fresh code:
‣ First write a test

° only then write the code that makes the test run

• When maintaining old code
‣ First write a (failing) test to isolate the bug

° then fix the bug

° … and run the whole test suite

25

SUnit Resources: Chapter 7 of SBE

26

Assignment 1:
Whole objects

• Parse numerals into
numbers without using
explicit loops or
recursion

• Use the algorithm shown

27

28

Where to put the Parsing Methods

• Where should the methods go in the
class hierarchy?

parseAsNumeral

digitValue

reversed

pairedWithPowersOf10

pairwiseProduct

sum

29

Name: Total:

CS410/510 Advanced Programming Assignment 1: parse numerals

 Criteria Comments Pts/9

Mechanics

Package files-in. Code can be run

using the provided instructions.

Complete

code

You wrote all of the methods required

by the assignment

Complete

tests

You wrote a test for each method that

could possibly fail

Thorough

tests

Tests explore likely failure modes

It works

My tests pass

Whole object Methods don’t use explicit loops or

recursion

Use of

Inheritance

Methods are placed appropriately in

the inheritance hierarchy

Comments

Each method has a comment that does

not merely re-phrase the name of the

method, but adds information

Appropriate

temporary

variables

If it would help to use an explaining

temporary variable, you did so

Blindingly

obvious code

Clear code and class comments are all

that you need

Deadlines Assignment was turned-in on time

Grading
Rubric

