The Smalltalk Environment,
SUnit, and Inheritance

IIIIIIIIII

Creating Objects in Smalltalk

* Object are created by sending a
message to some other (exisiting!)
object called a factory

> Usually, the factory object is a class, e.g.

OrderedCollection new.
Array with: 'one' with: ‘two" with: 'three".
S := Bag new.

> The object will be deallocated automatically
when it's no longer needed (garbage collected)

Portland State 2

IIIIIIIIII

Blocks

e Blocks are Smalltalk objects that represent Smalltalk code
[1+2]
They can have arguments:

[x | 1+x] compare with)\ x. 1 +x

e Blocks understand messages in the value family:

value value:
value: value: value: value: value:

e The Block is not evaluated until it receives a value
message

Portland State

IIIIIIIIII

Examples of Blocks

e |f-then-else is not a built-in control
structure: it's a message

aBoolean ifTrue: trueBlock ifFalse: falseBlock

discountRate := (transactionValue > 100)
IfFalse: [0.05] ifTrue: [0.10]

e You can build your own control structures:

(keyEvent controlKeyPressed)
and: [keyEvent shiftKeyPressed]

Portland State

IIIIIIIIII

Returning an Answer

* returns an answer from a method

— if there is no 1, the method returns self

— 1 is very useful to return from a block

color
color ifNil: [t Color black].
1 color

— 1 in a block returns from the method in which the
block is defined

- notthe method that evaluates the block!

Portland State

IIIIIIIIII

The Smalltalk Collections

Q: What is a Collection?

A: An object that understands (some of)
the following methods:

iISEmpty do: asSet
size select: asBag
includes: collect: asOrderedCollection
occurencesOf: reject: asSortedCollection
detect:
detect:ifNone:
inject:into:

Portland State

IIIIIIIIII

Collections (cont.)

Q: Which classes have these methods?

A: Lots! In particular, most subclasses of
Collection

Set Bag
Interval Dictionary
Array SortedCollection

Ordered Collection LinkedList
String

Portland State

IIIIIIIIII

What’s the Difference?

Each of these classes has some
interesting refinement of the basic protocol
- Indexed Collections

— map an index to a value with at: (also at: put:)
- Extensible Collections

— size can be changed with add: (and remove.)
- Sequenceable Collections

— Indexed Collections on which we can sequence
through the index set; supports first:, do:, collect: ...

Portland State

IIIIIIIIII

« Ordered Collections

— access, insertion and removal based on the order are
allowed: after: before: add:before: add:beforelndex:

« Sorted Collections

— The order is maintained by a relation (block) supplied
explicitly with sortBlock: . at:put:is not understood.

If we regard these classes as a way of
specifying interfaces (aka protocols) we
can arrange them in a lattice by inclusion.

Portland State

IIIIIIIIII

Interfaces of the Collections

Collection
Indexed Set
Collection \
/ Sequenceable Bag
Collection
Updatable
Collection
\ Interval Sorted
Array Collection

Dictionary \

Ordered Collection

Portland State

IIIIIIIIII

Abstract Classes in Smalltalk

Smalltalk classes are sometimes used to
group behavior that is not complete enough
to build an object! Such classes are called:

- abstract classes, or abstract superclasses

— collection>>add: newObject
“include newQObject as one of my elements.
Answer newObject...”
self subclassResponsibility

— collection>>addAll: aCollection
aCollection do: [:each | self add: each].
1 aCollection

Portland State

IIIIIIIIII

Inheritance in Action!

« Subclasses of Collection don’t need to
implement addAll:

— it will be “inherited”
— it will work if and only if they implement add:

- Partially abstract superclasses are a
convenient place to put common code

It can be hard to know if a class is abstract
or concrete

— Hint: try sending new or new: to the class

Portland State

IIIIIIIIII

Squeak’s * Object " Set

_ * Collection * Dictionary
Collection * Bag * |dentityDictionary
= * IdentityBag * PluggableDictionary
Hierarchy . CharacterSet - RBSmallDictionary
* Matrix * WeakKeyDictionary
* SequenceableCollection * WeakldentityKeyDictionary

* ArrayedCollection * WeakKeyToCollectionDictionary
* Array * WeakValueDictionary
* Bitmap * ldentitySet
* ByteArray * KeyedSet
* FloatArray * KeyedldentitySet
* IntegerArray * PluggableSet
* RunArray * WeakSet
 ShortintegerArray * SkipList
* ShortRunArray * IdentitySkipList
* SparseLargeTable
* String
* Text

* Heap

* Interval

* LinkedList

MappedCollection
OrderedCollection
* SortedCollection

Portland State

UNIVERSITY

Arrays

e Arrays in Smalltalk are Objects

> Array is a subclass of Collection

> Arrays are “special” in 2 ways

1.

2.

Portland State

IIIIIIIIII

there is language syntax to create them

#(1 3.4 #thing) an array Literal

{4-3 . 17/5 asFloat . ('thi','ng') asSymbol}
a dywnawmically constructed array

Array with: 4—3 with: 17.0/5 with: #symbol the same

there are ByteArrays, FloatArrays as well as Arrays

Characters & Strings

 Characters are also objects
$H is the literal for the character H
$H asciiValue is 72
$H digitValue is 17, $3 digitValue is 3

* collect: creates a new array by applying a
function to all elements of the receiver

'01234567890ABCDEF"' asArray
collect: [:each | each digitValue]
evaluatesto #(012345678901011 1213 14 15)

* collect: is part of the enumeration protocol

Portland State

IIIIIIIIII

Other enumeration methods

anArray do: aBlock

applies aBlock to each element of anArray, and
answers anArray

anArray withindexCollect: a2ArgumentBlock

answers the new array containing the results of
applying a2ArgumentBlock to each element of anArray,
together with its index.

anArray withindexDo: a2ArgumentBlock

Portland State

IIIIIIIIII

Examples

#(#one #two #three #four) withIndexCollect:
[:each :i |
each,' =", i asString]
evaluates to #('one = 1' 'two = 2' 'three = 3' ‘four = 4')
#(#one #two #three #four) withindexDo:
[:each :i |
Transcript nextPutAll: each,' ="; show: i; cr]

evaluates to # (#owne #two #three #four), L.e., the recelver

Portland State 17

IIIIIIIIII

Indexing Arrays

e {#eins. #zwel. #drei} at: 1
e {#eins. #zwel. #drei} first

e {#eins. #zwel. #drei} third
e {#eins. #zwel. #drei} at: 2 put: #deux

moolifies the receiver, and answers #oleux

Portland State

IIIIIIIIII

Names

 Names are the primary means of
communication

> Smalltalkers are fanatic about good names

e (Capitalization conventions
> local variables start with a lower-case letter
> non-locals start with an upper-case letter
> new words are capitalized
o pairwise + product => pairwiseProduct

o with + all + subclasses => withAllSubclasses

Portland State

IIIIIIIIII

Naming Guidelines

e Name methods after what they
accomplish

> ... hot after the mechanism used in the
Implementation
> imagine a very different implementation.

> could you name this imagined method the same?

 Use the same name as the method in
the other class that does a similar thing

Portland State 20

IIIIIIIIII

Example

e what’s the meaning of
aSwitch on , or

aSwitch setState: true ?

e What about:

aSwitch isOn
aSwitch turnOn

aSwitch toggle ?

Portland State

IIIIIIIIII

21

Naming Guidelines

* Name variables after their roles
> Instance variables and temporary variables
should be named after their role
sum result bounds
> don’t add a temporary variables unless there is
a reason to do so!

b := self bounds.
children do: [:each | ... b topLeft ... b bottomRight ...]

Portland State 22

IIIIIIIIII

Unit Testing

e Code that isn’t tested doesn’t work

> Well, it’s true of my code — with the exception
of simple accessors

* Two kinds of testing
> Unit testing

> Functional testing

Portland State 23

IIIIIIIIII

Portland State

UNI

What are test for?

Tests are an executable specification of the
functionality that they cover

always synchronized with the code

Tests increase the likelihood that the code is correct.

When you introduce a bug, you are more likely to find it very
quickly, while it is still easy to fix

Writing “tests first” improves your interfaces

you see your code from the client’s point of view

The presence of tests gives you the courage to make
structural changes to the code: refactoring

refactoring is essential to prevent creeping entropy

24

VVVVVVV

Test-driven Development

 When creating fresh code:

> First write a test

- only then write the code that makes the test run

 When maintaining old code

> First write a (failing) test to isolate the bug
o then fix the bug

o ... and run the whole test suite

Portland State 2

IIIIIIIIII

SUnit Resources: Chapter 7 of SBE

174 CHAPTER 24. SUNIT

24.4.2 Step2

The method setUp defines the context in which the tests will run, a bit like an instialeze method.
setUp 15 trvoked before the execution of each test method defined in this class. Here we inftialtce
the empty vartable to refer to an empty set and the full vanable to refer to a set containing two

ekments.
Method 24.1

BxampleSet Test>>setUp
empty ‘= Set new,
full ;= Set with: 5 with: #Zabc

In testing jargon the context is called the flctire of the test.

24.4.3 Step 3

Let's create some tests by defl some hods in the class ExampleSetTest. The sdea 1s that
ecach method represents one test, The name of each test method should start with the string
“Test’ 50 that SUnit will collect them Into test sultes ready 1o be executed. Test methods take no

arguments.

The first test. named testincludes. tests the includes: method of Set. We say that sending the
message includes: 5 1o a set containing 5 shoukd return tree, Clearly. this test relies on the fact

that the sesUp method has already run.
Method 24.2

ExampleSetTest>testincludes
self assert: (full includes: 5).
self assert: (full includes #abe)

The second test. named testOccurrences, verifies that the number of occurrences of 5 in the full

set 15 equal to one, even if we add another element 5 to the set,

Method 24.3

.

leSetTest>>!
self assert: (empty occurrencesOF 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full 2dd. 5
self assert: (full occurrencesOf: 5) = 1

Fially. we test that the set no longer contains the element 5 after we huve removed it

Portland State

UNIVERSITY

24.4. SUNIT BY EXAMPLE 175

Method 24.4

ExampleSet Test>>testRemove
full remove: 5.
seif ssmsert: (full inclodes: #abc).
wlf denry. (full includes: 5)

Note the use of the method deny. (o assert something that should not be true.

24.4.4 Step4d

The eastest way to execute the tests is with the SUnitTest Runner, which you can open from the
Workb>open. .. mem, o by dragging i from the Tools flap. [Anar | &l the Tools flap, it is called
the SUnit Runner; this should be changed to Test Runner.4 The Test Runner ts designed to make 1t
casy to execute groups of tests. The left-most pane lsts all of the system categorses that contain
subclasses of TestCase: when some of these categories are selected, the classes appear in the pane
to the right. The class hderarchy s shown by mdentation; abstract classes are ttalictzed. You can
also run your test by ng the f ng code: (E leSetTest selector: #testRemove) run. This
expression is equivalent (o the shorter one E leSetTest run: FtestR We usually include
an executable comment in our test methods that allows us o run them with a do ir from the
browser, as shown tn method 24.5.

“x B Test Runner

EornelToss Chronclogy Bagleat

EernelTessClosoor g Asprcavealen

Kerneiters-Neathod: SacTest
DRAXTATYTEL
Ment.tyZegTea

SorwiCollertionTan

CeliectnauTest-Oreams

CelioctionsTasts-Tooe! -
ColiectioniTest;-Weak
Coliection:Teat:-Rack 3

CellectionsTens Skiplizy E

Exceptacns Tore -
Tilar-Tacts
CPADRECETARIS Doy 1 Wit
Grephicaleia-Test
CrephicsTans "
MorphisTests o
Morphic e Lernel
MOrpOLcTesTs-1exT Suppan
Morphiclan-Videes
MorphicTeats Vorks
MHaltdingual Tenpley
Hetrazka-Network-Ltpweso

NATVOrE 6T ProIninis m]

8l Run Saloctad | Rur, Frofiled

Figure 24.1: The Squeak SUnit Test Runner

26

Assignment |:
Whole objects

® Parse numerals into
numbers without using
explicit loops or
recursion

® Use the algorithm shown

Portland State

UNIVERSITY

‘146

explode

{31, %4, 36 }

digitValue
Y

1146

reveraed

Y

1641}

pairedWithPowerz0f10

Y

{16 . 1}, {4. 10} {1, 100} }

pairwizeProduct

Y

6.

40, 100 }

i

Y
146

27

Where to put the Parsing Methods

 Where should the methods go in the
class hierarchy?

parseAsNumeral

digitValue

reversed
pairedWithPowersOf10

pairwiseProduct

sum

Portland State

IIIIIIIIII

Grading
Rubric

Portland State

UNIVERSITY

Name:

CS410/510 Advanced Programming

Total:

Assignment 1: parse numerals

Criteria Comments Pts/9
Mechanics Package files-in. Code can be run
using the provided instructions.
Complete You wrote all of the methods required
code by the assignment
Complete You wrote a test for each method that
tests could possibly fail
Thorough Tests explore likely failure modes
tests
It works My tests pass
Whole object | Methods don’t use explicit loops or
recursion
Use of Methods are placed appropriately in
Inheritance the inheritance hierarchy
Comments Each method has a comment that does
not merely re-phrase the name of the
method, but adds information
Appropriate | If it would help to use an explaining
temporary temporary variable, you did so
variables
Blindingly Clear code and class comments are all
obvious code | that you need
Deadlines Assignment was turned-in on time
29

