CS350 – Winter 2019 **Homework 1**

Due Thursday, 24th January, on paper, at the start of class. This assignment will be graded.

1. For each of the following pairs of functions f(n) and g(n), state whether $f(n) \in O(g(n))$, $f(n) \in \Theta(g(n))$, or none of the above. Briefly explain your reasoning.

(a)
$$f(n) = 2n^3 + 3n + 4$$
, $g(n) = 57n + 75$
(b) $f(n) = \lg(2n+1)$, $g(n) = 23\sqrt{n}$
(c) $f(n) = \frac{n^3 + n}{3^{-2}}$, $g(n) = n^2(2n+1)$
(d) $f(n) = \frac{2^n - n^2}{100} + 3^n$, $g(n) = 5n^4 + 3n^2 + 7$

- 2. What is the worst-case running time of the following function? Use big-O notation and show your work.
 - pesky (n): r $\leftarrow 0$ for i $\leftarrow 1$ to n do: for j $\leftarrow 1$ to i do: for k \leftarrow j to (i + j) do: r \leftarrow r + 1
- 3. Consider the following eighteen functions:

 2^n $\sqrt[3]{n}$ n $n - n^3 + 7n^5$ $n^2 + (\log n)^2$ $n \log n$ n^3 n^2 $\log n$ $n^{1/3} + \log n$ $(\log n)^2$ n! $\frac{n}{\log n}$ $\ln n$ $\log \log n$ $\left(\frac{3}{2}\right)^n$ $\left(\frac{1}{3}\right)^n$ $1/\log n$

List these functions in increasing rate of growth. Group any two functions f and g if and only if f and g have the same rate of growth, that is, iff $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$.

- 4. Solve the following recurrences exactly, using backward substitution.
 - (a) T(1) = 8, and for all $n \ge 2$, T(n) = 2T(n-1) 5
 - (b) T(1) = 3, and for all $n \ge 2$, T(n) = T(n-1) + n 1
 - (c) T(1) = 1, and for all $n \ge 2$ such that n is a power of 2, $T(n) = 2T\left(\frac{n}{2}\right) + 2n$
 - (d) T(1) = 1, and for all $n \ge 2$ such that n is a power of 3, $T(n) = T\left(\frac{n}{3}\right) + n$