CS350 - Winter 2019 Homework 1

Due Thursday, $24^{\text {th }}$ January, on paper, at the start of class. This assignment will be graded.

1. For each of the following pairs of functions $f(n)$ and $g(n)$, state whether $f(n) \in O(g(n))$, $f(n) \in \Omega(g(n)), f(n) \in \Theta(g(n))$, or none of the above. Briefly explain your reasoning.
(a) $f(n)=2 n^{3}+3 n+4$,

$$
g(n)=57 n+75
$$

(b) $f(n)=\lg (2 n+1)$,
$g(n)=23 \sqrt{n}$
(c) $f(n)=\frac{n^{3}+n}{3^{-2}}$,
$g(n)=n^{2}(2 n+1)$
(d) $f(n)=\frac{2^{n}-n^{2}}{100}+3^{n}$,
$g(n)=5 n^{4}+3 n^{2}+7$
2. What is the worst-case running time of the following function? Use big- O notation and show your work.

```
pesky(n):
    r}\leftarrow
    for i}\leftarrow1\mathrm{ to n do:
            for j}\leftarrow1\mathrm{ to i do:
                    for k}\leftarrowj\mathrm{ to (i + j) do:
                        r}\leftarrow\textrm{r}+
```

3. Consider the following eighteen functions:

$\sqrt[3]{n}$	n	2^{n}
$n \log n$	$n-n^{3}+7 n^{5}$	$n^{2}+(\log n)^{2}$
n^{2}	n^{3}	$\log n$
$n^{1 / 3}+\log n$	$(\log n)^{2}$	$n!$
$\ln n$	$\frac{n}{\log n}$	$\log \log n$
$\left(\frac{1}{3}\right)^{n}$	$\left(\frac{3}{2}\right)^{n}$	$1 / \log n$

List these functions in increasing rate of growth. Group any two functions f and g if and only if f and g have the same rate of growth, that is, iff $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$.
4. Solve the following recurrences exactly, using backward substitution.
(a) $T(1)=8$, and for all $n \geq 2, T(n)=2 T(n-1)-5$
(b) $T(1)=3$, and for all $n \geq 2, T(n)=T(n-1)+n-1$
(c) $T(1)=1$, and for all $n \geq 2$ such that n is a power of $2, T(n)=2 T\left(\frac{n}{2}\right)+2 n$
(d) $T(1)=1$, and for all $n \geq 2$ such that n is a power of $3, T(n)=T\left(\frac{n}{3}\right)+n$

