CS 350 Algorithms and Complexity

Winter 2019

Lecture 3: Analyzing Non-Recursive Algorithms

Andrew P. Black

Department of Computer Science Portland State University

- Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
- Almost always depends on the size of the input
- * "Basic operation": the operation that contributes most towards the running time of the algorithm

- Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
- Almost always depends on the size of the input
- * "Basic operation": the operation that contributes most towards the running time of the algorithm

- Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
- Almost always depends on the size of the input
- * "Basic operation": the operation that contributes most towards the running time of the algorithn op: constant

run time

- Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
- Almost always depends on the size of the input
- * "Basic operation": the operation that contributes most towards the running time of the algorithn op: constant

 $T(n) \approx c_{op} \times C(n)$

of times basic op is executed

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items		
Multiplication of two matrices		
Checking primality of a given integer <i>n</i>		
Shortest path through a graph		

Complete the table

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items	A: Number of list's items, i.e. <i>n</i>	A: Key comparison
Multiplication of two matrices	B: Matrix dimension, or total number of elements	B: Multiplication of two numbers
Checking primality of a given integer <i>n</i>	C: size of $n =$ number of digits	C: Division
Shortest path through a graph	D: #vertices and/or edges	D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items	A: Number of list's items, i.e. <i>n</i>	
	B: Matrix dimension, or total number of elements	
	C: size of <i>n</i> = number of digits	
	D: #vertices and/or edges	

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items		A: Key comparison
		B: Multiplication of two numbers
		C: Division
		D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation
	A: Number of list's items, i.e. <i>n</i>	
Multiplication of two matrices	B: Matrix dimension, or total number of elements	
	C: size of <i>n</i> = number of digits	
	D: #vertices and/or edges	

Problem	Input size measure	Basic operation
		A: Key comparison
Multiplication of two matrices		B: Multiplication of two numbers
		C: Division
		D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation
	A: Number of list's items, i.e. <i>n</i>	
	B: Matrix dimension, or total number of elements	
Checking primality of a given integer <i>n</i>	C: size of $n =$ number of digits	
	D: #vertices and/or edges	

Problem	Input size measure	Basic operation
		A: Key comparison
		B: Multiplication of two numbers
Checking primality of a given integer <i>n</i>		C: Division
		D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation
	A: Number of list's items, i.e. <i>n</i>	
	B: Matrix dimension, or total number of elements	
	C: size of $n =$ number of digits	
Shortest path through a graph	D: #vertices and/or edges	

Problem	Input size measure	Basic operation
		A: Key comparison
		B: Multiplication of two numbers
		C: Division
Shortest path through a graph		D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items		
Multiplication of two matrices		
Checking primality of a given integer <i>n</i>		
Shortest path through a graph		

Best-case, average-case, worst-case

- For some algorithms, efficiency depends on the input:
- \diamond Worst case: $C_{worst}(n)$ maximum over inputs of size n
- \diamond Best case: $C_{best}(n)$ minimum over inputs of size n
- \diamond Average case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on <u>typical</u> input
 - <u>Not</u> the average of worst and best case
 - Expected number of basic operations under some assumption about the probability distribution of all possible inputs

Discuss:

```
ALGORITHM UniqueElements(A[0..n - 1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n - 1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n - 2 do

for j \leftarrow i + 1 to n - 1 do

if A[i] = A[j] return false

return true
```

- What's the best case, and its running time?
 - A. constant -O(1)
 - B. linear O(n)
 - c. quadratic $O(n^2)$

Discuss:

```
ALGORITHM UniqueElements(A[0..n - 1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n - 1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n - 2 do

for j \leftarrow i + 1 to n - 1 do

if A[i] = A[j] return false

return true
```

- What's the worst case, and its running time?
 - A. constant -O(1)
 - B. linear O(n)
 - c. quadratic $O(n^2)$

Discuss:

```
ALGORITHM UniqueElements(A[0..n - 1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n - 1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n - 2 do

for j \leftarrow i + 1 to n - 1 do

if A[i] = A[j] return false

return true
```

- * What's the average case, and its running time?
 - A. constant -O(1)
 - B. linear O(n)
 - c. quadratic $O(n^2)$

General Plan for Analysis of non-recursive algorithms

- 1. Decide on parameter *n* indicating input size
- 2. Identify algorithm's basic operation
- 3. Determine worst, average, and best cases for input of size *n*
- 4. Set up a <u>sum</u> for the number of times the basic operation is executed
- 5. Simplify the sum using standard formulae and rules (see Levitin Appendix A)

"Basic Operation"

```
ALGORITHM MaxElement(A[0..n-1])
```

```
//Determines the value of the largest element in a given array
//Input: An array A[0..n - 1] of real numbers
//Output: The value of the largest element in A
maxval \leftarrow A[0]
for i \leftarrow 1 to n - 1 do
if A[i] > maxval
maxval \leftarrow A[i]
return maxval
```

```
♦ Why choose > as the basic operation?
■ Why not i ← i + 1 ?
■ Or []?
```

Same Algorithm:

ALGORITHM *MaxElement* (A: List) // Determines the value of the largest element in the list A // Input: a list A of real numbers // Output: the value of the largest element of A *maxval* ← A.first for each in A do if each > maxval maxval ← each return maxval

♦ Why choose > as the basic operation? ■ Why not i ← i + 1 ? ■ Or []?

From Algorithm to Formula

- We want a formula for the # of basic ops
- Basic op will normally be in inner loop
- Bounds of **for** loop become bounds of summation
- ♦ e.g. for i ← l .. h do:

h

i = l

 \diamond

3 basic operations

Works for nested loops too

ALGORITHM UniqueElements(A[0..n - 1]) //Determines whether all the elements in a given array are distinct //Input: An array A[0..n - 1]//Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to n - 2 do for $j \leftarrow i + 1$ to n - 1 do if A[i] = A[j] return false return true

Works for nested loops too

ALGORITHM UniqueElements(A[0..n - 1]) //Determines whether all the elements in a given array are distinct //Input: An array A[0..n - 1]//Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to n - 2 do for $j \leftarrow i + 1$ to n - 1 do if A[i] = A[j] return false return true

Works for nested loops too

ALGORITHM UniqueElements(A[0..n - 1]) //Determines whether all the elements in a given array are distinct //Input: An array A[0..n - 1]//Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to n - 2 do for $j \leftarrow i + 1$ to n - 1 do if A[i] = A[j] return false return true

$$\sum_{i=0}^{n-2} \left(\sum_{j=i+1}^{n-1} 1 \right)$$

 $\sum_{1 \le i \le u} \mathbf{1} =$

In particular, $\sum_{1 \le i \le n} \mathbf{1} = n$

 $\Sigma_{1 \leq i \leq n} i =$

 $\sum_{1 \le i \le n} i^2 =$

 $\sum_{0 \leq i \leq n} a^i =$

In particular, $\sum_{0 \le i \le n} 2^i = 2^i$

 $\Sigma(a_i \pm b_i) = \sum_{l \le i \le u} a_i =$

 $\sum c a_i =$

 $\sum_{1 \le i \le u} 1 = 1 + 1 + \ldots + 1 = u - l + 1$

In particular, $\sum_{1 \le i \le n} \mathbf{1} = n$

 $\Sigma_{1 \leq i \leq n} i =$

 $\sum_{1 \le i \le n} i^2 =$

 $\sum_{0 \leq i \leq n} a^i =$

In particular, $\sum_{0 \le i \le n} 2^i = 2^i$

 $\Sigma(a_i \pm b_i) = \sum_{l \le i \le u} a_i =$

 $\Sigma c a_i =$

 $\sum_{1 \le i \le u} 1 = 1 + 1 + \ldots + 1 = u - l + 1$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\Sigma_{1 \leq i \leq n} i =$

 $\sum_{1 \le i \le n} i^2 =$

 $\sum_{0 \leq i \leq n} a^i =$

In particular, $\sum_{0 \le i \le n} 2^i = 2^i$

 $\Sigma(a_i \pm b_i) = \sum_{l \le i \le u} a_i =$

 $\Sigma c a_i =$

 $\sum_{1 \le i \le u} \mathbf{1} = \mathbf{1} + \mathbf{1} + \ldots + \mathbf{1} = u - l + \mathbf{1}$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\Sigma_{1 \le i \le n} \ i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\sum_{1 \le i \le n} i^2 =$

 $\sum_{0 \leq i \leq n} a^i =$

In particular, $\sum_{0 \le i \le n} 2^i = 2$

 $\Sigma(a_i \pm b_i) = \sum_{l \le i \le u} a_i =$

 $\Sigma c a_i =$

 $\sum_{1 \le i \le u} \mathbf{1} = \mathbf{1} + \mathbf{1} + \ldots + \mathbf{1} = u - l + \mathbf{1}$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\sum_{1 \le i \le n} i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\Sigma_{1 \le i \le n} i^2 = 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$

 $\sum_{0 \leq i \leq n} a^i =$

In particular, $\sum_{0 \le i \le n} 2^i = 2^i$

 $\Sigma(a_i \pm b_i) = \sum_{l \le i \le u} a_i =$

$$\Sigma c a_i =$$

 $\sum_{1 \le i \le u} \mathbf{1} = \mathbf{1} + \mathbf{1} + \ldots + \mathbf{1} = u - l + \mathbf{1}$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\Sigma_{1 \le i \le n} \ i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$

 $\sum_{0 \le i \le n} a^i = 1 + a + ... + a^n = (a^{n+1} - 1)/(a - 1)$ for any $a \ne 1$ In particular, $\sum_{0 \le i \le n} 2^i = 2$

 $\Sigma(a_i \pm b_i) = \Sigma c a_i = \Sigma_{l \le i \le u} a_i =$

 $\sum_{1 \le i \le u} \mathbf{1} = \mathbf{1} + \mathbf{1} + \ldots + \mathbf{1} = u - l + \mathbf{1}$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\sum_{1 \le i \le n} i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$

 $\sum_{0 \le i \le n} a^i = 1 + a + \dots + a^n = (a^{n+1} - 1)/(a - 1) \text{ for any } a \ne 1$ In particular, $\sum_{0 \le i \le n} 2^i = 2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

 $\Sigma(a_i \pm b_i) = \Sigma c a_i = \Sigma_{l \le i \le u} a_i =$

 $\sum_{1 \le i \le u} \mathbf{1} = \mathbf{1} + \mathbf{1} + \ldots + \mathbf{1} = u - l + \mathbf{1}$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\sum_{1 \le i \le n} i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$

 $\sum_{0 \le i \le n} a^i = 1 + a + \dots + a^n = (a^{n+1} - 1)/(a - 1) \text{ for any } a \ne 1$ In particular, $\sum_{0 \le i \le n} 2^i = 2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

 $\Sigma(a_i \pm b_i) = \Sigma a_i \pm \Sigma b_i \qquad \Sigma c a_i = \Sigma_{l \le i \le u} a_i = \Sigma_{l \le i \le u} \Delta a_i$

 $\sum_{1 \le i \le u} \mathbf{1} = \mathbf{1} + \mathbf{1} + \ldots + \mathbf{1} = u - l + \mathbf{1}$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\sum_{1 \le i \le n} i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$

 $\sum_{0 \le i \le n} a^i = 1 + a + \dots + a^n = (a^{n+1} - 1)/(a - 1) \text{ for any } a \ne 1$ In particular, $\sum_{0 \le i \le n} 2^i = 2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

 $\Sigma(a_i \pm b_i) = \Sigma a_i \pm \Sigma b_i \qquad \Sigma c a_i = c \Sigma a_i$ $\Sigma_{l \le i \le u} a_i =$

 $\sum_{1 \le i \le u} \mathbf{1} = \mathbf{1} + \mathbf{1} + \ldots + \mathbf{1} = u - l + \mathbf{1}$

In particular, $\Sigma_{1 \le i \le n} \mathbf{1} = n - \mathbf{1} + \mathbf{1} = n \in \Theta(n)$

 $\sum_{1 \le i \le n} i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$

 $\sum_{0 \le i \le n} a^i = 1 + a + \dots + a^n = (a^{n+1} - 1)/(a - 1) \text{ for any } a \ne 1$ In particular, $\sum_{0 \le i \le n} 2^i = 2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

 $\Sigma(a_i \pm b_i) = \Sigma a_i \pm \Sigma b_i \qquad \Sigma c a_i = c \Sigma a_i$ $\Sigma_{l \le i \le u} a_i = \Sigma_{l \le i \le m} a_i + \Sigma_{m+1 \le i \le u} a_i$

- Answer: mathematics.
- Example:
- The Euler–Mascheroni constant γ is <u>defined</u> as:

- Answer: mathematics.
- Example:
- The Euler–Mascheroni constant γ is <u>defined</u> as:

- Answer: mathematics.
- Example:
- The Euler–Mascheroni constant γ is <u>defined</u> as:

- Answer: mathematics.
- Example:
- The Euler–Mascheroni constant γ is <u>defined</u> as:

What does Levitin's \approx mean?

- ♦ "becomes almost equal to as $n \to \infty$ "
- ♦ So formula 8 $\sum_{n=1}^{n} \lg i \approx n \lg n$ means

$$\lim_{n \to \infty} \left(\sum_{i=1}^n \lg i - n \lg n \right) = 0$$

Example: Counting Binary Digits

ALGORITHM *Binary*(*n*)

//Input: A positive decimal integer *n* //Output: The number of binary digits in *n*'s binary representation $count \leftarrow 1$ while n > 1 do

 $count \leftarrow count + 1$

 $n \leftarrow \lfloor n/2 \rfloor$

return count

Example: Counting Binary Digits

ALGORITHM *Binary*(*n*)

//Input: A positive decimal integer *n* //Output: The number of binary digits in *n*'s binary representation $count \leftarrow 1$ while n > 1 do

 $count \leftarrow count + 1$

$$n \leftarrow \lfloor n/2 \rfloor$$

return count

How many times is the basic operation executed?

Example: Counting Binary Digits

ALGORITHM *Binary*(*n*)

//Input: A positive decimal integer *n* //Output: The number of binary digits in *n*'s binary representation $count \leftarrow 1$ while n > 1 do

count (count

 $count \leftarrow count + 1$

$$n \leftarrow \lfloor n/2 \rfloor$$

return count

- How many times is the basic operation executed?
- Why is this algorithm harder to analyze than the earlier examples?

Working with a partner:

1. Compute the following sums.

a. $1 + 3 + 5 + 7 + \dots + 999$

b. $2 + 4 + 8 + 16 + \ldots + 1024$

c.
$$\sum_{i=3}^{n+1} 1$$
 d. $\sum_{i=3}^{n+1} i$ e. $\sum_{i=0}^{n-1} i(i+1)$

f.
$$\sum_{j=1}^{n} 3^{j+1}$$
 g. $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$ h. $\sum_{i=1}^{n} 1/i(i+1)$

2. Find the order of growth of the following sums.

a.
$$\sum_{i=0}^{n-1} (i^2 + 1)^2$$
 b. $\sum_{i=2}^{n-1} \lg i^2$

c. $\sum_{i=1}^{n} (i+1)2^{i-1}$ d. $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$

Use the $\Theta(g(n))$ notation with the simplest function g(n) possible.

3. The sample variance of n measurements $x_1, x_2, ..., x_n$ can be computed as

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
 where $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$

or

$$\frac{\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2 / n}{n-1}.$$

Find and compare the number of divisions, multiplications, and additions/subtractions (additions and subtractions are usually bunched together) that are required for computing the variance according to each of these formulas.

4. Consider the following algorithm.

```
Algorithm Mystery(n)
//Input: A nonnegative integer n
S \leftarrow 0
for i \leftarrow 1 to n do
S \leftarrow S + i * i
return S
```

4. Consider the following algorithm.

Algorithm Mystery(n)//Input: A nonnegative integer n $S \leftarrow 0$ for $i \leftarrow 1$ to n do $S \leftarrow S + i * i$ return S What does this algorithm compute?

A. n^2

- B. $\sum_{i=1}^{n} i$
- C. $\sum_{i=1}^{n} i^2$
- D. $\sum_{i=1}^{n} 2i$

4. Consider the following algorithm.

```
Algorithm Mystery(n)
//Input: A nonnegative integer n
S \leftarrow 0
for i \leftarrow 1 to n do
S \leftarrow S + i * i
return S
```

4. Consider the following algorithm.

Algorithm Mystery(n)//Input: A nonnegative integer n $S \leftarrow 0$ for $i \leftarrow 1$ to n do $S \leftarrow S + i * i$ return S

What is the basic operation? A. multiplication B. addition C. assignment

D. squaring

4. Consider the following algorithm.

Algorithm Mystery(n)basic operation executed?//Input: A nonnegative integer n $S \leftarrow 0$ $S \leftarrow 0$ A. oncefor $i \leftarrow 1$ to n do
 $S \leftarrow S + i * i$ B. n times

C. $\lg n$ times

D. none of the above

How many times is the

4. Consider the following algorithm.

Algorithm Mystery(n)
//Input: A nonnegative integer nclass of this algorithm? $S \leftarrow 0$
for $i \leftarrow 1$ to n do
 $S \leftarrow S + i * i$ b is # of bits needed to
represent n]

return S

A. $\Theta(1)$ B. $\Theta(n)$ C. $\Theta(b)$ D. $\Theta(2^b)$

What is the efficiency

Ex 2.3, Problem 4 (cont)

e. Suggest an improvement or a better algorithm altogether and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.

Problem 5 — Group work

5. Consider the following algorithm.

Algorithm Secret(A[0..n-1])//Input: An array A[0..n-1] of n real numbers $minval \leftarrow A[0]; maxval \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] < minval $minval \leftarrow A[i]$ a. What does this algorithm compute? if A[i] > maxval $maxval \leftarrow A[i]$ return maxval - minval

- b. What is its basic operation?
- c. How many times is the basic operation executed?
- d. What is the efficiency class of this algorithm?
- e. Suggest an improvement or a better algorithm altogether and indicate its efficiency class.

Prove the formula

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

either by mathematical induction or by following the insight of a 10-year old schoolboy named Karl Friedrich Gauss (1777–1855) who grew up to become one of the greatest mathematicians of all times.

```
Algorithm GE(A[0..n-1,0..n])

//Input: An n-by-n + 1 matrix A[0..n-1,0..n] of real numbers

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

for k \leftarrow i to n do

A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i] / A[i,i]
```

- a. Find the time efficiency class of this algorithm
- b. What glaring inefficiency does this code contain, and how can it be eliminated?
- c. Estimate the reduction in run time.

Problem 11: von Neumann neighborhood

How many one-by-one squares are generated by the algorithm that starts with a single square, and on each of its n iterations adds new squares around the outside. How many one-by-one squares are generated on the nth iteration? Here are the neighborhoods for n = 0, 1, and 2.

