CS 350 Algorithms and Complexity

Winter 2019
Lecture 3: Analyzing Non-Recursive Algorithms

Andrew P. Black

Department of Computer Science
Portland State University

Analysis of time efficiency

\diamond Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
\diamond Almost always depends on the size of the input
» "Basic operation": the operation that contributes most towards the running time of the algorithm

$$
T(n) \approx C_{o p} \times C(n)
$$

Analysis of time efficiency

\checkmark Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
$\stackrel{\text { Almost always depends on the size of the }}{ }$ input
«"Basic operation": the operation that contributes most towards the running time of the algorithm
run time

$$
T(n) \approx C_{o p} \times C(n)
$$

Analysis of time efficiency

\diamond Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
\diamond Almost always depends on the size of the input
» "Basic operation": the operation that contributes most tomonds the running time of the algorithm cost of basic op: constant
run time
$T(n) \approx C_{o p} \times C(n)$

Analysis of time efficiency

\checkmark Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
$\stackrel{\text { Almost always depends on the size of the }}{ }$ input
«"Basic operation": the operation that contributes most townods the running time of the algorithn

cost of basic op: constant

run time
$T(n) \approx c_{o p} \times C(n)$
number
of times basic op is executed

Problem	Input size measure	Basic operation
Searching for key in a list of n items		
Multiplication of two		
matrices		
Checking primality of		
a given integer n		
Shortest path through a graph		

Complete the table

$\left.\begin{array}{|l|l|l|}\hline \text { Problem } & \text { Input size measure } & \text { Basic operation } \\ \hline \begin{array}{l}\text { Searching for key in a } \\ \text { list of } n \text { items }\end{array} & \begin{array}{l}\text { A: Number of list's } \\ \text { items, i.e. } n \\ \text { Multiplication of two } \\ \text { matrices }\end{array} & \begin{array}{l}\text { B: Matrix dimension, or } \\ \text { total number of } \\ \text { elements }\end{array} \\ \begin{array}{l}\text { Checking primality of } \\ \text { a given integer } n \\ \text { Shortest path through }\end{array} & \begin{array}{l}\text { C: size of } n=\text { number of } \\ \text { digits }\end{array} & \begin{array}{l}\text { D: \#vertices and/or } \\ \text { edge numbers }\end{array} \\ \text { a graph }\end{array} \quad \begin{array}{l}\text { C: Division } \\ \text { t: Visiting a vertex or }\end{array}\right\}$

Problem	Input size measure	Basic operation
Searching for key in a list of n items	A: Number of list's items, i.e. n B: Matrix dimension, or total number of elements	C: size of $n=$ number of digits
	D: \#vertices and/or edges	

Problem	Input size measure	Basic operation
Searching for key in a list of n items		A: Key comparison B: Multiplication of two numbers
		C: Division D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation		
	A: Number of list's items, i.e. n Multiplication of two matrices	B: Matrix dimension, or total number of elements		
C: size of $n=$ number of digits				
D: \#vertices and/or				
edges			\quad	
:---				

Problem	Input size measure	Basic operation
Multiplication of two matrices		A: Key comparison B: Multiplication of two numbers
		C: Division D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation		
	A: Number of list's items, i.e. n B: Matrix dimension, or total number of elements			
Checking primality of				
a given integer n	C: size of $n=$ number of digits			
D: \#vertices and/or				
edges			\quad	
:---				

Problem	Input size measure	Basic operation
		A: Key comparison
Checking primality of		
a given integer n		B: Multiplication of two numbers
		C: Division D: Visiting a vertex or traversing an edge

Problem	Input size measure	Basic operation
	A: Number of list's items, i.e. n B: Matrix dimension, or total number of elements	C: size of $n=$ number of digits
Shortest path through	D: \#vertices and/or edges	

Problem	Input size measure	Basic operation		
		A: Key comparison		
		B: Multiplication of two numbers		
Shortest path through				
a graph			\quad	C: Division
:---				
D: Visiting a vertex or				
traversing an edge				

Problem	Input size measure	Basic operation
Searching for key in a list of n items		
Multiplication of two		
matrices		
Checking primality of		
a given integer n		
Shortest path through		
a graph		

Best-case, average-case, worst-case

» For some algorithms, efficiency depends on the input:
\checkmark Worst case: $C_{\text {worst }}(n)$ - maximum over inputs of size n
$»$ Best case: $C_{\text {best }}(n)$ - minimum over inputs of size n
\diamond Average case: $C_{\text {avg }}(n)$ - "average" over inputs of size n

- Number of times the basic operation will be executed on typical input
- Not the average of worst and best case
- Expected number of basic operations under some assumption about the probability distribution of all possible inputs

Discuss:

ALGORITHM UniqueElements(A[0..n-1])

```
//Determines whether all the elements in a given array are distinct
//Input: An array \(A[0 . . n-1]\)
//Output: Returns "true" if all the elements in \(A\) are distinct
// and "false" otherwise
for \(i \leftarrow 0\) to \(n-2\) do
    for \(j \leftarrow i+1\) to \(n-1\) do
    if \(A[i]=A[j]\) return false
```

return true
\checkmark What's the best case, and its running time?
A. constant $-O(1)$
B. linear $-O(n)$
c. quadratic - $O\left(n^{2}\right)$

Discuss:

ALGORITHM UniqueElements(A[0..n-1])

```
//Determines whether all the elements in a given array are distinct
//Input: An array \(A[0 . . n-1]\)
//Output: Returns "true" if all the elements in \(A\) are distinct
// and "false" otherwise
for \(i \leftarrow 0\) to \(n-2\) do
    for \(j \leftarrow i+1\) to \(n-1\) do
    if \(A[i]=A[j]\) return false
```

return true
\triangleleft What's the worst case, and its running time?
A. constant $-O(1)$
B. linear $-O(n)$
c. quadratic - $O\left(n^{2}\right)$

Discuss:

ALGORITHM UniqueElements(A[0..n-1])

```
//Determines whether all the elements in a given array are distinct
//Input: An array \(A[0 . . n-1]\)
//Output: Returns "true" if all the elements in \(A\) are distinct
// and "false" otherwise
for \(i \leftarrow 0\) to \(n-2\) do
    for \(j \leftarrow i+1\) to \(n-1\) do
    if \(A[i]=A[j]\) return false
```

return true
\& What's the average case, and its running time?
A. constant $-O(1)$
B. linear $-O(n)$
c. quadratic $-O\left(n^{2}\right)$

General Plan for Analysis of non-recursive algorithms

1. Decide on parameter n indicating input size
2. Identify algorithm's basic operation
3. Determine worst, average, and best cases for input of size n
4. Set up a sum for the number of times the basic operation is executed
5. Simplify the sum using standard formulae and rules (see Levitin Appendix A)

"Basic Operation"

ALGORITHM MaxElement(A[0..n-1])

$/ /$ Input: An array $A[0 . . n-1]$ of real numbers
//Output: The value of the largest element in A
maxval $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
if $A[i]>$ maxval
maxval $\leftarrow A[i]$
return maxval
\diamond Why choose > as the basic operation?

- Why not $i \leftarrow i+1$?
- Or [] ?

Same Algorithm:

ALGORITHM MaxElement (A: List)
// Determines the value of the largest element in the list A
// Input: a list A of real numbers
// Output: the value of the largest element of A
maxval \leftarrow A.first
for each in A do
if each > maxval maxval \leftarrow each
return maxval
$\stackrel{\text { Why choose }}{ }>$ as the basic operation?

- Why not $i \leftarrow i+1$?
- Or [] ?

From Algorithm to Formula

\diamond We want a formula for the \# of basic ops
\& Basic op will normally be in inner loop
\diamond Bounds of for loop become bounds of summation
ヶ e.g. for $\mathrm{i} \leftarrow l . . h$ do:
3 basic operations

Works for nested loops too

ALGORITHM UniqueElements(A[0..n-1])
//Determines whether all the elements in a given array are distinct
//Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
if $A[i]=A[j]$ return false
return true

Works for nested loops too

ALGORITHM UniqueElements(A[0..n-1])
//Determines whether all the elements in a given array are distinct
//Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
if $A[i]=A[j]$ return false
return true

Works for nested loops too

ALGORITHM UniqueElements(A[0..n-1])
//Determines whether all the elements in a given array are distinct
//Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
if $A[i]=A[j]$ return false
return true

Useful Summation Formulae

$\Sigma_{1 \leq i \leq u} 1=$
In particular, $\Sigma_{1 \leq i \leq n} 1=n$
$\sum_{1 \leq i \leq n} i=$
$\sum_{1 \leq i \leq n} i^{2}=$
$\sum_{0 \leq i \leq n} a^{i}=$
In particular, $\Sigma_{0 \leq i \leq n} 2^{i}={ }^{\prime}$
$\Sigma\left(a_{i} \pm b_{i}\right)=$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\Sigma_{1 \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n$
$\sum_{1 \leq i \leq n} i=$
$\sum_{1 \leq i \leq n} i^{2}=$
$\sum_{0 \leq i \leq n} a^{i}=$
In particular, $\Sigma_{0 \leq i \leq n} 2^{i}={ }^{\prime}$
$\Sigma\left(a_{i} \pm b_{i}\right)=$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\sum_{l \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\sum_{1 \leq i \leq n} i=$
$\sum_{1 \leq i \leq n} i^{2}=$
$\sum_{0 \leq i \leq n} a^{i}=$
In particular, $\Sigma_{0 \leq i \leq n} 2^{i}={ }^{i}$
$\Sigma\left(a_{i} \pm b_{i}\right)=$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\Sigma_{1 \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\sum_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\sum_{1 \leq i \leq n} i^{2}=$
$\sum_{0 \leq i \leq n} a^{i}=$
In particular, $\sum_{0 \leq i \leq n} 2^{i}={ }_{c}^{c}$
$\Sigma\left(a_{i} \pm b_{i}\right)=$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\Sigma_{1 \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\sum_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\sum_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\sum_{0 \leq i \leq n} a^{i}=$
In particular, $\sum_{0 \leq i \leq n} 2^{i}={ }_{c}^{\prime}$
$\Sigma\left(a_{i} \pm b_{i}\right)=$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\sum_{l \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\sum_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\sum_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\sum_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for any $a \neq 1$ In particular, $\sum_{0 \leq i \leq n} 2^{i}=\stackrel{\iota}{c}$
$\Sigma\left(a_{i} \pm b_{i}\right)=$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\sum_{l \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\Sigma_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\sum_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\sum_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for any $a \neq 1$ In particular, $\sum_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right)$
$\Sigma\left(a_{i} \pm b_{i}\right)=$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\sum_{l \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\Sigma_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\sum_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\sum_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for any $a \neq 1$ In particular, $\sum_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right)$
$\Sigma\left(a_{i} \pm b_{i}\right)=\Sigma a_{i} \pm \Sigma b_{i}$
$\sum c a_{i}=$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\sum_{l \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\Sigma_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\sum_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\sum_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for any $a \neq 1$ In particular, $\sum_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right)$
$\Sigma\left(a_{i} \pm b_{i}\right)=\Sigma a_{i} \pm \Sigma b_{i}$
$\sum c a_{i}=c \sum a_{i}$
$\sum_{l \leq i \leq u} a_{i}=$

Useful Summation Formulae

$\sum_{1 \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\Sigma_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\sum_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\sum_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for any $a \neq 1$ In particular, $\sum_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right)$
$\Sigma\left(a_{i} \pm b_{i}\right)=\sum a_{i} \pm \sum b_{i}$
$\sum c a_{i}=c \sum a_{i}$
$\sum_{l \leq i \leq u} a_{i}=\sum_{l \leq i \leq m} a_{i}+\sum_{m+1 \leq i \leq u} a_{i}$

Where do the Summation formulae come from?
\diamond Answer: mathematics.
» Example:

Where do the Summation formulae come from?

» Answer: mathematics.
»Example:

Where do the Summation formulae come from?

$»$ Answer: mathematics.
» Example:

Where do the Summation formulae come from?

\diamond Answer: mathematics.
» Example:

What does Levitin's \approx mean?

$\stackrel{\wedge}{ }$ "becomes almost equal to as $n \rightarrow \infty$ "
ヶSo formula 8
$\sum_{i=1}^{n} \lg i \approx n \lg n$

- means
$\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \lg i-n \lg n\right)=0$

Example: Counting Binary Digits

ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation count $\leftarrow 1$
while $n>1$ do

$$
\begin{aligned}
& \text { count } \leftarrow \text { count }+1 \\
& n \leftarrow\lfloor n / 2\rfloor
\end{aligned}
$$

return count

Example: Counting Binary Digits

ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation count $\leftarrow 1$
while $n>1$ do

$$
\begin{aligned}
& \text { count } \leftarrow \text { count }+1 \\
& n \leftarrow\lfloor n / 2\rfloor
\end{aligned}
$$

return count
\& How many times is the basic operation executed?

Example: Counting Binary Digits

ALGORITHM Binary(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation count $\leftarrow 1$
while $n>1$ do

$$
\begin{aligned}
& \text { count } \leftarrow \text { count }+1 \\
& n \leftarrow\lfloor n / 2\rfloor
\end{aligned}
$$

return count
\checkmark How many times is the basic operation executed?
\diamond Why is this algorithm harder to analyze than the earlier examples?

Ex 2.3, Problem 1

\checkmark Working with a partner:

1. Compute the following sums.

$$
\text { a. } 1+3+5+7+\ldots+999
$$

b. $2+4+8+16+\ldots+1024$
c. $\sum_{i=3}^{n+1} 1$
d. $\sum_{i=3}^{n+1} i$
e. $\sum_{i=0}^{n-1} i(i+1)$
f. $\sum_{j=1}^{n} 3^{j+1}$
g. $\sum_{i=1}^{n} \sum_{j=1}^{n} i j$
h. $\sum_{i=1}^{n} 1 / i(i+1)$

Ex 2.3, Problem 2

2. Find the order of growth of the following sums.
a. $\sum_{i=0}^{n-1}\left(i^{2}+1\right)^{2}$
b. $\sum_{i=2}^{n-1} \lg i^{2}$
c. $\sum_{i=1}^{n}(i+1) 2^{i-1}$
d. $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1}(i+j)$

Use the $\Theta(g(n))$ notation with the simplest function $g(n)$ possible.

Ex 2.3, Problem 3

3. The sample variance of n measurements $x_{1}, x_{2}, \ldots, x_{n}$ can be computed as

$$
\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \text { where } \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

or

$$
\frac{\sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} / n}{n-1}
$$

Find and compare the number of divisions, multiplications, and additions/subtractions (additions and subtractions are usually bunched together) that are required for computing the variance according to each of these formulas.

Ex 2.3, Problem 4

4. Consider the following algorithm.
```
Algorithm Mystery(n)
//Input: A nonnegative integer n
S\leftarrow0
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    S\leftarrowS+i*i
return S
```


Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery (n)
//Input: A nonnegative integer n $S \leftarrow 0$
for $i \leftarrow 1$ to n do

$$
S \leftarrow S+i * i
$$

return S

What does this algorithm compute?
A. n^{2}
B. $\sum_{i=1}^{n} i$
C. $\sum_{i=1}^{n} i^{2}$
D. $\sum_{i=1}^{n} 2 i$

Ex 2.3, Problem 4

4. Consider the following algorithm.
```
Algorithm Mystery(n)
//Input: A nonnegative integer n
S\leftarrow0
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    S\leftarrowS+i*i
return S
```


Ex 2.3, Problem 4

4. Consider the following algorithm.

Algorithm Mystery (n)
//Input: A nonnegative integer n $S \leftarrow 0$

What is the

 basic operation? for $i \leftarrow 1$ to n do$$
S \leftarrow S+i * i
$$

return S
A. multiplication
B. addition
C. assignment
D. squaring

Ex 2.3, Problem 4

4. Consider the following algorithm. How many times is the

Algorithm Mystery (n)
 basic operation executed?

//Input: A nonnegative integer n
$S \leftarrow 0$
for $i \leftarrow 1$ to n do

$$
S \leftarrow S+i * i
$$

return S
A. once
B. n times
C. $\lg n$ times
D. none of the above

Ex 2.3, Problem 4

4. Consider the following algorithm.

What is the efficiency class of this algorithm?
Algorithm Mystery (n) [b is \# of bits needed to //Input: A nonnegative integer n $S \leftarrow 0$
for $i \leftarrow 1$ to n do represent n]

$$
\underset{\text { return } S}{S \leftarrow S+i * i}
$$

A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(b)$
D. $\Theta\left(2^{b}\right)$

Ex 2.3, Problem 4 (cont)

e. Suggest an improvement or a better algorithm altogether and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.

Problem 5 - Group work

5. Consider the following algorithm.

Algorithm $\operatorname{Secret}(A[0 . . n-1])$
//Input: An array $A[0 . . n-1]$ of n real numbers
minval $\leftarrow A[0] ; \quad$ maxval $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
if $A[i]<$ minval
minval $\leftarrow A[i]$
if $A[i]>$ maxval
maxval $\leftarrow A[i]$
return maxval - minval
a. What does this algorithm compute?
b. What is its basic operation?
c. How many times is the basic operation executed?
d. What is the efficiency class of this algorithm?
e. Suggest an improvement or a better algorithm altogether and indicate its efficiency class.

Ex 2.3, Problem 9

Prove the formula

$$
\sum_{i=1}^{n} i=1+2+\ldots+n=\frac{n(n+1)}{2}
$$

either by mathematical induction or by following the insight of a 10 -year old schoolboy named Karl Friedrich Gauss (1777-1855) who grew up to become one of the greatest mathematicians of all times.

Ex 2.3, Problem 11

```
Algorithm \(G E(A[0 . . n-1,0 . . n])\)
//Input: An \(n\)-by- \(n+1\) matrix \(A[0 . . n-1,0 . . n]\) of real numbers
for \(i \leftarrow 0\) to \(n-2\) do
    for \(j \leftarrow i+1\) to \(n-1\) do
    for \(k \leftarrow i\) to \(n\) do
        \(A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i]\)
```

a. Find the time efficiency class of this algorithm
b. What glaring inefficiency does this code contain, and how can it be eliminated?
c. Estimate the reduction in run time.

Problem 11: von Neumann neighborhood

 How many one-by-one squares are generated by the algorithm that starts with a single square, and on each of its n iterations adds new squares around the outside. How many one-by-one squares are generated on the $n^{\text {th }}$ iteration? Here are the neighborhoods for $n=0,1$, and 2 .
$n=0$

$n=1$

$n=2$

