CS 350 Algorithms and Complexity

Winter 2019

Lecture 4: Analyzing Recursive Algorithms

Andrew P. Black

Department of Computer Science
Portland State University

General Plan for Analysis of Recursive algorithms

- Decide on parameter n indicating input size
- Identify algorithm's basic operation
+ Determine worst, average, and best cases for input of size n
- Set up a recurrence relation, with initial condition, for the number of times the basic operation is executed
+ Solve the recurrence, or at least ascertain the order of growth of the solution (see Levitin Appendix B)

Ex 2.4, Problem 1(a)

\triangleleft Use a piece of paper and do this now, individually.

- Solve this recurrence relation:

$$
\begin{aligned}
& x(n)=x(n-1)+5 \text { for } n>1 \\
& x(1)=0
\end{aligned}
$$

Individual Problem (Q1):

Solve the recurrence

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for } n>1 \\
& x(1)=0
\end{aligned}
$$

What's the answer?

Individual Problem (Q1):

Solve the recurrence

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for } n>1 \\
& x(1)=0
\end{aligned}
$$

What's the answer?
A. $x(n)=n-1$
B. $x(n)=5 n$
C. $x(n)=5 n-5$
D. None of the above

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

substitute for $x(n-2)$:

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

substitute for $x(n-2)$:

$$
=x(n-3)+5+5+5
$$

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

$$
=x(n-3)+5+5+5
$$

generalize:

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

$$
=x(n-3)+5+5+5
$$

$$
=x(n-i)+5 i \quad \forall i<n
$$

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
\begin{aligned}
x(n) & =x(n-2)+5+5 \\
& =x(n-3)+5+5+5 \\
& =x(n-i)+5 i \quad \forall i<n
\end{aligned}
$$

put $i=(n-1)$:

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

$$
=x(n-3)+5+5+5
$$

generalize:
put $i=(n-1)$:

$$
=x(n-i)+5 i \quad \forall i<n
$$

$$
=x(n-(n-1))+5(n-1)
$$

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

$$
=x(n-3)+5+5+5
$$

generalize:
put $i=(n-1)$:
substitute for $x(1)$:

My Solution

$$
\begin{aligned}
& x(n)=x(n-1)+5 \quad \text { for all } n>1 \\
& x(1)=0
\end{aligned}
$$

replace n by $n-1$:

$$
x(n-1)=x(n-2)+5
$$

substitute for $x(n-1)$:

$$
x(n)=x(n-2)+5+5
$$

$$
=x(n-3)+5+5+5
$$

generalize:
put $i=(n-1)$:

$$
=x(n-(n-1))+5(n-1)
$$

substitute for $x(1)$:

$$
=x(n-i)+5 i \quad \forall i<n
$$

$$
=5(n-1)
$$

Ex 2.4, Problem 1(c)

\triangleleft Use a piece of paper and do this now, individually.

- Solve this recurrence relation:

$$
\begin{aligned}
& x(n)=x(n-1)+n \text { for } n>0 \\
& x(0)=0
\end{aligned}
$$

Ex 2.4, Problem 1(c)

\diamond Use a piece of paper and do this now, individually.

- Solve this recurrence relation:

$$
\begin{aligned}
& x(n)=x(n-1)+n \text { for } n>0 \\
& x(0)=0
\end{aligned}
$$

Answer?
A. $x(n)=n^{2}$
B. $x(n)=n^{2} / 2$
C. $x(n)=n(n+1) / 2$
D. None of the above

Ex 2.4, Problem 1(d)

\diamond Use a piece of paper and do this now, individually.

- Solve this recurrence relation for $n=2^{k}$:

$$
\begin{array}{ll}
x(n)=x(n / 2)+n \text { for } n>1 \\
x(1) & =1
\end{array}
$$

Ex 2.4, Problem 1(d)

\triangleleft Use a piece of paper and do this now, individually.

- Solve this recurrence relation for $n=2^{k}$:

$$
\begin{aligned}
& x(n)=x(n / 2)+n \text { for } n>1 \\
& x(1)=1
\end{aligned}
$$

Answer?
A. $x(n)=2^{n+1}$
C. $x(n)=n(n+1)$
B. $x(n)=2 n-1 \quad$ D. None of the above

What does that mean?

What does that mean?

s "Solving a Recurrence relation" means:

What does that mean?

» "Solving a Recurrence relation" means: - find an explicit (non-recursive) formula that satisfies the relation and the initial condition.

What does that mean?

» "Solving a Recurrence relation" means:

- find an explicit (non-recursive) formula that satisfies the relation and the initial condition.
- For example, for the relation

$$
x(n)=3 x(n-1) \text { for } n>1, x(1)=4
$$

the solution is

$$
x(n)=4 \times 3^{n-1}
$$

What does that mean?

» "Solving a Recurrence relation" means:

- find an explicit (non-recursive) formula that satisfies the relation and the initial condition.
- For example, for the relation

$$
x(n)=3 x(n-1) \text { for } n>1, x(1)=4
$$

the solution is

$$
x(n)=4 \times 3^{n-1}
$$

- Check:

What does that mean?

« "Solving a Recurrence relation" means:

- find an explicit (non-recursive) formula that satisfies the relation and the initial condition.
- For example, for the relation

$$
x(n)=3 x(n-1) \text { for } n>1, x(1)=4
$$

the solution is

$$
x(n)=4 \times 3^{n-1}
$$

- Check:

$$
x(1)=4 \times 3^{0}=4 \times 1=4
$$

What does that mean?

s "Solving a Recurrence relation" means:

- find an explicit (non-recursive) formula that satisfies the relation and the initial condition.
- For example, for the relation

$$
x(n)=3 x(n-1) \text { for } n>1, x(1)=4
$$

the solution is

$$
x(n)=4 \times 3^{n-1}
$$

- Check:

$$
\begin{aligned}
& x(1)=4 \times 3^{0}=4 \times 1=4 \\
& x(n)=3 x(n-1) \quad \text { definition of recurrence }
\end{aligned}
$$

What does that mean?

» "Solving a Recurrence relation" means:

- find an explicit (non-recursive) formula that satisfies the relation and the initial condition.
- For example, for the relation

$$
x(n)=3 x(n-1) \text { for } n>1, x(1)=4
$$

the solution is

$$
x(n)=4 \times 3^{n-1}
$$

- Check:

$$
\begin{aligned}
x(1) & =4 \times 3^{0}=4 \times 1=4 \\
x(n) & =3 x(n-1) \quad \text { definition of recurrence } \\
& =3 \times\left[4 \times 3^{(n-1)-1}\right] \quad \text { substitute solution }
\end{aligned}
$$

What does that mean?

» "Solving a Recurrence relation" means:

- find an explicit (non-recursive) formula that satisfies the relation and the initial condition.
- For example, for the relation

$$
x(n)=3 x(n-1) \text { for } n>1, x(1)=4
$$

the solution is

$$
x(n)=4 \times 3^{n-1}
$$

- Check:

$$
\begin{aligned}
x(1) & =4 \times 3^{0}=4 \times 1=4 \\
x(n) & =3 x(n-1) \quad \text { definition of recurrence } \\
& =3 \times\left[4 \times 3^{(n-1)-1}\right] \quad \text { substitute solution } \\
& =4 \times 3^{n-1}=x(n)
\end{aligned}
$$

Ex 2.4, Problem 2

2. Set up and solve a recurrence relation for the number of calls made by $F(n)$, the recursive algorithm for computing $n!$.

$$
\begin{aligned}
F(n) \stackrel{\text { wh }}{\underline{w}} \text { if } n= & 0 \\
& \text { then return } 1 \\
& \text { else return } F(n-1) \times n
\end{aligned}
$$

$F(n) \| f=0$
 then return 1
 else return $F(n-1) \times n$

$F(n)$ 些 if $n=0$
 then return 1 else return $F(n-1) \times n$

Let $C(n)$ be the number of calls made in computing $F(n)$

 then return 1 else return $F(n-1) \times n$

Let $C(n)$ be the number of calls made in computing $F(n)$

$$
\begin{aligned}
& C(n)=C(n-1)+1 \\
& C(0)=1
\end{aligned}
$$

$$
\text { (when } n=0, \text { there is } 1 \text { call) }
$$

$$
F(n) \stackrel{\text { 些 }}{=} \text { if } n=0
$$

my solution
then return 1
else return $F(n-1) \times n$

Let $C(n)$ be the number of calls made in computing $F(n)$

$$
\begin{aligned}
& C(n)=C(n-1)+1 \\
& C(0)=1
\end{aligned}
$$

$$
\text { (when } n=0, \text { there is } 1 \text { call) }
$$

$$
\begin{aligned}
C(n) & =C(n-1)+1 \\
& =[C(n-2)+1]+1
\end{aligned}
$$

$$
F(n) \stackrel{\text { 些 }}{=} \text { if } n=0
$$

then return 1
else return $F(n-1) \times n$

Let $C(n)$ be the number of calls made in computing $F(n)$

$$
\begin{aligned}
& C(n)=C(n-1)+1 \\
& C(0)=1
\end{aligned}
$$

$$
\text { (when } n=0 \text {, there is } 1 \text { call) }
$$

$$
\begin{aligned}
C(n) & =C(n-1)+1 \\
& =[C(n-2)+1]+1 \\
& =C(n-2)+2
\end{aligned}
$$

$$
F(n) \stackrel{\text { w上 }}{=} \text { if } n=0
$$

then return 1
else return $F(n-1) \times n$

Let $C(n)$ be the number of calls made in computing $F(n)$

$$
\begin{aligned}
& C(n)=C(n-1)+1 \\
& C(0)=1
\end{aligned}
$$

$$
\text { (when } n=0 \text {, there is } 1 \text { call) }
$$

$$
\begin{aligned}
C(n) & =C(n-1) \quad+1 \\
& =[C(n-2)+1]+1 \\
& =C(n-2)+2 \\
& =C(n-i)+i \quad \forall i<n \quad \text { (generalize) }
\end{aligned}
$$

$$
F(n) \stackrel{\text { w上 }}{=} \text { if } n=0
$$

Let $C(n)$ be the number of calls made in computing $F(n)$

$$
\begin{aligned}
& C(n)=C(n-1)+1 \\
& C(0)=1
\end{aligned}
$$

$$
\text { (when } n=0 \text {, there is } 1 \text { call) }
$$

$$
\begin{aligned}
& \qquad \begin{aligned}
C(n) & =C(n-1) \quad+1 \\
& =[C(n-2)+1]+1 \\
& =C(n-2)+2 \\
& =C(n-i)+i \quad \forall i<n \quad \text { (generalize) } \\
\text { Put } i=n: \quad & =C(0)+n
\end{aligned}
\end{aligned}
$$

$$
F(n) \stackrel{\text { w上 }}{=} \text { if } n=0
$$

Let $C(n)$ be the number of calls made in computing $F(n)$

$$
\begin{aligned}
& C(n)=C(n-1)+1 \\
& C(0)=1
\end{aligned}
$$

$$
\text { (when } n=0 \text {, there is } 1 \text { call) }
$$

$$
\begin{aligned}
C(n) & =C(n-1) \quad+1 \\
& =[C(n-2)+1]+1 \\
& =C(n-2)+2 \\
& =C(n-i)+i \quad \forall i<n \quad \text { (generalize) } \\
\text { Put } i=n: \quad & =C(0)+n \\
& =1+n
\end{aligned}
$$

$$
F(n) \stackrel{\text { mi }}{\underline{\omega}} \text { if } n=0
$$

then return 1
else return $F(n-1) \times n$

Let $C(n)$ be the number of calls made in computing $F(n)$

$$
\begin{aligned}
& C(n)=C(n-1)+1 \\
& C(0)=1
\end{aligned}
$$

$$
\text { (when } n=0 \text {, there is } 1 \text { call) }
$$

$$
\begin{aligned}
C(n) & =C(n-1) \quad+1 \\
& =[C(n-2)+1]+1 \\
& =C(n-2)+2 \\
& =C(n-i)+i \quad \forall i<n \quad \text { (generalize) } \\
\text { Put } i=n: \quad & =C(0)+n \\
& =1+n
\end{aligned}
$$

Ex 2.4, Problem 3

3. Consider the following recursive algorithm for computing the sum of the first n cubes: $S(n)=1^{3}+2^{3}+\ldots+n^{3}$.

Algorithm $S(n)$
//Input: A positive integer n
//Output: The sum of the first n cubes
if $n=1$ return 1
else return $S(n-1)+n * n * n$
a. Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed.

Ex 2.4, Problem 3

3. Consider the following recursive algorithm for computing the sum of the first n cubes: $S(n)=1^{3}+2^{3}+\ldots+n^{3}$.

Algorithm $S(n)$
//Input: A positive integer n
//Output: The sum of the first n cubes
if $n=1$ return 1
else return $S(n-1)+n * n * n$
a. Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed.
b. How does this algorithm compare with the straightforward nonrecursive algorithm for computing this function?

```
S\leftarrow1
for }i\leftarrow2\mathrm{ to }n\mathrm{ do
    S\leftarrowS+i\timesi\timesi
return S
```


Ex 2.4, Problem 4(a)

Consider the following recursive algorithm.

Algorithm $Q(n)$

//Input: A positive integer n
if $n=1$ return 1
else return $Q(n-1)+2 * n-1$
a. Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes.

Ex 2.4, Problem 4(a)

Consider the following recursive algorithm.

```
Algorithm \(Q(n)\)
//Input: A positive integer \(n\)
if \(n=1\) return 1
else return \(Q(n-1)+2 * n-1\)
```

a. Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes.
b. Set up a recurrence relation for the number of multiplications made by this algorithm and solve it.

Ex 2.4, Problem 4(a)

Consider the following recursive algorithm.

```
Algorithm \(Q(n)\)
//Input: A positive integer \(n\)
if \(n=1\) return 1
else return \(Q(n-1)+2 * n-1\)
```

a. Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes.
b. Set up a recurrence relation for the number of multiplications made by this algorithm and solve it.
c. Set up a recurrence relation for the number of additions/subtractions made by this algorithm and solve it.

Ex 2.4, Problem 8

a. Design a recursive algorithm for computing 2^{n} for any nonnegative integer n that is based on the formula: $2^{n}=2^{n-1}+2^{n-1}$.
b. Set up a recurrence relation for the number of additions made by the algorithm and solve it.
c. Draw a tree of recursive calls for this algorithm and count the number of calls made by the algorithm.
d. Is it a good algorithm for solving this problem?

Solution to Problem 8

a. Algorithm Power (n)
//Computes 2^{n} recursively by the formula $2^{n}=2^{n-1}+2^{n-1}$ //Input: A nonnegative integer n
//Output: Returns 2^{n}
We didn't
if $n=0$ return 1 simplify!
else return $\operatorname{Power}(n-1)+\widehat{\operatorname{Power}(n-1)}$

Solution to Problem 8

a. Algorithm Power (n)
//Computes 2^{n} recursively by the formula $2^{n}=2^{n-1}+2^{n-1}$ We didn't //Input: A nonnegative integer n
//Output: Returns 2^{n}

simplify!

if $n=0$ return 1
else return $\operatorname{Power}(n-1)+\widehat{\operatorname{Power}(n-1)}$
b. $A(n)=2 A(n-1)+1, \quad A(0)=0$.

$$
\begin{aligned}
A(n) & =2 A(n-1)+1 \\
& =2[2 A(n-2)+1]+1=2^{2} A(n-2)+2+1 \\
& =2^{2}[2 A(n-3)+1]+2+1=2^{3} A(n-3)+2^{2}+2+1 \\
& =\ldots \\
& =2^{i} A(n-i)+2^{i-1}+2^{i-2}+\ldots+1 \\
& =\ldots \\
& =2^{n} A(0)+2^{n-1}+2^{n-2}+\ldots+1=2^{n-1}+2^{n-2}+\ldots+1=2^{n}-1 .
\end{aligned}
$$

Solution to Problem 8

Ex 2.4, Problem 11

The determinant of an n-by- n matrix

$$
A=\left[\begin{array}{lll}
a_{11} & & a_{1 n} \\
a_{21} & & a_{2 n} \\
& & \\
a_{n 1} & & a_{n n}
\end{array}\right]
$$

denoted $\operatorname{det} A$, can be defined as a_{11} for $n=1$ and, for $n>1$, by the recursive formula

$$
\operatorname{det} A=\sum_{j=1}^{n} s_{j} a_{1 j} \operatorname{det} A_{j},
$$

where s_{j} is +1 if j is odd and -1 if j is even, $a_{1 j}$ is the element in row 1 and column j, and A_{j} is the $(n-1)$-by- $(n-1)$ matrix obtained from matrix A by deleting its row 1 and column j.
a. Set up a recurrence relation for the number of multiplications made
by the algorithm implementing this recursive definition. (Ignore multiplications by s_{j}.)

Ex 2.4, Problem 11

The determinant of an n-by- n matrix

$$
A=\left[\begin{array}{lll}
a_{11} & & a_{1 n} \\
a_{21} & & a_{2 n} \\
& & \\
a_{n 1} & & a_{n n}
\end{array}\right]
$$

denoted $\operatorname{det} A$, can be defined as a_{11} for $n=1$ and, for $n>1$, by the recursive formula

$$
\operatorname{det} A=\sum_{j=1}^{n} s_{j} a_{1 j} \operatorname{det} A_{j},
$$

where s_{j} is +1 if j is odd and -1 if j is even, $a_{1 j}$ is the element in row 1 and column j, and A_{j} is the $(n-1)$-by- $(n-1)$ matrix obtained from matrix A by deleting its row 1 and column j.
a. Set up a recurrence relation for the number of multiplications made by the algorithm implementing this recursive definition. (Ignore multiplications by s_{j}.)
b. Without solving the recurrence, what can you say about the solution's order of growth as compared to n !?
my solution
$\operatorname{det} A=\sum_{j=1}^{n} s_{j} a_{1 j} \operatorname{det} A_{j}$

my solution
 $\operatorname{det} A=\sum_{j=1}^{n} s_{j} a_{1 j} \operatorname{det} A_{j}$

Let $M(n)$ be the number of multiplications made in computing the determinant of an $n \times n$ matrix.
$M(1)=0$
$M(n)=\sum_{j=1}^{n}(1+M(n-1)) \quad \forall n>1$

$$
\text { my solution } \quad \operatorname{det} A=\sum_{j=1}^{n} s_{j} a_{1 j} \operatorname{det} A_{j}
$$

Let $M(n)$ be the number of multiplications made in computing the determinant of an $n \times n$ matrix.
$M(1)=0$
$M(n)=\sum_{j=1}^{n}(1+M(n-1)) \quad \forall n>1$
$M(n)=n \times(1+M(n-1)) \quad \forall n>1$
$M(n)=n+n M(n-1)$

my solution $\operatorname{det} A=\sum_{j=1}^{n} s_{j} a_{1 j} \operatorname{det} A_{j}$

Let $M(n)$ be the number of multiplications made in computing the determinant of an $n \times n$ matrix.
$M(1)=0$
$M(n)=\sum_{j=1}^{n}(1+M(n-1)) \quad \forall n>1$
$M(n)=n \times(1+M(n-1)) \quad \forall n>1$
$M(n)=n+n M(n-1)$

Without solving this relation, what can you say about M's order of growth, compared to n ! ?

Problem

The maximum values of the Java primitive type int is $2^{31}-1$. Find the smallest n for which the nth Fibonacci number is not going to fit in a variable of type int.

Recall Eqn 2.10:

$$
\operatorname{Fib}(n)=\frac{1}{\sqrt{5}} \phi^{n} \text { rounded to the nearest integer }
$$

where $\phi=\frac{1}{2}(1+\sqrt{5})$

Solution

Solution

\triangleleft We need the smallest n s.t. $\operatorname{Fib}(n)>2^{31}-1$

Solution

\triangleleft We need the smallest n s.t. $\operatorname{Fib}(n)>2^{31}-1$

$$
\frac{1}{\sqrt{5}} \phi^{n}>2^{31}-1 \text { or } \phi^{n}>\sqrt{5}\left(2^{31}-1\right)
$$

Solution

\triangleleft We need the smallest n s.t. $\operatorname{Fib}(n)>2^{31}-1$

$$
\frac{1}{\sqrt{5}} \phi^{n}>2^{31}-1 \text { or } \phi^{n}>\sqrt{5}\left(2^{31}-1\right)
$$

$$
\text { where } \phi=\frac{1}{2}(1+\sqrt{5})
$$

Solution

\triangleleft We need the smallest n s.t. $\operatorname{Fib}(n)>2^{31}-1$

$$
\frac{1}{\sqrt{5}} \phi^{n}>2^{31}-1 \text { or } \phi^{n}>\sqrt{5}\left(2^{31}-1\right)
$$

$$
\text { where } \phi=\frac{1}{2}(1+\sqrt{5})
$$

\triangleleft Take natural logs of both sides:

Solution

\triangleleft We need the smallest n s.t. $\operatorname{Fib}(n)>2^{31}-1$

$$
\frac{1}{\sqrt{5}} \phi^{n}>2^{31}-1 \text { or } \phi^{n}>\sqrt{5}\left(2^{31}-1\right)
$$

$$
\text { where } \phi=\frac{1}{2}(1+\sqrt{5})
$$

\triangleleft Take natural logs of both sides:

$$
n>\frac{\ln \left(\sqrt{5}\left(2^{31}-1\right)\right)}{\ln \phi}
$$

Solution

\triangleleft We need the smallest n s.t. $\operatorname{Fib}(n)>2^{31}-1$

$$
\frac{1}{\sqrt{5}} \phi^{n}>2^{31}-1 \text { or } \phi^{n}>\sqrt{5}\left(2^{31}-1\right)
$$

$$
\text { where } \phi=\frac{1}{2}(1+\sqrt{5})
$$

\triangleleft Take natural logs of both sides:

$$
n>\frac{\ln \left(\sqrt{5}\left(2^{31}-1\right)\right)}{\ln \phi} \approx 46.3
$$

Solution

\diamond We need the smallest n s.t. $\operatorname{Fib}(n)>2^{31}-1$

$$
\frac{1}{\sqrt{5}} \phi^{n}>2^{31}-1 \text { or } \phi^{n}>\sqrt{5}\left(2^{31}-1\right)
$$

where $\phi=\frac{1}{2}(1+\sqrt{5})$
\triangleleft Take natural logs of both sides:

$$
n>\frac{\ln \left(\sqrt{5}\left(2^{31}-1\right)\right)}{\ln \phi} \approx 46.3
$$

\diamond Thus, the answer is $n=47$

