
CS 350 Algorithms and Complexity

Lecture 5: Brute Force Algorithms

Andrew P. Black 

Department of Computer Science 

Portland State University

Winter 2019



What is Brute Force?

✦ force of the computer, not of your intellect

= simple & stupid

just do it!   

!2



Why study them?
✦ Simple to implement


suppose you need to solve only one instance?

✦ Often “good enough”, especially when n is small

✦ Widely applicable

✦ Actually OK for some problems, e.g., Matrix 

Multiplication 

✦ Can be the starting point for an improved algorithm

✦ “Baseline” against which we can compare better 

algorithms

✦ Can be a “gold standard” of correctness


use as oracle in unit tests    

!3



Sequential Search

!4



Sequential Search

!4



Sequential Search

!4



Sequential Search

!5



Timing Sequential Search

!6

testSequentialSearch 

 | A B  N M res t1 t2 t3| 
 N ← 100000. 
 M ← 5000000.    " bigger than the array to be searched, and any value in it" 
  A ← self randomArrayOfSize: N. 
 t1 ← Time millisecondsToRun: [1000 timesRepeat:   [res ← A searchFor: M ]]. 
 self deny: res. 
 B ← A copyWith: M. 
 t2 ← Time millisecondsToRun: [1000 timesRepeat:  [res ← B searchUsingSentinel: M ]]. 
 self deny: res. 
 t3 ← Time millisecondsToRun: [1000 timesRepeat:  [res ← A searchUsingAt: M ]]. 
 self deny: res. 
 Transcript show: 'Sequential search, size: '; show: N; cr; 
  show: ' sequential, for each: '; show: t1; show: 'µs'; cr; 
  show: ' with sentinel: '; show: t2; show: 'µs'; cr; 
  show: ' without sentinel, at: '; show: t3; show: 'µs'; cr; cr.



Timing Results

!7

Sequential search, size: 100000 
 sequential, for each: 1430µs 
 with sentinel: 850µs 
 without sentinel, at: 1287µs 

Sequential search, size: 100000 
 sequential, for each: 1396µs 
 with sentinel: 788µs 
 without sentinel, at: 1280µs



Timing Results

!7

Sequential search, size: 100000 
 sequential, for each: 1430µs 
 with sentinel: 850µs 
 without sentinel, at: 1287µs 

Sequential search, size: 100000 
 sequential, for each: 1396µs 
 with sentinel: 788µs 
 without sentinel, at: 1280µs

Coding details can make a difference!



Timing Results

!7

Sequential search, size: 100000 
 sequential, for each: 1430µs 
 with sentinel: 850µs 
 without sentinel, at: 1287µs 

Sequential search, size: 100000 
 sequential, for each: 1396µs 
 with sentinel: 788µs 
 without sentinel, at: 1280µs

Coding details can make a difference!

But not to the asymptotic complexity.



Selection Sort

!8



!9



Ex 3.1, Problem 4

!10

This file contains the exercises, hints, and solutions for Chapter 3 of the

book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by ◃; those that might be difficult for a majority of students are

marked by " .

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an

application of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force

algorithm.

2. a. What is the efficiency of the brute-force algorithm for computing a
n

as a function of n? As a function of the number of bits in the binary

representation of n?

b. If you are to compute a
n
modm where a > 1and n is a large positive

integer, how would you circumvent the problem of a very large magnitude

of a
n
?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell

whether or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n
+ an−1x

n−1
+ ...+ a1x+ a0

at a given point x0 and determine its worst-case efficiency class.

b. If the algorithm you designed is in Θ(n
2
), design a linear algorithm

for this problem.

c. Is it possible to design an algorithm with a better than linear efficiency

for this problem?

5. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

6. Is selection sort stable? (The definition of a stable sorting algorithm was

given in Section 1.3.)

7. Is it possible to implement selection sort for linked lists with the same

Θ(n
2
) efficiency as the array version?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

9. a. Prove that if bubble sort makes no exchanges on its pass through a list,

the list is sorted and the algorithm can be stopped.

1



Ex 3.1, Problem 4

!10

This file contains the exercises, hints, and solutions for Chapter 3 of the

book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by ◃; those that might be difficult for a majority of students are

marked by " .

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an

application of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force

algorithm.

2. a. What is the efficiency of the brute-force algorithm for computing a
n

as a function of n? As a function of the number of bits in the binary

representation of n?

b. If you are to compute a
n
modm where a > 1and n is a large positive

integer, how would you circumvent the problem of a very large magnitude

of a
n
?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell

whether or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n
+ an−1x

n−1
+ ...+ a1x+ a0

at a given point x0 and determine its worst-case efficiency class.

b. If the algorithm you designed is in Θ(n
2
), design a linear algorithm

for this problem.

c. Is it possible to design an algorithm with a better than linear efficiency

for this problem?

5. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

6. Is selection sort stable? (The definition of a stable sorting algorithm was

given in Section 1.3.)

7. Is it possible to implement selection sort for linked lists with the same

Θ(n
2
) efficiency as the array version?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

9. a. Prove that if bubble sort makes no exchanges on its pass through a list,

the list is sorted and the algorithm can be stopped.

1

Assume that exponentiation is not built-in.



Ex 3.1, Problem 4

!10

This file contains the exercises, hints, and solutions for Chapter 3 of the

book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by ◃; those that might be difficult for a majority of students are

marked by " .

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an

application of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force

algorithm.

2. a. What is the efficiency of the brute-force algorithm for computing a
n

as a function of n? As a function of the number of bits in the binary

representation of n?

b. If you are to compute a
n
modm where a > 1and n is a large positive

integer, how would you circumvent the problem of a very large magnitude

of a
n
?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell

whether or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n
+ an−1x

n−1
+ ...+ a1x+ a0

at a given point x0 and determine its worst-case efficiency class.

b. If the algorithm you designed is in Θ(n
2
), design a linear algorithm

for this problem.

c. Is it possible to design an algorithm with a better than linear efficiency

for this problem?

5. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

6. Is selection sort stable? (The definition of a stable sorting algorithm was

given in Section 1.3.)

7. Is it possible to implement selection sort for linked lists with the same

Θ(n
2
) efficiency as the array version?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

9. a. Prove that if bubble sort makes no exchanges on its pass through a list,

the list is sorted and the algorithm can be stopped.

1

Assume that exponentiation is not built-in.

Write it down clearly, so I can project it with the document camera.



Ex 3.1, Problem 4

!10

This file contains the exercises, hints, and solutions for Chapter 3 of the

book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by ◃; those that might be difficult for a majority of students are

marked by " .

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an

application of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force

algorithm.

2. a. What is the efficiency of the brute-force algorithm for computing a
n

as a function of n? As a function of the number of bits in the binary

representation of n?

b. If you are to compute a
n
modm where a > 1and n is a large positive

integer, how would you circumvent the problem of a very large magnitude

of a
n
?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell

whether or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n
+ an−1x

n−1
+ ...+ a1x+ a0

at a given point x0 and determine its worst-case efficiency class.

b. If the algorithm you designed is in Θ(n
2
), design a linear algorithm

for this problem.

c. Is it possible to design an algorithm with a better than linear efficiency

for this problem?

5. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

6. Is selection sort stable? (The definition of a stable sorting algorithm was

given in Section 1.3.)

7. Is it possible to implement selection sort for linked lists with the same

Θ(n
2
) efficiency as the array version?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

9. a. Prove that if bubble sort makes no exchanges on its pass through a list,

the list is sorted and the algorithm can be stopped.

1



Ex 3.1, Problem 4

!10

This file contains the exercises, hints, and solutions for Chapter 3 of the

book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by ◃; those that might be difficult for a majority of students are

marked by " .

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an

application of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force

algorithm.

2. a. What is the efficiency of the brute-force algorithm for computing a
n

as a function of n? As a function of the number of bits in the binary

representation of n?

b. If you are to compute a
n
modm where a > 1and n is a large positive

integer, how would you circumvent the problem of a very large magnitude

of a
n
?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell

whether or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n
+ an−1x

n−1
+ ...+ a1x+ a0

at a given point x0 and determine its worst-case efficiency class.

b. If the algorithm you designed is in Θ(n
2
), design a linear algorithm

for this problem.

c. Is it possible to design an algorithm with a better than linear efficiency

for this problem?

5. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

6. Is selection sort stable? (The definition of a stable sorting algorithm was

given in Section 1.3.)

7. Is it possible to implement selection sort for linked lists with the same

Θ(n
2
) efficiency as the array version?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

9. a. Prove that if bubble sort makes no exchanges on its pass through a list,

the list is sorted and the algorithm can be stopped.

1



Solution to Problem 4

!11

Solutions to Exercises 3.1

1. a. Euclid’s algorithm and the standard algorithm for finding the binary

representation of an integer are examples from the algorithms previously

mentioned in this book. There are, of course, many more examples in its

other chapters.

b. Solving nonlinear equations or computing definite integrals are ex-

amples of problems that cannot be solved exactly (except for special in-

stances) by any algorithm.

2. a. M(n) = n ≈ 2
b
where M(n) is the number of multiplications made by

the brute-force algorithm in computing a
n
and b is the number of bits in

the n’s binary representation. Hence, the efficiency is linear as a function

of n and exponential as a function of b.

b. Perform all the multiplications modulo m, i.e.,

a
i
modm = (a

i−1
modm · amodm)modm for i = 1, ..., n.

3. Problem 4 (computes

∑
n

1
i
2
): yes

Problem 5 (computes the range of an array’s values): yes

Problem 6 (checks whether a matrix is symmetric): yes

4. a. Here is a pseudocode of the most straightforward version:

Algorithm BruteForcePolynomialEvaluation(P [0..n], x)

//The algorithm computes the value of polynomial P at a given point x

//by the “highest-to-lowest term” brute-force algorithm

//Input: Array P [0..n] of the coefficients of a polynomial of degree n,

// stored from the lowest to the highest and a number x

//Output: The value of the polynomial at the point x

p ← 0.0

for i ← n downto 0do

power ← 1

for j ← 1to i do

power ← power ∗ x

p ← p+ P [i] ∗ power

return p

We will measure the input’s size by the polynomial’s degree n. The ba-

sic operation of this algorithm is a multiplication of two numbers; the

number of multiplications M(n) depends on the polynomial’s degree only.

5

This file contains the exercises, hints, and solutions for Chapter 3 of the

book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by ◃; those that might be difficult for a majority of students are

marked by " .

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an

application of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force

algorithm.

2. a. What is the efficiency of the brute-force algorithm for computing a
n

as a function of n? As a function of the number of bits in the binary

representation of n?

b. If you are to compute a
n
modm where a > 1and n is a large positive

integer, how would you circumvent the problem of a very large magnitude

of a
n
?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell

whether or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n
+ an−1x

n−1
+ ...+ a1x+ a0

at a given point x0 and determine its worst-case efficiency class.

b. If the algorithm you designed is in Θ(n
2
), design a linear algorithm

for this problem.

c. Is it possible to design an algorithm with a better than linear efficiency

for this problem?

5. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

6. Is selection sort stable? (The definition of a stable sorting algorithm was

given in Section 1.3.)

7. Is it possible to implement selection sort for linked lists with the same

Θ(n
2
) efficiency as the array version?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

9. a. Prove that if bubble sort makes no exchanges on its pass through a list,

the list is sorted and the algorithm can be stopped.

1



Solution to Problem 4

!12

Solutions to Exercises 3.1

1. a. Euclid’s algorithm and the standard algorithm for finding the binary

representation of an integer are examples from the algorithms previously

mentioned in this book. There are, of course, many more examples in its

other chapters.

b. Solving nonlinear equations or computing definite integrals are ex-

amples of problems that cannot be solved exactly (except for special in-

stances) by any algorithm.

2. a. M(n) = n ≈ 2
b
where M(n) is the number of multiplications made by

the brute-force algorithm in computing a
n
and b is the number of bits in

the n’s binary representation. Hence, the efficiency is linear as a function

of n and exponential as a function of b.

b. Perform all the multiplications modulo m, i.e.,

a
i
modm = (a

i−1
modm · amodm)modm for i = 1, ..., n.

3. Problem 4 (computes

∑
n

1
i
2
): yes

Problem 5 (computes the range of an array’s values): yes

Problem 6 (checks whether a matrix is symmetric): yes

4. a. Here is a pseudocode of the most straightforward version:

Algorithm BruteForcePolynomialEvaluation(P [0..n], x)

//The algorithm computes the value of polynomial P at a given point x

//by the “highest-to-lowest term” brute-force algorithm

//Input: Array P [0..n] of the coefficients of a polynomial of degree n,

// stored from the lowest to the highest and a number x

//Output: The value of the polynomial at the point x

p ← 0.0

for i ← n downto 0do

power ← 1

for j ← 1to i do

power ← power ∗ x

p ← p+ P [i] ∗ power

return p

We will measure the input’s size by the polynomial’s degree n. The ba-

sic operation of this algorithm is a multiplication of two numbers; the

number of multiplications M(n) depends on the polynomial’s degree only.

5

• size of input is degree of polynomial, n 
• number of multiplications depends 

only on n
• number of multiplications, M(n) ∈  ? 

A.   Θ(n)
B.   Θ(n2)

C.   Θ(n lg n)
D.   Θ(n3)



Ex 3.1, Problem 4

!13

This file contains the exercises, hints, and solutions for Chapter 3 of the

book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by ◃; those that might be difficult for a majority of students are

marked by " .

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an

application of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force

algorithm.

2. a. What is the efficiency of the brute-force algorithm for computing a
n

as a function of n? As a function of the number of bits in the binary

representation of n?

b. If you are to compute a
n
modm where a > 1and n is a large positive

integer, how would you circumvent the problem of a very large magnitude

of a
n
?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell

whether or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n
+ an−1x

n−1
+ ...+ a1x+ a0

at a given point x0 and determine its worst-case efficiency class.

b. If the algorithm you designed is in Θ(n
2
), design a linear algorithm

for this problem.

c. Is it possible to design an algorithm with a better than linear efficiency

for this problem?

5. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

6. Is selection sort stable? (The definition of a stable sorting algorithm was

given in Section 1.3.)

7. Is it possible to implement selection sort for linked lists with the same

Θ(n
2
) efficiency as the array version?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

9. a. Prove that if bubble sort makes no exchanges on its pass through a list,

the list is sorted and the algorithm can be stopped.

1



Solution to Problem 4

!14

Although it is not difficult to find the total number of multiplications in

this algorithm, we can count just the number of multiplications in the

algorithm’s inner-most loop to find the algorithm’s efficiency class:

M(n) =

n
∑

i=0

i
∑

j=1

1 =

n
∑

i=0

i ==

n(n+ 1)

2

∈ Θ(n
2
).

b. The above algorithm is very inefficient: we recompute powers of x again

and again as if there were no relationship among them. Thus, the obvious

improvement is based on computing consecutive powers more efficiently.

If we proceed from the highest term to the lowest, we could compute

x
i−1

by using x
i
but this would require a division and hence a special

treatment for x = 0. Alternatively, we can move from the lowest term to

the highest and compute x
i
by using x

i−1
. Since the second alternative

uses multiplications instead of divisions and does not require any special

treatment for x = 0, it is both more efficient and cleaner. It leads to the

following algorithm:

Algorithm BetterBruteForcePolynomialEvaluation(P [0..n], x)

//The algorithm computes the value of polynomial P at a given point x

//by the “lowest-to-highest term” algorithm

//Input: Array P [0..n] of the coefficients of a polynomial of degree n,

// from the lowest to the highest, and a number x

//Output: The value of the polynomial at the point x

p ← P [0]; power ← 1

for i ← 1 to n do

power ← power ∗ x

p ← p+ P [i] ∗ power

returnp

The number of multiplications here is

M(n) =

n
∑

i=1

2 = 2n

(while the number of additions is n), i.e., we have a linear algorithm.

Note: Horner’s Rule discussed in Section 6.5 needs only n multiplications

(and n additions) to solve this problem.

c. No, because any algorithm for evaluating an arbitrary polynomial of

degree n at an arbitrary point x must process all its n + 1 coefficients.

(Note that even when x = 1, p(x) = an+an−1+ ...+a1+a0, which needs

at least n additions to be computed correctly for arbitrary an, an−1, ..., a0.)

6



True or False?
! It is possible to design an algorithm 

with better-than-linear efficiency to 
calculate the value of a polynomial. 

!15

A.  True
B.  False



Ex 3.1, Problem 9

!16

! Is selection sort stable? 
" The definition of a stable sort was given in 

Levitin §1.3 

A. Yes, it is stable 

B. No, it is not stable



Ex 3.1, Problem 10

!17

! Is it possible to implement selection 
sort for a linked-list with the same 
Θ(n2) efficiency as for an array? 

A. Yes, it is possible 

B. No, it is not possible



BubbleSort

!18



BubbleSort

!18

• Is BubbleSort stable? 



BubbleSort

!18

• Is BubbleSort stable? 

A: Yes, it is stable              B: No, it is not stable



BubbleSort

!18

• Is BubbleSort stable? 



BubbleSort

!18

• Is BubbleSort stable? 

• Prove that, if BubbleSort makes no swaps on a pass 
through the array, then the array is sorted.



String Matching

!19



Applications:
Find all occurrences of a particular word in a 
given text 
" Searching for text in an editor 
" … 

Compare two strings to see how similar they 
are to one another … 
" Code diff-ing 
" DNA sequencing 
" … 

…
!20



Notation
Let A be a set of characters (the alphabet) 

The set of strings that consist of finite sequences 
of characters in A is written A* (the Kleene Star) 

For a string s, we’ll write: 
" s[j] for the jth character in s 
" |s| for the length of s 
" s[i..j] for the substring of s from s[i] to s[j] 
" s[..n] for the prefix s[1..n], and s[m..] for s[m..|s|] 
" ε for the empty string (example: s[1..0] = ε) 
" st for the concatenation of s with another string t

!21



Simple Complexities:
Assume that string is represented by an 
array of consecutive characters 
What’s the worst case running time for 
brute-force testing to determine: 

# whether s = t

!22



Simple Complexities:
Assume that string is represented by an 
array of consecutive characters 
What’s the worst case running time for 
brute-force testing to determine: 

# whether s = t

!22

A. O(1) 
B. O(|s|) 
C. O(|min(s, t)|) 
D. O(|s|2) 
E. None of the above



Simple Complexities:
Assume that string s is represented by an 
array of consecutive characters 

Worst case running time for computing 
s[i] ?

!23



Simple Complexities:
Assume that string s is represented by an 
array of consecutive characters 

Worst case running time for computing 
s[i] ?

!23

A. Θ(1) 
B. Θ(|s|) 
C. Θ(|min(|s|, i)|) 
D. Θ(i) 
E. None of the above



Simple Complexities:
Assume that strings are represented by 
arrays of consecutive characters 

Worst case running time for  
computing st ?

!24



Simple Complexities:
Assume that strings are represented by 
arrays of consecutive characters 

Worst case running time for  
computing st ?

!24

A. Θ(1) 
B. Θ(|s|) 
C. Θ(|min(s, t)|) 
D. Θ(|min(s, t)|2) 
E. None of the above



Simple Complexities:
Assume that string is represented by an 
array of consecutive characters 

Worst case running times for  
computing s[i..j]

!25



Simple Complexities:
Assume that string is represented by an 
array of consecutive characters 

Worst case running times for  
computing s[i..j]

!25

A. Θ(1) 
B. Θ(|s[i..j]|) 
C. Θ(j-i) 
D. Θ((j-i)2) 
E. None of the above



String Matching
Find all occurrences of a pattern string 
p in a text string t 

For example:

d a b r a c a l a m a za b r a c a o o

r a cr a c

!26



String Matching, formally
Given a text string, t, and a pattern 
string, p, of length m = |p|, find the 
set of all shifts s such that  
p = t[s+1..s+m]

d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

s=2

s=9
!27



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

!28



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

!28



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

!28



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c
…

!28



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c
…

!28

d a b r a c a l a m a za b r a c a o o

r a c



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

!29

t =

p =



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

!29

What's the asymptotic 
complexity of brute-
force matching?: 

t =

p =



Brute-force Matching Algorithm
d a b r a c a l a m a za b r a c a o o

r a c

d a b r a c a l a m a za b r a c a o o

r a c

!29

What's the asymptotic 
complexity of brute-
force matching?: 

A. Θ(1) 
B. Θ(|t|) 
C. Θ(|p|) 
D. Θ(|p|(|t|-|p|+1)) 
E. None of the above

t =

p =



Brute-force Matching Algorithm
match(t, p)
   m ← |p|
   n ← |t|
   results ← {}
   for s ← 0..n-m do
      if p == t[s+1 .. s+m] then
         results ← results ∪ {s}
   return results

!30



Brute-force Matching Algorithm
match(t, p)
   m ← |p|
   n ← |t|
   results ← {}
   for s ← 0..n-m do
      if p == t[s+1 .. s+m] then
         results ← results ∪ {s}
   return results

Asymptotic Complexity: 
Θ(m(n-m+1))

!30



Brute-force Matching Algorithm
match(t, p)
   m ← |p|
   n ← |t|
   results ← {}
   for s ← 0..n-m do
      if p == t[s+1 .. s+m] then
         results ← results ∪ {s}
   return results

Asymptotic Complexity: 
Θ(m(n-m+1))

!30

Cost of this test 
is O(m)



Can we do better?
Perhaps surprisingly: yes! 
Key insight: when a match fails, we 
learned something 
" Better algorithms in Chapter 7

!31


