CS 350 Algorithms and Complexity

Winter 2019

Lecture 6: Exhaustive Search Algorithms

Andrew P. Black

Department of Computer Science Portland State University

Brute Force

- A straightforward approach, usually based directly on the problem's statement and definitions of the concepts involved
- Examples:

Computing a^n (a > 0, n a nonnegative integer) by repeated multiplication

Computing *n*! by repeated multiplication

Multiplying two matrices following the definition

Searching for a key in a list sequentially

• Pattern: 001011 Text: 10010101100100101111010

• Pattern: 001011 Text: 10010101100100101111010

Pattern: 001011
 Text: 100101010100100101111010

• Pattern: 001011 Text: 10010101100100101111010

• Pattern: 001011 Text: 1001010110010101111010

• Pattern: 001011 Text: 1001010110010101111010

• Pattern: 001011 Text: 10010101100100101111010

• Pattern: 001011 Text: 100101011001010101111010

Pattern: 001011
 Text: 100101010100101111010

• Pattern: 001011 Text: 10010101100100101111010

Pattern: 001011
 Text: 100101011010011001111010

Pseudocode and Efficiency

Pseudocode and Efficiency

```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])
    //Implements brute-force string matching
    //Input: An array T[0..n - 1] of n characters representing a text and
            an array P[0..m - 1] of m characters representing a pattern
    11 -
    //Output: The index of the first character in the text that starts a
              matching substring or -1 if the search is unsuccessful
    \prod
    for i \leftarrow 0 to n - m do
        j \leftarrow 0
        while j < m and P[j] = T[i + j] do
             i \leftarrow i+1
        if j = m return i
    return -1
```


Pseudocode and Efficiency

```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])
    //Implements brute-force string matching
    //Input: An array T[0..n-1] of n characters representing a text and
            an array P[0.m-1] of m characters representing a pattern
    // .
    //Output: The index of the first character in the text that starts a
              matching substring or -1 if the search is unsuccessful
    \prod
    for i \leftarrow 0 to n - m do
        j \leftarrow 0
        while j < m and P[j] = T[i + j] do
             j \leftarrow j + 1
        if j = m return i
    return −1
```

Efficiency: A: O(n) B: O(m(n-m)) C: O(m) D: O(m²)

• Problem: Find the value of polynomial

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$ at a point $x = x_0$

• Problem: Find the value of polynomial

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$ at a point $x = x_0$

• Brute-force algorithm $p \leftarrow 0.0$

for $i \leftarrow n$ downto 0 do power $\leftarrow 1$ for $j \leftarrow 1$ to i do //compute x^i power \leftarrow power * x $p \leftarrow p + a[i] * power$ return p

• Problem: Find the value of polynomial

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$ at a point $x = x_0$

• Brute-force algorithm $p \leftarrow 0.0$ for $i \leftarrow n$ downto 0 do power $\leftarrow 1$ for $j \leftarrow 1$ to i do //compute x^i power \leftarrow power * x $p \leftarrow p + a[i] * power$

return p

• Efficiency:

• Problem: Find the value of polynomial

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$ at a point $x = x_0$

• Brute-force algorithm $p \leftarrow 0.0$ for $i \leftarrow n$ downto 0 do power $\leftarrow 1$ for $j \leftarrow 1$ to i do //compute x^i power \leftarrow power * x $p \leftarrow p + a[i] * power$

return p

• Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n³)

• We can do better by evaluating from right to left:

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

 $p \leftarrow a[0]$ power $\leftarrow 1$ for i $\leftarrow 1$ to n do power \leftarrow power * x $p \leftarrow p + a[i] *$ power return p

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

 $p \leftarrow a[0]$ power $\leftarrow 1$ for i $\leftarrow 1$ to n do power \leftarrow power * x $p \leftarrow p + a[i] *$ power return p

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

 $p \leftarrow a[0]$ power $\leftarrow 1$ for i $\leftarrow 1$ to n do power \leftarrow power * x $p \leftarrow p + a[i] *$ power return p

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

 $p \leftarrow a[0]$ power $\leftarrow 1$ for i $\leftarrow 1$ to n do power \leftarrow power * x $p \leftarrow p + a[i] *$ power return p

• Efficiency: A: O(n) B: $O(n^2)$ C: $O(\lg n)$ D: $O(n^3)$

Closest-Pair Problem

- Find the two closest points in a set of *n* points (in the two-dimensional Cartesian plane).
- Brute-force algorithm:
 - Compute the distance between every pair of distinct points
 - and return the indices of the points for which the distance is the smallest.

ALGORITHM *BruteForceClosestPoints*(*P*)

//Finds two closest points in the plane by brute force //Input: A list P of n ($n \ge 2$) points $P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)$ //Output: Indices *index1* and *index2* of the closest pair of points $dmin \leftarrow \infty$

for
$$i \leftarrow 1$$
 to $n - 1$ do

for $j \leftarrow i + 1$ to *n* do $d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt$ is the square root function if d < dmin

 $dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j$ return index1, index2

ALGORITHM *BruteForceClosestPoints(P)*

//Finds two closest points in the plane by brute force //Input: A list P of n ($n \ge 2$) points $P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)$ //Output: Indices *index1* and *index2* of the closest pair of points $dmin \leftarrow \infty$

for
$$i \leftarrow 1$$
 to $n - 1$ do

for $j \leftarrow i + 1$ to *n* do $d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt$ is the square root function if d < dmin $dmin \leftarrow d$; $index1 \leftarrow i$; $index2 \leftarrow j$

return *index*1, *index*2

• Efficiency:

ALGORITHM *BruteForceClosestPoints(P)*

//Finds two closest points in the plane by brute force //Input: A list P of n ($n \ge 2$) points $P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)$ //Output: Indices *index1* and *index2* of the closest pair of points $dmin \leftarrow \infty$

for
$$i \leftarrow 1$$
 to $n - 1$ **do**

for $j \leftarrow i + 1$ to *n* do $d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt$ is the square root function if d < dmin $dmin \leftarrow d$; $index1 \leftarrow i$; $index2 \leftarrow j$

return *index*1, *index*2

• Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n³)

ALGORITHM *BruteForceClosestPoints(P)*

//Finds two closest points in the plane by brute force //Input: A list P of n ($n \ge 2$) points $P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)$ //Output: Indices *index1* and *index2* of the closest pair of points $dmin \leftarrow \infty$

for
$$i \leftarrow 1$$
 to $n - 1$ do

for $j \leftarrow i + 1$ to n do $d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt$ is the square root function if d < dmin $dmin \leftarrow d$; $index1 \leftarrow i$; $index2 \leftarrow j$

return *index*1, *index*2

- Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n³)
- How to make it faster?

Problem:

If sqrt

ALGORITHM BruteForceClosestPoints(P) //Finds two closest points in the plane by brute force //Input: A list P of n ($n \ge 2$) points $P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)$ //Output: Indices index1 and index2 of the closest pair of points dmin $\leftarrow \infty$ for $i \leftarrow 1$ to n - 1 do for $j \leftarrow i + 1$ to n do $d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2)$ //sqrt is the square root function if d < dmin $dmin \leftarrow d$; index1 $\leftarrow i$; index2 $\leftarrow j$ return index1, index2

is 10 x slower than × and +, by how much will *BruteForceClosestPoints* speed up when we take out the *sqrt* ?

- A. ~ 10 times
- B. ~ 100 times
- C. ~ 1000 times

Problem:

Can you design a more efficient algorithm than the one based on the brute-force strategy to solve the closest-pair problem for *n* points x_1, \ldots, x_n on the real line?

Brute Force Closest Pair

• An Example of a particular kind of Brute Force Algorithm based on:

Exhaustive search

Exhaustive Search

- A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.
- Method:
 - generate a list of all potential solutions to the problem in a systematic manner (see algorithms in Sec. 4.3)
 - evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far
 - when search ends, announce the solution(s) found

Example 1: Traveling Salesman Problem

- Given *n* cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city
- Alternatively: find shortest Hamiltonian circuit in a weighted connected graph
- Example:

TSP by Exhaustive Search

Tour

- a→b→c→d→a
- a→b→d→c→a
- a→c→b→d→a
- a→c→d→b→a
- a→d→b→c→a
- a→d→c→b→a
- More tours?
- Less tours?

Efficiency:

- 2+3+7+5 = 17
- 2+4+7+8 = 21
- 8+3+4+5 = 20
- 8+7+4+2 = 21
- 5+4+3+8 = 20

5+7+3+2 = 17

TSP by Exhaustive Search

Tour

- a→b→c→d→a
- a→b→d→c→a
- a→c→b→d→a
- a→c→d→b→a
- a→d→b→c→a
- a→d→c→b→a
- More tours?
- Less tours?
- Efficiency:

- 2+3+7+5 = 17
- 2+4+7+8 = 21
- 8+3+4+5 = 20
- 8+7+4+2 = 21
- 5+4+3+8 = 20

5+7+3+2 = 17

A: O(n) B: O(n²) C: O(n³)

D: O((n-1)!) E: O(n!)

Example 2: Knapsack Problem

- Given *n* items:
 - ▶ weights: w₁ w₂ ... w_n
 - ▶ values: v₁ v₂ ... v_n
 - a knapsack of capacity W
- Find most valuable subset of the items that fit into the knapsack
- Example: Knapsack capacity W=16

item	weight	value
1.	2	\$20
2.	5	\$30
3.	10	\$50
4.	5	\$10

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	infeasible
{1,2,4}	12	\$60
{1,3,4}	17	infeasible
{2,3,4}	20	infeasible
{1,2,3,4}	22	infeasible

item	weight	value
1.	2	\$20
2.	5	\$30
3.	10	\$50
4.	5	\$10

Knapsack capacity W=16

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	infeasible
{1,2,4}	12	\$60
{1,3,4}	17	infeasible
{2,3,4}	20	infeasible
{1,2,3,4}	22	infeasible

item	weight	value
1.	2	\$20
2.	5	\$30
3.	10	\$50
4.	5	\$10

Knapsack capacity W=16

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	infeasible
{1,2,4}	12	\$60
{1,3,4}	17	infeasible
{2,3,4}	20	infeasible
{1,2,3,4}	22	infeasible

item	weight	value
1.	2	\$20
2.	5	\$30
3.	10	\$50
4.	5	\$10

Knapsack capacity W=16

Efficiency?
 A: O(n²)
 B: O(2ⁿ)
 C: O(n!)
 D: O((n-1)!)

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

1 300				
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Job 1 Job 2 Job 3 Job 4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

	U	Job 1	Job 2	Job 3	Job 4
<a,< th=""><th>Person 1</th><th>9</th><th>2</th><th>7</th><th>8</th></a,<>	Person 1	9	2	7	8
a 2,	Person 2	6	4	3	7
<i>a</i> 3,	Person 3	5	8	1	8
a 4>	Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

	L.	Job 1	Job 2	Job 3	Job 4
<2,	Person 1	9	2	7	8
4,	Person 2	6	4	3	7
3,	Person 3	5	8	1	8
1>	Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

• Consider the problem in terms of the Cost Matrix C $C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$

• Consider the problem in terms of the Cost Matrix C

Assignment (col.#s)

Total Cost

1, 2, 3, 4 9+4+1+4=18

1, 2, 4, 3 9+4+8+9=30

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

 Consider the problem in terms of the Cost Matrix C

Assignment (col.#s)

Total Cost 1, 2, 3, 4 9+4+1+4=18 1, 2, 4, 3 9+4+8+9=30 1, 3, 2, 4 9+3+8+4=24

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

• Consider the problem in terms of the Cost Matrix C

Assignment (col.#s) Total Cost

1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26

• Consider the problem in terms of the Cost Matrix C

Assignment (col.#s) Total Cost

1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26
1, 4, 2, 3	9+7+8+9=33

• Consider the problem in terms of the Cost Matrix C

Assignment (col.#s) Total Cost

1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26
1, 4, 2, 3	9+7+8+9=33
1, 4, 3, 2	9+7+1+6=23

• Consider the problem in terms of the Cost Matrix C

Assignment (col.#s) Total Cost

1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26
1, 4, 2, 3	9+7+8+9=33
1, 4, 3, 2	9+7+1+6=23

 $C = \left[\begin{array}{rrrrr} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{array} \right]$

etc.

• Consider the problem in terms of the Cost Matrix C

Assignment (col.#s) Total Cost

1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26
1, 4, 2, 3	9+7+8+9=33
1, 4, 3, 2	9+7+1+6=23

 $C = \begin{vmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{vmatrix}$

etc.

How many assignments are there?

• Consider the problem in terms of the Cost Matrix C

Assignment (col.#s) Total Cost

1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26
1, 4, 2, 3	9+7+8+9=33
1, 4, 3, 2	9+7+1+6=23

etc.

How many assignments are there?

A: O(n) B: $O(n^2)$ C: $O(n^3)$ D: O(n!)

18

- What is a Convex Hull?
- A. A bad design for a boat
- B. A good design for a boat
- C. A set of points without any concavities
- D. None of the above

- What is a Convex Set?
- A. A bad design for a boat
- B. A good design for a boat
- C. A set of points without any concavities
- D. None of the above

A set of points C is *convex* iff \forall a, b \in C, all points on the line segment ab are entirely in C

• Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
 - Barricading sleeping tigers

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
 - Barricading sleeping tigers
 - Rubber-band around nails

Applications of Convex Hull

• Collision-detection in video games

Applications of Convex Hull

- Collision-detection in video games
- Robot motion planning

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

- write it down!
 - Assume that you have a method for ascertaining if a point *r* is on a line *pq*, on the –ve side of line *pq*, or on the +ve side of *pq*

- write it down!
 - Assume that you have a method for ascertaining if a point *r* is on a line *pq*, on the –ve side of line *pq*, or on the +ve side of *pq*

- write it down!
 - Assume that you have a method for ascertaining if a point r is on a line pq, on the –ve side of line pq, or on the +ve side of pq

- write it down!
 - Assume that you have a method for ascertaining if a point r is on a line pq, on the –ve side of line pq, or on the +ve side of pq


```
edgeSet \leftarrow {}
P: for p in S do:
 Q: for q in S, q \neq p do:
     goodSide ← 0
     R: for r in S, r \neq p \land r \neq q do:
        side ← r.whichSideOfLine(pq)
        if side \neq 0 then
           if goodSide = 0 then goodSide ← side
           if goodSide \neq side then exit Q.
     edgeSet ← edgeSet ∪ {pq}
```


Final Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time *only* on *very small* instances
- In some cases, there are *much* better alternatives!
 - Euler circuits
 - shortest paths
 - minimum spanning tree
 - assignment problem
- However, in many cases, exhaustive search (or a variation) is the only known way to find an exact solution

Searching in Graphs

Exhaustively search a graph, by traversing the edges, visiting every node <u>once</u>

Two approaches:

- Depth-first search and
- Breadth-first search

ALGORITHM DFS(G)

//Implements a depth-first search traversal of a given graph

```
//Input: Graph G = \langle V, E \rangle
```

//Output: Graph G with its vertices marked with consecutive integers

```
// in the order they are first encountered by the DFS traversal mark each vertex in V with 0 as a mark of being "unvisited"
```

```
count \leftarrow 0
```

for each vertex v in V do

if v is marked with 0

dfs(v)

dfs(v)

```
//visits recursively all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are encountered
//via global variable count
count \leftarrow count + 1; mark v with count
for each vertex w in V adjacent to v do
if w is marked with 0
dfs(w)
```


dfs(1) dfs(2)

Complexity?

- What's the basic operation?
 - finding all the Vertices in the graph?
 - making a mark?
 - checking a mark?
 - finding all the neighbors of a node?
- Cost depends on the data structure used to represent the graph

Two choices of data structure:

- Adjacency Matrix: $\Theta(|V|^2)$
- Adjacency List: $\Theta(|V| + |E|)$

Applications

- Checking for connectivity
 - ► How?
- Checking for Cycles
 - ► How?

