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Brute Force
• A straightforward approach, usually based 

directly on the problem’s statement and 
definitions of the concepts involved

• Examples:
Computing an (a > 0, n a nonnegative integer) by 
repeated multiplication
Computing n! by repeated multiplication
Multiplying two matrices following the definition
Searching for a key in a list sequentially
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Examples of Brute-Force String Matching 

• Pattern:      001011                                                                                 
Text: 10010101101001100101111010  
                                        

• Pattern: happy                                                                                       
Text: It is never too late to have a happy 
childhood.

•
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Pseudocode and Efficiency  
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Pseudocode and Efficiency  

Efficiency:  A: O(n)  B: O(m(n-m))   C: O(m)  D: O(m2)
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Brute-Force Polynomial Evaluation
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Brute-Force Polynomial Evaluation
• Problem: Find the value of  polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0  at a point x = x0
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return p 

 5



Brute-Force Polynomial Evaluation
• Problem: Find the value of  polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0  at a point x = x0

• Brute-force algorithm

• Efficiency:

p ← 0.0
for i ← n downto 0 do
      power ← 1
      for  j ← 1 to i do  //compute xi  
             power ← power ∗ x
      p ← p + a[i] ∗ power  
return p 

 5



Brute-Force Polynomial Evaluation
• Problem: Find the value of  polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0  at a point x = x0

• Brute-force algorithm

• Efficiency:

p ← 0.0
for i ← n downto 0 do
      power ← 1
      for  j ← 1 to i do  //compute xi  
             power ← power ∗ x
      p ← p + a[i] ∗ power  
return p 

 5

A: O(n)  B: O(n2)   C: O(lg n)  D: O(n3)



Polynomial Evaluation: Improvement
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Polynomial Evaluation: Improvement

• We can do better by evaluating from right to 
left:
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Closest-Pair Problem

• Find the two closest points in a set of n 
points (in the two-dimensional 
Cartesian plane).

• Brute-force algorithm:
‣ Compute the distance between every pair of 

distinct points
° and return the indices of the points for which the 

distance is the smallest.
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Closest-Pair Brute-Force Algorithm (cont.)
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Closest-Pair Brute-Force Algorithm (cont.)

•  Efficiency:  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Closest-Pair Brute-Force Algorithm (cont.)

•  Efficiency:  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A: O(n)  B: O(n2)   C: O(lg n)  D: O(n3)



Closest-Pair Brute-Force Algorithm (cont.)

•  Efficiency:  

•  How to make it faster?
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A: O(n)  B: O(n2)   C: O(lg n)  D: O(n3)



Problem:

If sqrt 
is 10 x slower than × and +, by how much 
will BruteForceClosestPoints speed up when 
we take out the sqrt ?

A.   ~ 10 times
B.   ~  100 times
C.   ~  1000 times
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Problem:
Can you design a more efficient algorithm 
than the one based on the brute-force 
strategy to solve the closest-pair problem 
for n points x1, … , xn on the real line?
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Brute Force Closest Pair

• An Example of a particular kind of Brute 
Force Algorithm based on: 
 
Exhaustive search
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Exhaustive Search
• A brute force solution to a problem involving 

search for an element with a special property, 
usually among combinatorial objects such as 
permutations, combinations, or subsets of a set.

• Method:
‣ generate a list of all potential solutions to the problem in a 

systematic manner (see algorithms in Sec. 4.3)

‣ evaluate potential solutions one by one, disqualifying 
infeasible ones and, for an optimization problem, keeping 
track of the best one found so far

‣ when search ends, announce the solution(s) found
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Example 1: Traveling Salesman Problem 

• Given n cities with known distances between each pair, find 
the shortest tour that passes through all the cities exactly 
once before returning to the starting city

• Alternatively: find shortest Hamiltonian circuit  in a weighted 
connected graph

• Example:

a b

c d

8

2

7

5 3
4
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TSP by Exhaustive Search
        Tour                                          Cost                   
a→b→c→d→a                         2+3+7+5 = 17
a→b→d→c→a                         2+4+7+8 = 21
a→c→b→d→a                         8+3+4+5 = 20
a→c→d→b→a                         8+7+4+2 = 21
a→d→b→c→a                         5+4+3+8 = 20
a→d→c→b→a                         5+7+3+2 = 17

More tours?
Less tours?
Efficiency:  
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a b

c d

8

2

7

5 3
4

A: O(n) 
B: O(n2)    
C: O(n3)   

D: O((n-1)!) 
E: O(n!)



Example 2: Knapsack Problem
• Given n items:

‣ weights:    w1    w2  …  wn

‣ values:       v1     v2  …  vn

‣ a knapsack of capacity W 

• Find most valuable subset of the items that fit into the knapsack

• Example:  Knapsack capacity W=16
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item        weight       value

1.          2              $20

2.          5              $30

3.        10              $50

4.          5              $10



Knapsack Problem by Exhaustive Search
Subset   Total weight     Total value
      {1}               2                  $20
      {2}               5                  $30
      {3}             10                  $50
      {4}               5                  $10
   {1,2}               7                  $50
   {1,3}             12                  $70
   {1,4}              7                   $30
   {2,3}             15                  $80
   {2,4}             10                  $40
   {3,4}             15                  $60
{1,2,3}             17                  infeasible
{1,2,4}             12                  $60
{1,3,4}             17                  infeasible
{2,3,4}             20                  infeasible

  {1,2,3,4}          22                  infeasible
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item        weight       value

1.          2              $20

2.          5              $30

3.        10              $50

4.          5              $10

Knapsack capacity W=16

• Efficiency?  
A: O(n2)    
B: O(2n)   
C: O(n!) 
D: O((n-1)!)



Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one 
person per job.  The cost of assigning person p to job j is 
C[ i, j ].  Find an assignment that minimizes the total cost.
             Job 1   Job 2   Job 3  Job 4

Person 1      9       2         7          8

Person 2      6       4         3          7

Person 3      5       8         1          8

Person 4      7       6         9          4

• Algorithmic Plan: Generate all legitimate assignments, compute  
                            their costs, and select the cheapest one.

• How many assignments are there …
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Assignment Problem by Exhaustive Search
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•Consider the problem in terms of the  
Cost Matrix C

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775



•Consider the problem in terms of the  
Cost Matrix C
   Assignment (col.#s)   Total Cost 
           1, 2, 3, 4 9+4+1+4=18
           1, 2, 4, 3 9+4+8+9=30
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Convex Hulls
• What is a Convex Hull?

A. A bad design for a boat
B. A good design for a boat
C. A set of points without any concavities
D. None of the above
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Convex Hulls
A set of points C is convex iff ∀ a, b ∈ C, all 
points on the line segment ab are entirely in C
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Convex Hulls
• Given an arbitrary set of points S, the 

convex hull of S is the smallest convex 
set that contain all the points in S.
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Convex Hulls
• Given an arbitrary set of points S, the 

convex hull of S is the smallest convex 
set that contain all the points in S.
‣ Barricading sleeping tigers

‣ Rubber-band around nails
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Applications of Convex Hull
• Collision-detection in video games

• Robot motion planning
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Applications of Convex Hull
• Collision-detection in video games

• Robot motion planning

 23



Theorems about Convex Hulls
• The convex hull of a set S is a convex 

polygon all of whose vertices are at some 
of the points of S.

• A line segment ab is part of the boundary 
of the convex hull of S iff all the points of 
S lie on the same side of ab (or on ab)  

 24
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Brute-Force Algorithm for Convex Hull

• write it down!
‣ Assume that you have a method for 

ascertaining if a point r is on a line pq, on the 
−ve side of line pq, or on the +ve side of pq
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Brute-Force Algorithm for Convex Hull

edgeSet ← { } 
P: for p in S do: 

Q: for q in S, q ≠ p do: 
goodSide ← 0 
R: for r in S, r≠p ∧ r≠q do: 

side ← r.whichSideOfLine(pq) 
if  side ≠ 0 then  

if  goodSide = 0 then goodSide ← side  
if  goodSide ≠ side then exit Q. 

edgeSet ← edgeSet ∪ {pq} 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Final Comments on Exhaustive Search

• Exhaustive-search algorithms run in a realistic 
amount of time only on very small instances 

• In some cases, there are much better alternatives! 
‣ Euler circuits

‣ shortest paths

‣ minimum spanning tree

‣ assignment problem

• However, in many cases, exhaustive search (or a 
variation) is the only known way to find an exact 
solution

 27



Searching in Graphs

Exhaustively search a graph, by traversing 
the edges, visiting every node once
Two approaches:
‣ Depth-first search and

‣ Breadth-first search

 28
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FIGURE 3.10 Example of a DFS traversal. (a) Graph. (b) Traversal’s stack (the first
subscript number indicates the order in which a vertex is visited, i.e.,
pushed onto the stack; the second one indicates the order in which it
becomes a dead-end, i.e., popped off the stack). (c) DFS forest with the
tree and back edges shown with solid and dashed lines, respectively.

visit of the vertex starts), and we pop a vertex off the stack when it becomes a
dead end (i.e., the visit of the vertex ends).

It is also very useful to accompany a depth-first search traversal by construct-
ing the so-called depth-first search forest. The starting vertex of the traversal
serves as the root of the first tree in such a forest. Whenever a new unvisited vertex
is reached for the first time, it is attached as a child to the vertex from which it is
being reached. Such an edge is called a tree edge because the set of all such edges
forms a forest. The algorithm may also encounter an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree).
Such an edge is called a back edge because it connects a vertex to its ancestor,
other than the parent, in the depth-first search forest. Figure 3.10 provides an ex-
ample of a depth-first search traversal, with the traversal stack and corresponding
depth-first search forest shown as well.

Here is pseudocode of the depth-first search.

ALGORITHM DFS(G)

//Implements a depth-first search traversal of a given graph
//Input: Graph G = ⟨V, E⟩
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count ← 0
for each vertex v in V do

if v is marked with 0
dfs(v)124 Brute Force and Exhaustive Search

dfs(v)

//visits recursively all the unvisited vertices connected to vertex v

//by a path and numbers them in the order they are encountered
//via global variable count

count ← count + 1; mark v with count

for each vertex w in V adjacent to v do
if w is marked with 0

dfs(w)

The brevity of the DFS pseudocode and the ease with which it can be per-
formed by hand may create a wrong impression about the level of sophistication
of this algorithm. To appreciate its true power and depth, you should trace the
algorithm’s action by looking not at a graph’s diagram but at its adjacency matrix
or adjacency lists. (Try it for the graph in Figure 3.10 or a smaller example.)

How efficient is depth-first search? It is not difficult to see that this algorithm
is, in fact, quite efficient since it takes just the time proportional to the size of the
data structure used for representing the graph in question. Thus, for the adjacency
matrix representation, the traversal time is in !(|V |2), and for the adjacency list
representation, it is in !(|V | + |E|) where |V | and |E| are the number of the
graph’s vertices and edges, respectively.

A DFS forest, which is obtained as a by-product of a DFS traversal, deserves a
few comments, too. To begin with, it is not actually a forest. Rather, we can look at
it as the given graph with its edges classified by the DFS traversal into two disjoint
classes: tree edges and back edges. (No other types are possible for a DFS forest
of an undirected graph.) Again, tree edges are edges used by the DFS traversal to
reach previously unvisited vertices. If we consider only the edges in this class, we
will indeed get a forest. Back edges connect vertices to previously visited vertices
other than their immediate predecessors in the traversal. They connect vertices to
their ancestors in the forest other than their parents.

A DFS traversal itself and the forest-like representation of the graph it pro-
vides have proved to be extremely helpful for the development of efficient al-
gorithms for checking many important properties of graphs.3 Note that the DFS
yields two orderings of vertices: the order in which the vertices are reached for the
first time (pushed onto the stack) and the order in which the vertices become dead
ends (popped off the stack). These orders are qualitatively different, and various
applications can take advantage of either of them.

Important elementary applications of DFS include checking connectivity and
checking acyclicity of a graph. Since dfs halts after visiting all the vertices con-

3. The discovery of several such applications was an important breakthrough achieved by the two
American computer scientists John Hopcroft and Robert Tarjan in the 1970s. For this and other
contributions, they were given the Turing Award—the most prestigious prize in the computing field
[Hop87, Tar87].
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Complexity?

• What's the basic operation?
‣ finding all the Vertices in the graph?

‣ making a mark?

‣ checking a mark?

‣ finding all the neighbors of a node?

• Cost depends on the data structure 
used to represent the graph  

 47



Two choices of data structure:

• Adjacency Matrix:  Θ(  V 2 )

• Adjacency List: Θ( V   +   E  )

 48
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Applications

• Checking for connectivity
‣ How?

• Checking for Cycles
‣ How?
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