CS 350 Algorithms and Complexity

Winter 2019
Lecture 6: Exhaustive Search Algorithms

Andrew P. Black

Department of Computer Science
Portland State University

Brute Force

- A straightforward approach, usually based directly on the problem's statement and definitions of the concepts involved
- Examples:

Computing a^{n} ($a>0, n$ a nonnegative integer) by repeated multiplication

Computing n ! by repeated multiplication
Multiplying two matrices following the definition
Searching for a key in a list sequentially

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Examples of Brute-Force String Matching

- Pattern: 001011

Text: 10010101101001100101111010

- Pattern: happy

Text: It is never too late to have a happy childhood.

Pseudocode and Efficiency

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch (T[0..n-1], $P[0 . . m-1])$

//Implements brute-force string matching

//Input: An array $T[0 . . n-1]$ of n characters representing a text and
$/ / \quad$ an array $P[0 . . m-1]$ of m characters representing a pattern
//Output: The index of the first character in the text that starts a
// matching substring or -1 if the search is unsuccessful
for $i \leftarrow 0$ to $n-m$ do

```
    \(j \leftarrow 0\)
    while \(j<m\) and \(P[j]=T[i+j]\) do
        \(j \leftarrow j+1\)
        if \(j=m\) return \(i\)
return -1
```


Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch (T[0..n-1], $P[0 . . m-1])$
//Implements brute-force string matching
//Input: An array $T[0 . . n-1]$ of n characters representing a text and // an array $P[0 . . m-1]$ of m characters representing a pattern //Output: The index of the first character in the text that starts a
// matching substring or -1 if the search is unsuccessful
for $i \leftarrow 0$ to $n-m$ do

```
    \(j \leftarrow 0\)
    while \(j<m\) and \(P[j]=T[i+j]\) do
        \(j \leftarrow j+1\)
    if \(j=m\) return \(i\)
return -1
```

Efficiency: A: O(n) B: O(m(n-m)) C: O(m) D: O(m²)

Brute-Force Polynomial Evaluation

Brute-Force Polynomial Evaluation

- Problem: Find the value of polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0} \text { at a point } x=x_{0}
$$

Brute-Force Polynomial Evaluation

- Problem: Find the value of polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0} \text { at a point } x=x_{0}
$$

- Brute-force algorithm $\mathrm{p} \leftarrow 0.0$ for $\mathrm{i} \leftarrow \mathrm{n}$ downto 0 do power $\leftarrow 1$
for $\mathrm{j} \leftarrow 1$ to ido //compute x^{i}
power \leftarrow power $* \mathrm{x}$
$\mathrm{p} \leftarrow \mathrm{p}+\mathrm{a}[\mathrm{i}] *$ power
return p

Brute-Force Polynomial Evaluation

- Problem: Find the value of polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0} \text { at a point } x=x_{0}
$$

- Brute-force algorithm $\mathrm{p} \leftarrow 0.0$ for $\mathrm{i} \leftarrow \mathrm{n}$ downto 0 do power $\leftarrow 1$
for $\mathrm{j} \leftarrow 1$ to ido //compute x^{i}
power \leftarrow power $*$ x
$\mathrm{p} \leftarrow \mathrm{p}+\mathrm{a}[\mathrm{i}] *$ power
return p
- Efficiency:

Brute-Force Polynomial Evaluation

- Problem: Find the value of polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0} \text { at a point } x=x_{0}
$$

- Brute-force algorithm $\mathrm{p} \leftarrow 0.0$

$$
\text { for } \mathrm{i} \leftarrow \mathrm{n} \text { downto } 0 \text { do }
$$

$$
\text { power } \leftarrow 1
$$

$$
\text { for } \mathrm{j} \leftarrow 1 \text { to i do //compute } x^{i}
$$

$$
\text { power } \leftarrow \text { power } * x
$$

$$
\mathrm{p} \leftarrow \mathrm{p}+\mathrm{a}[\mathrm{i}] * \text { power }
$$

return p

- Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n³)

Polynomial Evaluation: Improvement

Polynomial Evaluation: Improvement

- We can do better by evaluating from right to left:

Polynomial Evaluation: Improvement

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

Polynomial Evaluation: Improvement

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

Polynomial Evaluation: Improvement

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

$$
\begin{aligned}
& \mathrm{p} \leftarrow \mathrm{a}[0] \\
& \text { power } \leftarrow 1 \\
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \quad \text { power } \leftarrow \text { power } * \mathrm{x} \\
& \quad \mathrm{p} \leftarrow \mathrm{p}+\mathrm{a}[\mathrm{i}] * \text { power } \\
& \text { return } \mathrm{p}
\end{aligned}
$$

Polynomial Evaluation: Improvement

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

$$
\begin{aligned}
& \mathrm{p} \leftarrow \mathrm{a}[0] \\
& \text { power } \leftarrow 1 \\
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \quad \text { power } \leftarrow \text { power } * \mathrm{x} \\
& \quad \mathrm{p} \leftarrow \mathrm{p}+\mathrm{a}[\mathrm{i}] * \text { power } \\
& \text { return } \mathrm{p}
\end{aligned}
$$

Polynomial Evaluation: Improvement

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

$$
\begin{aligned}
& \mathrm{p} \leftarrow \mathrm{a}[0] \\
& \text { power } \leftarrow 1 \\
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \quad \text { power } \leftarrow \text { power } * \mathrm{x} \\
& \quad \mathrm{p} \leftarrow \mathrm{p}+\mathrm{a}[\mathrm{i}] * \text { power } \\
& \text { return } \mathrm{p}
\end{aligned}
$$

- Efficiency:

Polynomial Evaluation: Improvement

- We can do better by evaluating from right to left:
- Better brute-force algorithm:

$$
\begin{aligned}
& \mathrm{p} \leftarrow \mathrm{a}[0] \\
& \text { power } \leftarrow 1 \\
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \quad \text { power } \leftarrow \text { power } * \mathrm{x} \\
& \quad \mathrm{p} \leftarrow \mathrm{p}+\mathrm{a}[\mathrm{i}] * \text { power } \\
& \text { return } \mathrm{p}
\end{aligned}
$$

- Efficiency: A: O(n) B: O(n²) C: O(lgn) D: O(n³)

Closest-Pair Problem

- Find the two closest points in a set of n points (in the two-dimensional Cartesian plane).
- Brute-force algorithm:
- Compute the distance between every pair of distinct points
- and return the indices of the points for which the distance is the smallest.

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)
//Finds two closest points in the plane by brute force
$/ /$ Input: A list P of $n(n \geq 2)$ points $P_{1}=\left(x_{1}, y_{1}\right), \ldots, P_{n}=\left(x_{n}, y_{n}\right)$
//Output: Indices index1 and index2 of the closest pair of points
$d \min \leftarrow \infty$
for $i \leftarrow 1$ to $n-1$ do
for $j \leftarrow i+1$ to n do
$d \leftarrow \operatorname{sqrt}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) / / s q r t$ is the square root function
if $d<d$ min
d min $\leftarrow d$; index $1 \leftarrow i$; index $2 \leftarrow j$
return index1, index2

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)
//Finds two closest points in the plane by brute force
$/ /$ Input: A list P of $n(n \geq 2)$ points $P_{1}=\left(x_{1}, y_{1}\right), \ldots, P_{n}=\left(x_{n}, y_{n}\right)$
//Output: Indices index1 and index2 of the closest pair of points
$d \min \leftarrow \infty$
for $i \leftarrow 1$ to $n-1$ do
for $j \leftarrow i+1$ to n do
$d \leftarrow \operatorname{sqrt}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) / / s q r t$ is the square root function
if $d<d$ min
d min $\leftarrow d$; index $1 \leftarrow i$; index $2 \leftarrow j$
return index1, index2

- Efficiency:

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)
//Finds two closest points in the plane by brute force
$/ /$ Input: A list P of $n(n \geq 2)$ points $P_{1}=\left(x_{1}, y_{1}\right), \ldots, P_{n}=\left(x_{n}, y_{n}\right)$
//Output: Indices index1 and index 2 of the closest pair of points
$d \min \leftarrow \infty$
for $i \leftarrow 1$ to $n-1$ do
for $j \leftarrow i+1$ to n do
$d \leftarrow \operatorname{sqrt}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) / / s q r t$ is the square root function
if $d<d \min$
d min $\leftarrow d$; index $1 \leftarrow i$; index $2 \leftarrow j$
return index1, index2

- Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n³)

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)
//Finds two closest points in the plane by brute force
$/ /$ Input: A list P of $n(n \geq 2)$ points $P_{1}=\left(x_{1}, y_{1}\right), \ldots, P_{n}=\left(x_{n}, y_{n}\right)$
//Output: Indices index1 and index 2 of the closest pair of points
$d \min \leftarrow \infty$
for $i \leftarrow 1$ to $n-1$ do
for $j \leftarrow i+1$ to n do
$d \leftarrow \operatorname{sqrt}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) / / s q r t$ is the square root function
if $d<d \min$
d min $\leftarrow d$; index $1 \leftarrow i$; index $2 \leftarrow j$
return index1, index2

- Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n $\left.{ }^{3}\right)$
- How to make it faster?

ALGORITHM BruteForceClosestPoints (P)

Problem:

//Finds two closest points in the plane by brute force
$/ /$ Input: A list P of $n(n \geq 2)$ points $P_{1}=\left(x_{1}, y_{1}\right), \ldots, P_{n}=\left(x_{n}, y_{n}\right)$
//Output: Indices index 1 and index 2 of the closest pair of points
dmin $\leftarrow \infty$
for $i \leftarrow 1$ to $n-1$ do
for $j \leftarrow i+1$ to n do
$d \leftarrow \operatorname{sqrt}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) / / s q r t$ is the square root function if $d<d$ min
d min $\leftarrow d$; index $1 \leftarrow i$; index $2 \leftarrow j$
return index 1 , index 2
If $s q r t$
is $10 \times$ slower than \times and + , by how much
will BruteForceClosestPoints speed up when we take out the sqrt?
A. ~ 10 times
B. ~ 100 times
C. ~ 1000 times

Problem:

Can you design a more efficient algorithm than the one based on the brute-force strategy to solve the closest-pair problem for n points x_{1}, \ldots, x_{n} on the real line?

Brute Force Closest Pair

- An Example of a particular kind of Brute Force Algorithm based on:

Exhaustive search

Exhaustive Search

- A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.
- Method:
- generate a list of all potential solutions to the problem in a systematic manner (see algorithms in Sec. 4.3)
- evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far
- when search ends, announce the solution(s) found

Example 1: Traveling Salesman Problem

- Given n cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city
- Alternatively: find shortest Hamiltonian circuit in a weighted connected graph
- Example:

TSP by Exhaustive Search

Tour
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$
$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$
$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$
$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$
$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$
More tours?
Less tours?
Efficiency:
Cost
$2+3+7+5=17$
$2+4+7+8=21$
$8+3+4+5=20$
$8+7+4+2=21$
$5+4+3+8=20$
$5+7+3+2=17$

TSP by Exhaustive Search

Tour
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$
$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$
$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$
$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$
$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$
More tours?
Less tours?
Efficiency:

Cost
$2+3+7+5=17$
$2+4+7+8=21$
$8+3+4+5=20$
$8+7+4+2=21$
$5+4+3+8=20$

$$
5+7+3+2=17
$$

A: $O(n)$
B: $O\left(n^{2}\right)$
C: $O\left(n^{3}\right)$
D: $O((n-1)!)$
$\mathrm{E}: \mathrm{O}(\mathrm{n}!)$

Example 2: Knapsack Problem

- Given n items:
- weights: $\mathrm{W}_{1} \quad \mathrm{~W}_{2} \ldots \mathrm{~W}_{\mathrm{n}}$
- values: $\mathrm{v}_{1} \quad \mathrm{~V}_{2} \ldots \mathrm{~V}_{\mathrm{n}}$
- a knapsack of capacity W
- Find most valuable subset of the items that fit into the knapsack
- Example: Knapsack capacity W=16

item	weight	value
1.	2	$\$ 20$
2.	5	$\$ 30$
3.	10	$\$ 50$
4.	5	$\$ 10$

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
$\{1\}$	2	$\$ 20$
$\{2\}$	5	$\$ 30$
$\{3\}$	10	$\$ 50$
$\{4\}$	5	$\$ 10$
$\{1,2\}$	7	$\$ 50$
$\{1,3\}$	12	$\$ 70$
$\{1,4\}$	7	$\$ 30$
$\{2,3\}$	15	$\$ 80$
$\{2,4\}$	10	$\$ 40$
$\{3,4\}$	15	$\$ 60$
$\{1,2,3\}$	17	infeasible
$\{1,2,4\}$	12	$\$ 60$
$\{1,3,4\}$	17	infeasible
$\{2,3,4\}$	20	infeasible
$\{1,2,3,4\}$	22	infeasible

item	weight	value
1.	2	$\$ 20$
2.	5	$\$ 30$
3.	10	$\$ 50$
4.	5	$\$ 10$

Knapsack capacity W=16

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
$\{1\}$	2	$\$ 20$
$\{2\}$	5	$\$ 30$
$\{3\}$	10	$\$ 50$
$\{4\}$	5	$\$ 10$
$\{1,2\}$	7	$\$ 50$
$\{1,3\}$	12	$\$ 70$
$\{1,4\}$	7	$\$ 30$
$\{2,3\}$	15	$\$ 80$
$\{2,4\}$	10	$\$ 40$
$\{3,4\}$	15	$\$ 60$
$\{1,2,3\}$	17	infeasible
$\{1,2,4\}$	12	$\$ 60$
$\{1,3,4\}$	17	infeasible
$\{2,3,4\}$	20	infeasible
$\{1,2,3,4\}$	22	infeasible

item	weight	value
1.	2	$\$ 20$
2.	5	$\$ 30$
3.	10	$\$ 50$
4.	5	$\$ 10$

Knapsack capacity W=16

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
$\{1\}$	2	$\$ 20$
$\{2\}$	5	$\$ 30$
$\{3\}$	10	$\$ 50$
$\{4\}$	5	$\$ 10$
$\{1,2\}$	7	$\$ 50$
$\{1,3\}$	12	$\$ 70$
$\{1,4\}$	7	$\$ 30$
$\{2,3\}$	15	$\$ 80$
$\{2,4\}$	10	$\$ 40$
$\{3,4\}$	15	$\$ 60$
$\{1,2,3\}$	17	infeasible
$\{1,2,4\}$	12	$\$ 60$
$\{1,3,4\}$	17	infeasible
$\{2,3,4\}$	20	infeasible
$\{1,2,3,4\}$	22	infeasible

item	weight	value
1.	2	$\$ 20$
2.	5	$\$ 30$
3.	10	$\$ 50$
4.	5	$\$ 10$

Knapsack capacity W=16

- Efficiency?

A: O(n^{2})
B: $\mathrm{O}\left(2^{n}\right)$
C: O(n!)
D: O((n-1)!)

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

an assignment

$$
\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle
$$

$$
\text { means that person } i
$$ gets job a_{i}

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

<a।, Person 1	9	2	7	8
a_{2}, Person 2	6	4	3	7
a3, Person 3	5	8	1	8
a4) Person 4	7	6	9	4

> an assignment
> $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right.$ 〉
> means that person i gets job a_{i}

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

<2, Person 1	9	2	7	8
4, Person 2	6	4	3	7
3, Person 3	5	8	1	8
1) Person 4	7	6	9	4

an assignment

$$
\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle
$$

$$
\text { means that person } i
$$ gets job a_{i}

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

<2, Person 1	9	(2)	7	8
4, Person 2	6	4	3	7
3, Person 3	5	8	1	8
1) Person 4	7	6	9	4

> an assignment
> $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ means that person i gets job a_{i}

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

an assignment
 $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right.$ 〉
 means that person i gets job a_{i}

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

an assignment
 $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$
 means that person i gets job a_{i}

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Example 3: The Assignment Problem

- There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is $\mathrm{C}[i, j]$. Find an assignment that minimizes the total cost.

an assignment
 $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right.$ 〉
 means that person i gets job a_{i}

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

Assignment Problem by Exhaustive Search

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

$$
C=\left[\begin{array}{llll}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4
\end{array}\right]
$$

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)	Total Cost
$1,2,3,4$	$9+4+1+4=18$
$1,2,4,3$	$9+4+8+9=30$

$C=\left[\begin{array}{llll}9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4\end{array}\right]$

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)	Total Cost
$1,2,3,4$	$9+4+1+4=18$
$1,2,4,3$	$9+4+8+9=30$
$1,3,2,4$	$9+3+8+4=24$

$C=\left[\begin{array}{llll}9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4\end{array}\right]$

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)	Total Cost
$1,2,3,4$	$9+4+1+4=18$
$1,2,4,3$	$9+4+8+9=30$
$1,3,2,4$	$9+3+8+4=24$
$1,3,4,2$	$9+3+8+6=26$

$C=\left[\begin{array}{llll}9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4\end{array}\right]$

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)	Total Cost
$1,2,3,4$	$9+4+1+4=18$
$1,2,4,3$	$9+4+8+9=30$
$1,3,2,4$	$9+3+8+4=24$
$1,3,4,2$	$9+3+8+6=26$
$1,4,2,3$	$9+7+8+9=33$

$C=\left[\begin{array}{llll}9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4\end{array}\right]$

$$
1,4,2,3 \quad 9+7+8+9=33
$$

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)	Total Cost
$1,2,3,4$	$9+4+1+4=18$
$1,2,4,3$	$9+4+8+9=30$
$1,3,2,4$	$9+3+8+4=24$
$1,3,4,2$	$9+3+8+6=26$
$1,4,2,3$	$9+7+8+9=33$
$1,4,3,2$	$9+7+1+6=23$

$C=\left[\begin{array}{llll}9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4\end{array}\right]$

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)	Total Cost
$1,2,3,4$	$9+4+1+4=18$
$1,2,4,3$	$9+4+8+9=30$
$1,3,2,4$	$9+3+8+4=24$
$1,3,4,2$	$9+3+8+6=26$
$1,4,2,3$	$9+7+8+9=33$
$1,4,3,2$	$9+7+1+6=23$
etc.	

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)

$1,2,3,4$	$9+4+1+4=18$
$1,2,4,3$	$9+4+8+9=30$
$1,3,2,4$	$9+3+8+4=24$
$1,3,4,2$	$9+3+8+6=26$
$1,4,2,3$	$9+7+8+9=33$
$1,4,3,2$	$9+7+1+6=23$
etc.	

How many assignments are there?

Assignment Problem by Exhaustive Search

- Consider the problem in terms of the Cost Matrix C

Assignment (col.\#s)

$$
\begin{array}{lc}
\text { gnment (col.\#s) } & \text { Total Cost } \\
1,2,3,4 & 9+4+1+4=18 \\
1,2,4,3 & 9+4+8+9=30 \\
1,3,2,4 & 9+3+8+4=24 \\
1,3,4,2 & 9+3+8+6=26 \\
1,4,2,3 & 9+7+8+9=33 \\
1,4,3,2 & 9+7+1+6=23
\end{array}
$$

etc.

Convex Hulls

- What is a Convex Hull?
A. A bad design for a boat
B. A good design for a boat
C. A set of points without any concavities
D. None of the above

Convex Hulls

- What is a Convex Set?
A. A bad design for a boat
B. A good design for a boat
C. A set of points without any concavities
D. None of the above

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

- What is a Convex Set?

Convex Hulls

A set of points C is convex iff $\forall \mathrm{a}, \mathrm{b} \in \mathrm{C}$, all points on the line segment $a b$ are entirely in C

Convex Hulls

Convex Hulls

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.

Convex Hulls

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
- Barricading sleeping tigers

Convex Hulls

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
- Barricading sleeping tigers
- Rubber-band around nails

Applications of Convex Hull

- Collision-detection in video games

Applications of Convex Hull

- Collision-detection in video games
- Robot motion planning

Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

Brute-Force Algorithm for Convex Hull

- write it down!
- Assume that you have a method for ascertaining if a point r is on a line $p q$, on the -ve side of line $p q$, or on the +ve side of $p q$

Brute-Force Algorithm for Convex Hull

- write it down!
- Assume that you have a method for ascertaining if a point r is on a line $p q$, on the -ve side of line $p q$, or on the +ve side of $p q$

Brute-Force Algorithm for Convex Hull

- write it down!
- Assume that you have a method for ascertaining if a point r is on a line $p q$, on the -ve side of line $p q$, or on the +ve side of $p q$

Brute-Force Algorithm for Convex Hull

- write it down!
- Assume that you have a method for ascertaining if a point r is on a line $p q$, on the -ve side of line $p q$, or on the +ve side of $p q$

Brute-Force Algorithm for Convex Hull

edgeSet $\leftarrow\}$
P : for p in S do:
Q: for q in $S, q \neq p$ do:
goodSide $\leftarrow 0$
R : for r in $S, r \neq p \wedge r \neq q$ do:
side \leftarrow r.whichSideOfLine(pq)
if side $\neq 0$ then
if goodSide $=0$ then goodSide \leftarrow side
if goodSide \neq side then exit Q .
edgeSet \leftarrow edgeSet $\cup\{p q\}$

Final Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- In some cases, there are much better alternatives!
- Euler circuits
- shortest paths
- minimum spanning tree
- assignment problem
- However, in many cases, exhaustive search (or a variation) is the only known way to find an exact solution

Searching in Graphs

Exhaustively search a graph, by traversing the edges, visiting every node once

Two approaches:

- Depth-first search and
- Breadth-first search

ALGORITHM $\operatorname{DFS}(G)$
//Implements a depth-first search traversal of a given graph
//Input: Graph $G=\langle V, E\rangle$
//Output: Graph G with its vertices marked with consecutive integers
$/ / \quad$ in the order they are first encountered by the DFS traversal mark each vertex in V with 0 as a mark of being "unvisited"
count $\leftarrow 0$
for each vertex v in V do
if v is marked with 0

$$
d f s(v)
$$

$d f s(v)$
$/ /$ visits recursively all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are encountered
//via global variable count
count \leftarrow count $+1 ; \quad$ mark v with count
for each vertex w in V adjacent to v do
if w is marked with 0

$$
d f s(w)
$$

Example

Example

Example

$d f s(1)$
$d f s(2)$
$d f s(7)$

Example

Example

$d f s(1)$ $d f s(2)$ $d f s(7)$ $d f s(5)$ $d f s(4)$

Example

$d f s(1)$ $d f s(2)$ $d f s(7)$ $d f s(5)$ $d f s(4)$ $d f s(3)$

Example

$d f s(1)$ $d f s(2)$ $d f s(7)$ $d f s(5)$ $d f(4)$

Example

$d f s(1)$ $d f s(2)$
$d f s(7)$
$d f s(5)$ $d f s(4)$

Example

$d f s(1)$ $d f s(2)$
$d f s(7)$
$d f s(5)$ $d f s(4)$

Example

$d f s(1)$
$d f s(2)$
$d f s(7)$ $d f s(5)$

Example

$d f s(1)$ $d f s(2)$ $d f s(7)$ $d f s(5)$

Example

$d f s(1)$ $d f s(2)$ $d f s(7)$ $d f s(5)$ $d f(6)$

Example

$d f s(1)$ $d f s(2)$
$d f s(7)$ $d f s(5)$ $d f s(6)$

Example

$d f s(1)$ $d f s(2)$ $d f s(7)$ $d f s(5)$

Example

$$
\begin{aligned}
& d f s(1) \\
& d f s(2) \\
& d f s(7)
\end{aligned}
$$

Example

$d f s(1)$ $d f s(2)$

Example

$d f s(1)$

Example

$d f s(8)$

Example

$d f s(8)$
$d f s(9)$

Example

$d f s(8)$

Example

Complexity?

- What's the basic operation?
- finding all the Vertices in the graph?
- making a mark?
- checking a mark?
- finding all the neighbors of a node?
- Cost depends on the data structure used to represent the graph

Two choices of data structure:

- Adjacency Matrix: $\Theta\left(\mid V^{2}\right)$
- Adjacency List: $\Theta(|V|+|E|)$

One Last look at the Example

Applications

- Checking for connectivity
- How?
- Checking for Cycles
- How?

