
CS 350 Algorithms and Complexity

Lecture 6: Exhaustive Search Algorithms

Andrew P. Black

Department of Computer Science

Portland State University

Winter 2019

Brute Force
• A straightforward approach, usually based

directly on the problem’s statement and
definitions of the concepts involved

• Examples:
Computing an (a > 0, n a nonnegative integer) by
repeated multiplication
Computing n! by repeated multiplication
Multiplying two matrices following the definition
Searching for a key in a list sequentially

 2

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Examples of Brute-Force String Matching

• Pattern: 001011
Text: 10010101101001100101111010  

• Pattern: happy
Text: It is never too late to have a happy
childhood.

•
 3

Pseudocode and Efficiency

 4

Pseudocode and Efficiency

 4

Pseudocode and Efficiency

Efficiency: A: O(n) B: O(m(n-m)) C: O(m) D: O(m2)
 4

Brute-Force Polynomial Evaluation

 5

Brute-Force Polynomial Evaluation
• Problem: Find the value of polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0 at a point x = x0

 5

Brute-Force Polynomial Evaluation
• Problem: Find the value of polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0 at a point x = x0

• Brute-force algorithm p ← 0.0
for i ← n downto 0 do
 power ← 1
 for j ← 1 to i do //compute xi
 power ← power ∗ x
 p ← p + a[i] ∗ power  
return p

 5

Brute-Force Polynomial Evaluation
• Problem: Find the value of polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0 at a point x = x0

• Brute-force algorithm

• Efficiency:

p ← 0.0
for i ← n downto 0 do
 power ← 1
 for j ← 1 to i do //compute xi
 power ← power ∗ x
 p ← p + a[i] ∗ power  
return p

 5

Brute-Force Polynomial Evaluation
• Problem: Find the value of polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0 at a point x = x0

• Brute-force algorithm

• Efficiency:

p ← 0.0
for i ← n downto 0 do
 power ← 1
 for j ← 1 to i do //compute xi
 power ← power ∗ x
 p ← p + a[i] ∗ power  
return p

 5

A: O(n) B: O(n2) C: O(lg n) D: O(n3)

Polynomial Evaluation: Improvement

 6

Polynomial Evaluation: Improvement

• We can do better by evaluating from right to
left:

 6

Polynomial Evaluation: Improvement

• We can do better by evaluating from right to
left:

• Better brute-force algorithm:

 6

Polynomial Evaluation: Improvement

• We can do better by evaluating from right to
left:

• Better brute-force algorithm:

 6

Polynomial Evaluation: Improvement

• We can do better by evaluating from right to
left:

• Better brute-force algorithm:
p ← a[0]
power ← 1
for i ← 1 to n do
 power ← power ∗ x
 p ← p + a[i] ∗ power
return p

 6

Polynomial Evaluation: Improvement

• We can do better by evaluating from right to
left:

• Better brute-force algorithm:
p ← a[0]
power ← 1
for i ← 1 to n do
 power ← power ∗ x
 p ← p + a[i] ∗ power
return p

 6

Polynomial Evaluation: Improvement

• We can do better by evaluating from right to
left:

• Better brute-force algorithm:

• Efficiency:

p ← a[0]
power ← 1
for i ← 1 to n do
 power ← power ∗ x
 p ← p + a[i] ∗ power
return p

 6

Polynomial Evaluation: Improvement

• We can do better by evaluating from right to
left:

• Better brute-force algorithm:

• Efficiency:

p ← a[0]
power ← 1
for i ← 1 to n do
 power ← power ∗ x
 p ← p + a[i] ∗ power
return p

 6

A: O(n) B: O(n2) C: O(lg n) D: O(n3)

Closest-Pair Problem

• Find the two closest points in a set of n
points (in the two-dimensional
Cartesian plane).

• Brute-force algorithm:
‣ Compute the distance between every pair of

distinct points
° and return the indices of the points for which the

distance is the smallest.

 7

Closest-Pair Brute-Force Algorithm (cont.)

 8

Closest-Pair Brute-Force Algorithm (cont.)

• Efficiency:  

 8

Closest-Pair Brute-Force Algorithm (cont.)

• Efficiency:  

 8

A: O(n) B: O(n2) C: O(lg n) D: O(n3)

Closest-Pair Brute-Force Algorithm (cont.)

• Efficiency:  

• How to make it faster?
 8

A: O(n) B: O(n2) C: O(lg n) D: O(n3)

Problem:

If sqrt 
is 10 x slower than × and +, by how much
will BruteForceClosestPoints speed up when
we take out the sqrt ?

A. ~ 10 times
B. ~ 100 times
C. ~ 1000 times

 9

Problem:
Can you design a more efficient algorithm
than the one based on the brute-force
strategy to solve the closest-pair problem
for n points x1, … , xn on the real line?

 10

x2x3 x1 x5 x4

Brute Force Closest Pair

• An Example of a particular kind of Brute
Force Algorithm based on: 
 
Exhaustive search

 11

Exhaustive Search
• A brute force solution to a problem involving

search for an element with a special property,
usually among combinatorial objects such as
permutations, combinations, or subsets of a set.

• Method:
‣ generate a list of all potential solutions to the problem in a

systematic manner (see algorithms in Sec. 4.3)

‣ evaluate potential solutions one by one, disqualifying
infeasible ones and, for an optimization problem, keeping
track of the best one found so far

‣ when search ends, announce the solution(s) found

 12

Example 1: Traveling Salesman Problem

• Given n cities with known distances between each pair, find
the shortest tour that passes through all the cities exactly
once before returning to the starting city

• Alternatively: find shortest Hamiltonian circuit in a weighted
connected graph

• Example:

a b

c d

8

2

7

5 3
4

 13

TSP by Exhaustive Search
 Tour Cost
a→b→c→d→a 2+3+7+5 = 17
a→b→d→c→a 2+4+7+8 = 21
a→c→b→d→a 8+3+4+5 = 20
a→c→d→b→a 8+7+4+2 = 21
a→d→b→c→a 5+4+3+8 = 20
a→d→c→b→a 5+7+3+2 = 17

More tours?
Less tours?
Efficiency:

 14

a b

c d

8

2

7

5 3
4

TSP by Exhaustive Search
 Tour Cost
a→b→c→d→a 2+3+7+5 = 17
a→b→d→c→a 2+4+7+8 = 21
a→c→b→d→a 8+3+4+5 = 20
a→c→d→b→a 8+7+4+2 = 21
a→d→b→c→a 5+4+3+8 = 20
a→d→c→b→a 5+7+3+2 = 17

More tours?
Less tours?
Efficiency:

 14

a b

c d

8

2

7

5 3
4

A: O(n) 
B: O(n2)  
C: O(n3)  

D: O((n-1)!) 
E: O(n!)

Example 2: Knapsack Problem
• Given n items:

‣ weights: w1 w2 … wn

‣ values: v1 v2 … vn

‣ a knapsack of capacity W

• Find most valuable subset of the items that fit into the knapsack

• Example: Knapsack capacity W=16

 15

item weight value

1. 2 $20

2. 5 $30

3. 10 $50

4. 5 $10

Knapsack Problem by Exhaustive Search
Subset Total weight Total value
 {1} 2 $20
 {2} 5 $30
 {3} 10 $50
 {4} 5 $10
 {1,2} 7 $50
 {1,3} 12 $70
 {1,4} 7 $30
 {2,3} 15 $80
 {2,4} 10 $40
 {3,4} 15 $60
{1,2,3} 17 infeasible
{1,2,4} 12 $60
{1,3,4} 17 infeasible
{2,3,4} 20 infeasible

 {1,2,3,4} 22 infeasible

 16

item weight value

1. 2 $20

2. 5 $30

3. 10 $50

4. 5 $10

Knapsack capacity W=16

Knapsack Problem by Exhaustive Search
Subset Total weight Total value
 {1} 2 $20
 {2} 5 $30
 {3} 10 $50
 {4} 5 $10
 {1,2} 7 $50
 {1,3} 12 $70
 {1,4} 7 $30
 {2,3} 15 $80
 {2,4} 10 $40
 {3,4} 15 $60
{1,2,3} 17 infeasible
{1,2,4} 12 $60
{1,3,4} 17 infeasible
{2,3,4} 20 infeasible

 {1,2,3,4} 22 infeasible

 16

item weight value

1. 2 $20

2. 5 $30

3. 10 $50

4. 5 $10

Knapsack capacity W=16

Knapsack Problem by Exhaustive Search
Subset Total weight Total value
 {1} 2 $20
 {2} 5 $30
 {3} 10 $50
 {4} 5 $10
 {1,2} 7 $50
 {1,3} 12 $70
 {1,4} 7 $30
 {2,3} 15 $80
 {2,4} 10 $40
 {3,4} 15 $60
{1,2,3} 17 infeasible
{1,2,4} 12 $60
{1,3,4} 17 infeasible
{2,3,4} 20 infeasible

 {1,2,3,4} 22 infeasible

 16

item weight value

1. 2 $20

2. 5 $30

3. 10 $50

4. 5 $10

Knapsack capacity W=16

• Efficiency?  
A: O(n2)  
B: O(2n)  
C: O(n!) 
D: O((n-1)!)

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

an assignment  
‹a1, a2, a3, a4›

means that person i
gets job ai

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

an assignment  
‹a1, a2, a3, a4›

means that person i
gets job ai

‹a1,  
a2,  
a3,
a4›

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

an assignment  
‹a1, a2, a3, a4›

means that person i
gets job ai

‹2,  
4,  
3,
1›

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

an assignment  
‹a1, a2, a3, a4›

means that person i
gets job ai

‹2,  
4,  
3,
1›

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

an assignment  
‹a1, a2, a3, a4›

means that person i
gets job ai

‹2,  
4,  
3,
1›

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

an assignment  
‹a1, a2, a3, a4›

means that person i
gets job ai

‹2,  
4,  
3,
1›

Example 3: The Assignment Problem

• There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person p to job j is 
C[i, j]. Find an assignment that minimizes the total cost.
 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

• Algorithmic Plan: Generate all legitimate assignments, compute  
 their costs, and select the cheapest one.

• How many assignments are there …

 17

an assignment  
‹a1, a2, a3, a4›

means that person i
gets job ai

‹2,  
4,  
3,
1›

Assignment Problem by Exhaustive Search

 18

•Consider the problem in terms of the  
Cost Matrix C

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30
 1, 3, 2, 4 9+3+8+4=24

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30
 1, 3, 2, 4 9+3+8+4=24
 1, 3, 4, 2 9+3+8+6=26

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30
 1, 3, 2, 4 9+3+8+4=24
 1, 3, 4, 2 9+3+8+6=26
 1, 4, 2, 3 9+7+8+9=33

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30
 1, 3, 2, 4 9+3+8+4=24
 1, 3, 4, 2 9+3+8+6=26
 1, 4, 2, 3 9+7+8+9=33
 1, 4, 3, 2 9+7+1+6=23

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30
 1, 3, 2, 4 9+3+8+4=24
 1, 3, 4, 2 9+3+8+6=26
 1, 4, 2, 3 9+7+8+9=33
 1, 4, 3, 2 9+7+1+6=23

etc.

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30
 1, 3, 2, 4 9+3+8+4=24
 1, 3, 4, 2 9+3+8+6=26
 1, 4, 2, 3 9+7+8+9=33
 1, 4, 3, 2 9+7+1+6=23

etc.
How many assignments are there?

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

•Consider the problem in terms of the  
Cost Matrix C
 Assignment (col.#s) Total Cost
 1, 2, 3, 4 9+4+1+4=18
 1, 2, 4, 3 9+4+8+9=30
 1, 3, 2, 4 9+3+8+4=24
 1, 3, 4, 2 9+3+8+6=26
 1, 4, 2, 3 9+7+8+9=33
 1, 4, 3, 2 9+7+1+6=23

etc.
How many assignments are there?

Assignment Problem by Exhaustive Search

 18

C =

2

664

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

3

775

A: O(n) B: O(n2) C: O(n3) D: O(n!)

Convex Hulls
• What is a Convex Hull?

A. A bad design for a boat
B. A good design for a boat
C. A set of points without any concavities
D. None of the above

Convex Hulls
• What is a Convex Set?

A. A bad design for a boat
B. A good design for a boat
C. A set of points without any concavities
D. None of the above

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls

 20

• What is a Convex Set?

Convex Hulls
A set of points C is convex iff ∀ a, b ∈ C, all
points on the line segment ab are entirely in C

 21

Convex Hulls

 22

Convex Hulls
• Given an arbitrary set of points S, the

convex hull of S is the smallest convex
set that contain all the points in S.

 22

Convex Hulls
• Given an arbitrary set of points S, the

convex hull of S is the smallest convex
set that contain all the points in S.
‣ Barricading sleeping tigers

 22

Convex Hulls
• Given an arbitrary set of points S, the

convex hull of S is the smallest convex
set that contain all the points in S.
‣ Barricading sleeping tigers

‣ Rubber-band around nails

 22

Applications of Convex Hull
• Collision-detection in video games

• Robot motion planning

 23

Applications of Convex Hull
• Collision-detection in video games

• Robot motion planning

 23

Theorems about Convex Hulls
• The convex hull of a set S is a convex

polygon all of whose vertices are at some
of the points of S.

• A line segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

 24

Theorems about Convex Hulls
• The convex hull of a set S is a convex

polygon all of whose vertices are at some
of the points of S.

• A line segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

 24

a

b

Theorems about Convex Hulls
• The convex hull of a set S is a convex

polygon all of whose vertices are at some
of the points of S.

• A line segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

 24

Theorems about Convex Hulls
• The convex hull of a set S is a convex

polygon all of whose vertices are at some
of the points of S.

• A line segment ab is part of the boundary
of the convex hull of S iff all the points of
S lie on the same side of ab (or on ab)

 24

a

b

Brute-Force Algorithm for Convex Hull

• write it down!
‣ Assume that you have a method for

ascertaining if a point r is on a line pq, on the
−ve side of line pq, or on the +ve side of pq

 25

a
b

+ r p

 q

Brute-Force Algorithm for Convex Hull

• write it down!
‣ Assume that you have a method for

ascertaining if a point r is on a line pq, on the
−ve side of line pq, or on the +ve side of pq

 25

a
b

+ r p

 q

r.whichSideOfLine(pq)

Brute-Force Algorithm for Convex Hull

• write it down!
‣ Assume that you have a method for

ascertaining if a point r is on a line pq, on the
−ve side of line pq, or on the +ve side of pq

 25

a
b

ax + by = c

+ r p

 q

r.whichSideOfLine(pq)

Brute-Force Algorithm for Convex Hull

• write it down!
‣ Assume that you have a method for

ascertaining if a point r is on a line pq, on the
−ve side of line pq, or on the +ve side of pq

 25

a
b

ax + by = c

+ r p

 q

c = px qy − qx py

r.whichSideOfLine(pq)

Brute-Force Algorithm for Convex Hull

edgeSet ← { } 
P: for p in S do: 

Q: for q in S, q ≠ p do: 
goodSide ← 0 
R: for r in S, r≠p ∧ r≠q do: 

side ← r.whichSideOfLine(pq) 
if side ≠ 0 then  

if goodSide = 0 then goodSide ← side  
if goodSide ≠ side then exit Q. 

edgeSet ← edgeSet ∪ {pq} 

 26

Final Comments on Exhaustive Search

• Exhaustive-search algorithms run in a realistic
amount of time only on very small instances

• In some cases, there are much better alternatives!
‣ Euler circuits

‣ shortest paths

‣ minimum spanning tree

‣ assignment problem

• However, in many cases, exhaustive search (or a
variation) is the only known way to find an exact
solution

 27

Searching in Graphs

Exhaustively search a graph, by traversing
the edges, visiting every node once
Two approaches:
‣ Depth-first search and

‣ Breadth-first search

 28

 29

3.5 Depth-First Search and Breadth-First Search 123

g

a

d

e

b

c f

j

h

h

i

j

ga

c

d f

b

e
i

(a) (b) (c)

d3, 1
c2, 5
a1, 6

e 6, 2
b 5, 3
f4, 4

j10,7
i9, 8
h 8, 9

g 7,10

FIGURE 3.10 Example of a DFS traversal. (a) Graph. (b) Traversal’s stack (the first
subscript number indicates the order in which a vertex is visited, i.e.,
pushed onto the stack; the second one indicates the order in which it
becomes a dead-end, i.e., popped off the stack). (c) DFS forest with the
tree and back edges shown with solid and dashed lines, respectively.

visit of the vertex starts), and we pop a vertex off the stack when it becomes a
dead end (i.e., the visit of the vertex ends).

It is also very useful to accompany a depth-first search traversal by construct-
ing the so-called depth-first search forest. The starting vertex of the traversal
serves as the root of the first tree in such a forest. Whenever a new unvisited vertex
is reached for the first time, it is attached as a child to the vertex from which it is
being reached. Such an edge is called a tree edge because the set of all such edges
forms a forest. The algorithm may also encounter an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree).
Such an edge is called a back edge because it connects a vertex to its ancestor,
other than the parent, in the depth-first search forest. Figure 3.10 provides an ex-
ample of a depth-first search traversal, with the traversal stack and corresponding
depth-first search forest shown as well.

Here is pseudocode of the depth-first search.

ALGORITHM DFS(G)

//Implements a depth-first search traversal of a given graph
//Input: Graph G = ⟨V, E⟩
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count ← 0
for each vertex v in V do

if v is marked with 0
dfs(v)124 Brute Force and Exhaustive Search

dfs(v)

//visits recursively all the unvisited vertices connected to vertex v

//by a path and numbers them in the order they are encountered
//via global variable count

count ← count + 1; mark v with count

for each vertex w in V adjacent to v do
if w is marked with 0

dfs(w)

The brevity of the DFS pseudocode and the ease with which it can be per-
formed by hand may create a wrong impression about the level of sophistication
of this algorithm. To appreciate its true power and depth, you should trace the
algorithm’s action by looking not at a graph’s diagram but at its adjacency matrix
or adjacency lists. (Try it for the graph in Figure 3.10 or a smaller example.)

How efficient is depth-first search? It is not difficult to see that this algorithm
is, in fact, quite efficient since it takes just the time proportional to the size of the
data structure used for representing the graph in question. Thus, for the adjacency
matrix representation, the traversal time is in !(|V |2), and for the adjacency list
representation, it is in !(|V | + |E|) where |V | and |E| are the number of the
graph’s vertices and edges, respectively.

A DFS forest, which is obtained as a by-product of a DFS traversal, deserves a
few comments, too. To begin with, it is not actually a forest. Rather, we can look at
it as the given graph with its edges classified by the DFS traversal into two disjoint
classes: tree edges and back edges. (No other types are possible for a DFS forest
of an undirected graph.) Again, tree edges are edges used by the DFS traversal to
reach previously unvisited vertices. If we consider only the edges in this class, we
will indeed get a forest. Back edges connect vertices to previously visited vertices
other than their immediate predecessors in the traversal. They connect vertices to
their ancestors in the forest other than their parents.

A DFS traversal itself and the forest-like representation of the graph it pro-
vides have proved to be extremely helpful for the development of efficient al-
gorithms for checking many important properties of graphs.3 Note that the DFS
yields two orderings of vertices: the order in which the vertices are reached for the
first time (pushed onto the stack) and the order in which the vertices become dead
ends (popped off the stack). These orders are qualitatively different, and various
applications can take advantage of either of them.

Important elementary applications of DFS include checking connectivity and
checking acyclicity of a graph. Since dfs halts after visiting all the vertices con-

3. The discovery of several such applications was an important breakthrough achieved by the two
American computer scientists John Hopcroft and Robert Tarjan in the 1970s. For this and other
contributions, they were given the Turing Award—the most prestigious prize in the computing field
[Hop87, Tar87].

 30

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)

 31

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)

 32

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  

 33

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  

 34

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
dfs(4)  
 

 35

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
dfs(4)  
dfs(3)  
 

 36

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
dfs(4)  
 
 

 36

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
dfs(4)  
 
 

 36

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
dfs(4)  
 
 

 37

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
 
 
 

 37

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
 
 
 

 38

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
dfs(6)  
 
 
 

 38

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
dfs(6)  
 
 
 

 39

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
dfs(5)  
 
 
 
 

 40

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
dfs(7)  
 
 
 
 

 41

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
dfs(2)  
 
 
 
 
 

 42

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(1)  
 
 
 
 
 
 

 43

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(8)  
 
 
 
 
 
 
 

 44

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(8)  
dfs(9)  
 
 
 
 
 
 

 45

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

dfs(8)  
 
 
 
 
 
 
 

 46

Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

Complexity?

• What's the basic operation?
‣ finding all the Vertices in the graph?

‣ making a mark?

‣ checking a mark?

‣ finding all the neighbors of a node?

• Cost depends on the data structure
used to represent the graph  

 47

Two choices of data structure:

• Adjacency Matrix: Θ(V 2)

• Adjacency List: Θ(V + E)

 48

 49

One Last look at the Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

 49

One Last look at the Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

 49

One Last look at the Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

Blue edges form a
spanning three

 49

One Last look at the Example

9

1

Graph Searching

CSE 373
Data Structures

Lecture 20

12/2/02 Graph Searching - Lecture 20 2

Graph Searching
• Find Properties of Graphs

› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Alternating paths for matching
› Garbage collection – used in Java run time system
› Finding dead code
› Finding the web graph – used by Google and

others

12/2/02 Graph Searching - Lecture 20 3

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

12/2/02 Graph Searching - Lecture 20 4

Example of Depth First
Search

1
2

3

4

5

6

7

DFS(1)

12/2/02 Graph Searching - Lecture 20 5

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

12/2/02 Graph Searching - Lecture 20 6

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

8

Blue edges form a
spanning three

Black edges lead back to
an already-visited node

Applications

• Checking for connectivity
‣ How?

• Checking for Cycles
‣ How?

 50

