CS 350 Algorithms and Complexity

Winter 2019
Lecture 10: Divide \& Conquer -
Trees and Multiplication

Andrew P. Black

Department of Computer Science
Portland State University

What is Divide-and-Conquer?

Solves a problem instance of size n by:

1. dividing it into b smaller instances, of size $\sim n / b$
2. solving some or all of them (in general, solving a of them), using the same algorithm recursively.
3. combining the solutions to the a smaller problems to get the solution to the original problem.

Binary Trees

The perfect data structure for divide-into-two and conquer.

Binary Trees

\& Ex. 1: Classic traversals

* (preorder, inorder, postorder)
\checkmark Algorithm Inorder(T)

$$
\begin{aligned}
& \text { if } \mathrm{T} \neq \varnothing \text { then } \\
& \text { Inorder(TL) } \\
& \text { print(root of } T \text {) } \\
& \text { Inorder(} T_{R} \text {) }
\end{aligned}
$$

» Efficiency: $\Theta(n)$
$\stackrel{\text { Could it be better? Worse? }}{ }$

Binary Trees

\triangleleft Ex. 2: Height of a Binary Tree

$\mathrm{h}(\mathrm{T})=\max \left\{\mathrm{h}\left(\mathrm{T}_{\mathrm{L}}\right), \mathrm{h}\left(\mathrm{T}_{\mathrm{R}}\right)\right\}+1$

$$
\text { if } \mathrm{T} \neq \varnothing \text { and } \mathrm{h}(\varnothing)=-1
$$

Efficiency: $\Theta(n)$

Summing Numbers

${ }^{\diamond}$ Compute the sum of this array

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 3 | 19 | 0 | 21 | 78 | 46 | 94 | 97 | 49 | 57 | 89 | 91 |

\triangleleft How can treating this as a binary tree help us?
\diamond Build a tree
$+$

0	1	2	3	4	5
15	3	19	0	21	78

7	8	9	10	11	12
94	97	49	57	89	91

\checkmark When does this win?

Product of Numbers

\diamond Compute the product of this array

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 3 | 19 | 0 | 21 | 78 | 46 | 94 | 97 | 49 | 57 | 89 | 91 |

\triangleleft How can treating this as a binary tree help us?
\checkmark What's different with product, compared to sum?

Problem — Levitin §5.2 Q2

2. The following algorithm seeks to compute the number of leaves in a binary tree.

Algorithm LeafCounter (T)
//Computes recursively the number of leaves in a binary tree
//Input: A binary tree T
//Output: The number of leaves in T
if $T=\varnothing$ return 0
else return LeafCounter $\left(T_{L}\right)+\operatorname{LeafCounter}\left(T_{R}\right)$
Is this algorithm correct? If it is, prove it; if it is not, make an appropriate correction.

Hint: try it on a tree with one node

Problem

\triangleleft Traverse this tree in pre-order:

Problem

\triangleleft Traverse this tree inorder:

Problem

$\stackrel{\text { Traverse this tree in post-order: }}{ }$

Karatsuba Multiplication

\diamond The "grade school algorithm" for multiplying n-digit numbers uses $\mathrm{O}\left(n^{2}\right)$ multiplications
\triangleleft Karatsuba's algorithm uses $\mathrm{O}\left(n^{\lg 3}\right) \cong$ $\mathrm{O}\left(n^{1.585}\right)$ multiplications (and exactly $n^{\lg 3}$ when n is a power of 2)
» What's the approximate ratio of multiplication counts when $n=2^{9}=512$?
$\begin{array}{lllll}\text { A. } 10 & \text { B. } 13 & \text { C. } 17 & \text { D. } 20 & \text { E. } 50\end{array}$

Basic idea

Let x and y be represented as n-digit strings in some base B. For any positive integer m less than n, one can write the two given numbers as:

$$
x=x_{1} B^{m}+x_{0} \quad y=y_{1} B^{m}+y_{0},
$$

where x_{0} and y_{0} are less than B^{m}. The product is then

$$
x y=\left(x_{1} B^{m}+x_{0}\right)\left(y_{1} B^{m}+y_{0}\right)=z_{2} B^{2 m}+z_{1} B^{m}+z_{0}
$$

where

$$
z_{2}=x_{1} y_{1} \quad z_{1}=x_{1} y_{0}+x_{0} y_{1} \quad z_{0}=x_{0} y_{0}
$$

These formulae require four multiplications. Karatsuba observed that xy can be computed in only three multiplications, at the cost of a few extra additions.

$$
z_{1}=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-z_{2}-z_{0}
$$

which holds because

$$
\begin{aligned}
& z_{1}=x_{1} y_{0}+x_{0} y_{1} \\
& z_{1}=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}
\end{aligned}
$$

Practice

\triangleleft Multiply 41×20 :
$(40+1) \times(20+0)=4 \times 2) \times 100+$
$(1 \times 2+4 \times 0) \times 10+$
(1×0)
but $(1 \times 2+4 \times 0)=$

$$
(4+1) \times(2+0)-4 \times 2)-1 \times 0
$$

\triangleleft Your Turn! Multiply 53×67 :

$$
\begin{gathered}
53 \times 67=(\times) \times 100+ \\
(\times+\times) \times 10+ \\
(\times)
\end{gathered}
$$

\diamond Your Turn! Multiply 53×67 :

$$
\begin{aligned}
53 \times 67 & =\quad(5 \times 6) \times 100+ \\
& (5 \times 7+3 \times 6) \times 10+ \\
& (3 \times 7) \\
& =30 \times 100+
\end{aligned}
$$

1. $5 \times 6=30 \quad(5 \times 7+3 \times 6) \times 10+$
2. $3 \times 7=21 \quad 21$
3. $8 \times 13=104$

What is $(5 \times 7+3 \times 6)$? Don't spend two multiplications to find out!
A. 35
B. 63
C. 53
D. 74

You put the pieces together:

 $4153 \times 2067$$$
\begin{aligned}
& =(41 \times 20) \times 10000 \\
& +[(41+53)(20+67)-41 \times 20-53 \times 67]_{\times 100} \\
& +(53 \times 67)
\end{aligned}
$$

Answer:
A. 858471 B. 8485251 C. 8584251
D. None of the above

Strassen's Algorithm

\diamond Three big ideas:

1. You can split a matrix into blocks and operate on the resulting matrix of blocks like you would on a matrix of numbers.
2. The blocks necessary to express the result of 2×2 block matrix multiplication have enough common factors to allow computing them in fewer multiplications than the original formula implies.
3. Recursion.

Apply Strassen's algorithm to compute

$$
C=\left[\begin{array}{ll|ll}
1 & 0 & 2 & 1 \\
4 & 1 & 1 & 0 \\
\hline 0 & 1 & 3 & 0 \\
5 & 0 & 2 & 1
\end{array}\right] *\left[\begin{array}{ll|ll}
0 & 1 & 0 & 1 \\
2 & 1 & 0 & 4 \\
2 & 0 & 1 & 1 \\
1 & 3 & 5 & 0
\end{array}\right]
$$

exiting the recursion when $n=2$, i.e., computing the products of 2 -by- 2 matrices by the brute-force algorithm.

$$
C=\left[\begin{array}{c|c}
C_{00} & C_{01} \\
\hline C_{10} & C_{11}
\end{array}\right]=\left[\begin{array}{l|l}
A_{00} & A_{01} \\
\hline A_{10} & A_{11}
\end{array}\right]\left[\begin{array}{c|c}
B_{00} & B_{01} \\
\hline B_{10} & B_{11}
\end{array}\right]
$$

where

$$
\begin{array}{ll}
A_{00}=\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right], \quad A_{01}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right], \quad A_{10}=\left[\begin{array}{ll}
0 & 1 \\
5 & 0
\end{array}\right], \quad A_{11}=\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right], \\
B_{00}=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right], \quad B_{01}=\left[\begin{array}{ll}
0 & 1 \\
0 & 4
\end{array}\right], \quad B_{10}=\left[\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right], \quad B_{11}=\left[\begin{array}{ll}
1 & 1 \\
5 & 0
\end{array}\right] .
\end{array}
$$

$$
\begin{aligned}
& M_{1}=\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right)=\left[\begin{array}{ll}
4 & 0 \\
6 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
7 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 8 \\
20 & 14
\end{array}\right], \\
& M_{2}=\left(A_{10}+A_{11}\right) B_{00}=\left[\begin{array}{ll}
3 & 1 \\
7 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
2 & 8
\end{array}\right], \\
& M_{3}=A_{00}\left(B_{01}-B_{11}\right)=\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
-1 & 0 \\
-5 & 4
\end{array}\right]=\left[\begin{array}{ll}
-1 & 0 \\
-9 & 4
\end{array}\right], \\
& M_{4}=A_{11}\left(B_{10}-B_{00}\right)=\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
6 & -3 \\
3 & 0
\end{array}\right], \\
& M_{5}=\left(A_{00}+A_{01}\right) B_{11}=\left[\begin{array}{ll}
3 & 1 \\
5 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
5 & 0
\end{array}\right]=\left[\begin{array}{cc}
8 & 3 \\
10 & 5
\end{array}\right], \\
& M_{6}=\left(A_{10}-A_{00}\right)\left(B_{00}+B_{01}\right)=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
2 & 5
\end{array}\right]=\left[\begin{array}{rr}
2 & 3 \\
-2 & -3
\end{array}\right], \\
& M_{7}=\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right)=\left[\begin{array}{rr}
-1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
6 & 3
\end{array}\right]=\left[\begin{array}{rr}
3 & 2 \\
-9 & -4
\end{array}\right] .
\end{aligned}
$$

$$
\begin{aligned}
C_{00} & =M_{1}+M_{4}-M_{5}+M_{7} \\
& =\left[\begin{array}{cc}
4 & 8 \\
20 & 14
\end{array}\right]+\left[\begin{array}{cc}
6 & -3 \\
3 & 0
\end{array}\right]-\left[\begin{array}{cc}
8 & 3 \\
10 & 5
\end{array}\right]+\left[\begin{array}{rr}
3 & 2 \\
-9 & -4
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right], \\
C_{01} & =M_{3}+M_{5} \\
& =\left[\begin{array}{ll}
-1 & 0 \\
-9 & 4
\end{array}\right]+\left[\begin{array}{cc}
8 & 3 \\
10 & 5
\end{array}\right]=\left[\begin{array}{ll}
7 & 3 \\
1 & 9
\end{array}\right] \\
C_{10} & =M_{2}+M_{4} \\
& =\left[\begin{array}{cc}
2 & 4 \\
2 & 8
\end{array}\right]+\left[\begin{array}{cc}
6 & -3 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
8 & 1 \\
5 & 8
\end{array}\right] \\
C_{11} & =M_{1}+M_{3}-M_{2}+M_{6} \\
& =\left[\begin{array}{cc}
4 & 8 \\
20 & 14
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
-9 & 4
\end{array}\right]-\left[\begin{array}{ll}
2 & 4 \\
2 & 8
\end{array}\right]+\left[\begin{array}{rr}
2 & 3 \\
-2 & -3
\end{array}\right]=\left[\begin{array}{ll}
3 & 7 \\
7 & 7
\end{array}\right] .
\end{aligned}
$$

That is,

$$
C=\left[\begin{array}{llll}
5 & 4 & 7 & 3 \\
4 & 5 & 1 & 9 \\
8 & 1 & 3 & 7 \\
5 & 8 & 7 & 7
\end{array}\right]
$$

Problem

\triangleleft Which tree traversal yields a sorted list if applied to a binary search tree?
A. preorder
B. inorder
c. postorder
\triangleleft Prove it!

Problem — Levitin §5.3 Q8

a. Draw a binary tree with ten nodes labeled. $0,1,2, \ldots, 9$ in such a way that the inorder and postorder traversals of the tree yield the following lists: $9,3,1,0,4,2,7,6,8,5$ (inorder) and $9,1,4,0,3,6,7,5,8,2$ (postorder).
b. Give an example of two permutations of the same n labels $0,1,2, . ., n-1$ that cannot be inorder and postorder traversal lists of the same binary tree.
c. Design an algorithm that constructs a binary tree for which two given lists of n labels $0,1,2, . ., n-1$ are generated by the inorder and postorder traversals of the tree. Your algorithm should also identify inputs for which the problem has no solution.

Problem — Levitin §5.3 Q8

a. Draw a binary tree with ten nodes labeled. $0,1,2, \ldots, 9$ in such a way that the inorder and postorder traversals of the tree yield the following lists: $9,3,1,0,4,2,7,6,8,5$ (inorder) and $9,1,4,0,3,6,7,5,8,2$ (postorder).

Hint:

First, find the label of the root.
Then, identify the left and right subtrees.

Problem — Levitin §5.3, Q11

Chocolate bar puzzle Given an n-by- m chocolate bar, you need to break it into $n m$ 1-by- 1 pieces. You can break a bar only in a straight line, and only one bar can be broken at a time. Design an algorithm that solves the problem with the minimum number of bar breaks. What is this minimum number? Justify your answer by using properties of a binary tree.

Hint:

Breaking the chocolate bar can be represented as
a binary tree

