
Project Planning

!3

You are investigating how the execution time of a sorting algorithm changes

with the size of the input by instrumenting a Java program running on your

laptop. You have available a function currentTime() that reports the current

time in microseconds; you are using this function to time executions of the sort

for arrays of various sizes.

1. When the input array is of size less than about 1000, you notice that the

di↵erence between the currentTime() at the start and the end of the sort

is either 0 µs or 1 µs. Explain why this happens, and what you do to get

more reliable numbers.

2. What sizes of arrays would you use to assess the sort algorithm? Why

did you pick those sizes? How would you decide on the maximum size to

measure?

3. How would you guard against the possibility of your sorting program con-

taining a bug that might make your timings meaningless?

4. To see how reproducible your measurements are, you arrange for each of

your test programs to sort 10 copies of the same random array; you find

that for some programs, 8 or 9 of the runs yield timings within a few

percent of each other, while the remaining 1 or 2 runs take vastly longer,

sometimes by a factor of 3 or 5. Explain why this happens, and what you

do with the data to more accurately assess the behavior of the sort.

!4

You are investigating how the execution time of a sorting algorithm changes

with the size of the input by instrumenting a Java program running on your

laptop. You have available a function currentTime() that reports the current

time in microseconds; you are using this function to time executions of the sort

for arrays of various sizes.

1. When the input array is of size less than about 1000, you notice that the

di↵erence between the currentTime() at the start and the end of the sort

is either 0 µs or 1 µs. Explain why this happens, and what you do to get

more reliable numbers.

2. What sizes of arrays would you use to assess the sort algorithm? Why

did you pick those sizes? How would you decide on the maximum size to

measure?

3. How would you guard against the possibility of your sorting program con-

taining a bug that might make your timings meaningless?

4. To see how reproducible your measurements are, you arrange for each of

your test programs to sort 10 copies of the same random array; you find

that for some programs, 8 or 9 of the runs yield timings within a few

percent of each other, while the remaining 1 or 2 runs take vastly longer,

sometimes by a factor of 3 or 5. Explain why this happens, and what you

do with the data to more accurately assess the behavior of the sort.

CS 350 Algorithms and Complexity

Lecture 11: Space & Time Tradeoffs.

Sorting by Counting, and String search

Andrew P. Black

Department of Computer Science

Portland State University

Winter 2019

But first … the episode you missed
✦ Transform and conquer

✦ instance simplification

✦ representation change

✦ problem reduction

!6

Instance Simplification
✦ Transform a problem instance to

another instance with a special property

✦ List Presorting

✦ many algorithms are faster on sorted lists

✦ Gaussian Elimination

✦ Transform the argument matrix into upper-
triangular form

✦ Can be used to compute a determinant

✦ Balancing AVL trees

✦ "rotate" the tree to restore the balance criterion

!7

Representation Change
✦ Find a better way to represent the

data in your problem

✦ binary search tree → 2-3 tree

✦ Horner's rule

✦ heaps, and heapsort

✦ a heap is an essentially complete binary tree
implemented as an array

✦ Exponentiation by exploiting the binary
representation of a number

!8

Problem Reduction
✦ A reduction is transforming a problem

that you don't know how to solve into
one that you can

✦ Find LCM by computing the GCD

✦ Solve geometric problems by reducing to

algebra

✦ Optimization problems reduced to linear

programming

!9

Why did I miss Chapter 6?
✦ If you are mathematically inclined, you will

already know about Gaussian Elimination

✦ You covered Heaps in your data-

structures course

✦ 2-3 trees are a special case of B-trees,

which we will discuss soon

✦ AVL-trees are too complicated! Hashing

works as well or better.

✦ Compare them for your project?

!10

Space-for-time tradeoffs
✦ Two varieties of space-for-time algorithms:

✦ input enhancement: preprocess the input

(all or part) to store some info to be used
later in solving the problem

✦ counting sorts

✦ string searching algorithms

✦ prestructuring — preprocess the input to
make accessing its elements easier

✦ hashing

✦ indexing schemes (e.g., B-trees)

!11

Question:
✦ Does saving space always cost time?

A. Yes

B. No

!12

Examples:
✦ Traversing a compact representation

may be faster than traversing a larger
one

✦ Sparse arrays

✦ Sets as lists versus hash tables

✦ Adjacency list vs Adjacency Matrix for

graphs

!13

Question:
✦ How to choose the right data structure?

A. Guess

B. Read the book

C. Understand the tradeoffs between the

various operations

D. Understand the frequency of the various

operations

E. All of the above

F. B, C & D

G. None of the above

!14

1

Distribution Counting Sort:
• Suppose that the values to be sorted are

all in the range 0..k, where k is some
(small) integer.

• Pre-process the input:

• Make a histogram to count how many times

each key occurs:

 0 1 2 3 4 5 6 7 … k

2

Counting sort, continued:
✦ Calculate cumulative totals:

✦ Copy values into result:

0 1 2 3 4 5 6 7 … k

0
1
2

3

5
6

7

k

...

1 3 4 7 7 8 10 12 … tot

1 2 1 3 0 1 2 2 … 2

cumulative

1 3 4 77 8 10 12 … tot

3

Implementation:
for (int i=0; i<=k; i++) // set counts to zero
 count[i] = 0;

for (int i=0; i<n; i++) // build histogram
 count[a[i]]++;

for (int i=1; i<=k; i++) // cumulative totals
 count[i] += count[i-1];

for (int i=n-1; i>=0; i--) { // copy data to target
 target[count[a[i]]] = a[i];
 count[a[i]]--;
} All steps O(n)

Punch-card computing

!18

IBM Model 82 Card Sorter (1949)

Card Sorters deal cards from a source deck into 13 output pockets (one pocket
for rejects plus one pocket for each of the 12 rows on the card) at the rate of
250-2000 cards per minute, depending on model. One column, selected by the
Sorting Brush, is sorted per pass. The Selector Switches determine which row(s)
in each column are included in the sort. To fully sort a deck of cards required a
number of passes through the sorter; one pass per column in the sort key.

!19

!20

Each carton hods 2000 cards

IBM Model 82 Card Sorter (1949)

!21

•Deals cards from a feed
into 13 output pockets.
(one pocket for rejects)

•250-2000 cards per
minute, depending on
model.

•One column, selected by
the Sorting Brush, sorted
per pass.

•The Selector Switches
determine which rows are
included in the sort

•To fully sort a deck of
cards required multiple
passes through the sorter
—one pass per column in
the sort key.

Review: String searching by brute force
✦ pattern: a string of m characters to search for

✦ text: a (long) string of n characters to search in

✦ Brute force algorithm

- Step 1	 Align pattern at beginning of text

- Step 2	 Moving from left to right, compare each character 

	 of pattern to the corresponding character in text  
	 until either all characters are found to match  
	 (successful search) or a mismatch is detected

- Step 3 	 While a mismatch is detected and the text is not  
	 yet exhausted, realign pattern one position to the 
	 right and repeat Step 2

!22

String searching by preprocessing
✦ Several string searching algorithms are

based on the input enhancement idea of
preprocessing the pattern

✦ Knuth-Morris-Pratt (KMP) algorithm
preprocesses pattern left to right to get
useful information for later searching

✦ Boyer-Moore algorithm preprocesses pattern
right to left and store information into two
tables

✦ Horspool’s algorithm simplifies the Boyer-
Moore algorithm by using just one table

!23

Key idea:
✦ When a match fails, you learn

something!

!24

✦ For example when the following test fails after
matching two characters …

✦ … and given this specific pattern string, the next
possible match can’t occur until the following position:

10

u v w x

au v

u v w x

au v

Horspool’s Algorithm
✦ A simplified version of Boyer-Moore

algorithm:

✦ preprocesses pattern to generate a shift

table that determines how much to shift
the pattern when a mismatch occurs

✦ makes a shift based on the text’s
character c aligned with the last
character in the pattern. Uses the shift
table’s entry for c

!26

How far to shift?
Look at first (rightmost) character in text that was compared:

1. The character is not in the pattern

 c...................... (c not in pattern):

 BAOBAB 

2. The character is in the pattern (but not the rightmost):

 O...................... (O occurs once in pattern) 
 BAOBAB

 A...................... (A occurs twice in pattern)

 BAOBAB 

3. The rightmost characters match:

B......................
 BAOBAB

!27

Shift table
✦ Shift sizes can be precomputed by the formula:  

t(c) = if c is not in first m-1 characters of pattern 
	 then m  
 else distance from c’s rightmost occurrence  
	 	 in pattern to right end of pattern

✦ scan pattern before search begins

✦ store t(c) in a table called the shift table

✦ Shift table is indexed by (text and pattern) alphabet.  

e.g., for BAOBAB:

!28

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6 6

Example of running Horspool’s alg.

BARD LOVED BANANAS
BAOBAB
 BAOBAB
 BAOBAB

 BAOBAB (unsuccessful search)

!29

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6 6

Question
✦ How many character comparisons will be

made by Horspool's algorithm, in
searching in a text of 1000 zeros for
00001

A. 1000

B. 200

C. 250

D. 996

!30

Question
✦ How many character comparisons will be

made by Horspool's algorithm, in
searching in a text of 1000 zeros for
10000

A. 1000

B. 996

C. 5 × 996 = 4980

D. 5 × 1000 = 5000

!31

Question
✦ Is it possible for Horspool’s Algorithm

to make more comparisons than the
Brute-force algorithm?

!32

Boyer-Moore algorithm
✦ Based on same two ideas:

✦ comparing pattern characters to text
from right to left

✦ precomputing shift sizes

✦ but using two tables

✦ bad-symbol table indicates how much to shift
based on the text character that caused a
mismatch

✦ good-suffix table indicates how much to shift
based on matched part (suffix) of the pattern

!33

Bad-symbol shift in Boyer-Moore algorithm
✦ If the rightmost character of the pattern doesn’t match,

B-M algorithm acts just like Horspool’s

✦ If the rightmost character of the pattern does match,

BM compares preceding characters right to left until
either all pattern’s characters match, or a mismatch on
text’s character c is encountered after k > 0 matches

text 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

pattern

bad-symbol shift d1 = max{t(c)-k, 1}

c

k matches

!34

Good-suffix shift in Boyer-Moore algorithm
✦ Good-suffix shift d2 is applied after 0 < k < m characters were

matched

✦ d2(k) = the distance between matched suffix of size k and its

rightmost occurrence in the pattern that is not preceded by
the same character as the suffix 

 
Example: CABABA d2(1) = 4  

✦ If there is no such occurrence, match the longest part of the
k-character suffix with corresponding prefix;  
if there are no such suffix-prefix matches, d2(k) = m  
 
Example: WOWWOW: d2(2) = 5, d2(3) = 3, d2(4) = 3, d2(5) = 3  

!35

Boyer-Moore Algorithm
After matching successfully 0 < k < m characters, the
algorithm shifts the pattern right by

 d = max(d1, d2(k))

where d1 = max(t(c)-k, 1) is bad-symbol shift

 d2(k) is good-suffix shift

Example: Find pattern AT_THAT in

	 WHICH_FINALLY_HALTS. _ _ AT_THAT

 

!36

Boyer-Moore Algorithm (cont.)
Step 1 Fill in the bad-symbol shift table

Step 2 Fill in the good-suffix shift table

Step 3 Align the pattern against the beginning of the text

Step 4 Repeat until a matching substring is found or text ends:

 Compare the corresponding characters right to left.

(a) If no characters match, retrieve entry t(c) from the bad-symbol table for the
text’s character c causing the mismatch and shift the pattern to the right by
t(c).

(b) If 0 < k < m characters are matched, retrieve entry t(c) from the bad-symbol
table for the text’s character c causing the mismatch and entry d2(k) from the
good-suffix table and shift the pattern to the right by

 d = max{d1, d2(k)} 
where d1 = max{t(c)-k, 1}. 

!37

Example of Boyer-Moore algorithm

 B E S S ⎵ K N E W ⎵ A B O U T ⎵ B A O B A B S
 B A O B A B

d1 = t(K) = 6  
 B A O B A B
 d1 = t(⎵)-2 = 4

d2(2) = 5
 B A O B A B
 d1 = t(⎵)-1 = 5
 d2(1) = 2

 B A O B A B (success)

 k pattern d2

2 1 BAOBAB 2

 2 BAOBAB 5

 3 BAOBAB 5

 4 BAOBAB 5

 5 BAOBAB 5
!38

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ⎵

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6 6

Question:
✦ Would the Boyer-Moore algorithm

work correctly with just the bad-
symbol table to guide pattern shifts?

A. Yes

B. No

!39

Question:
✦ Would the Boyer-Moore algorithm

work correctly with just the good-
suffix table to guide pattern shifts?

A. Yes

B. No

!40

Question:
If the last characters of a pattern and its
counterpart in the text do match, does
Horspool’s algorithm have to check other
characters right to left, or can it check
them left to right too?

A. must check right-to-left

B. could also check left-to-right

!41

Question:
If the last characters of a pattern and its
counterpart in the text do match, does
The Boyer-Moore algorithm have to
check other characters right to left, or
can it check them left to right too?

A. Yes

B. No

!42

Question
✦ How many character comparisons will be

made by the Boyer-Moore algorithm, in
searching in a text of 1000 zeros for
00001

A. 1000

B. 200

C. 250

D. 996

!43

Question
✦ How many character comparisons will be

made by the Boyer-Moore algorithm, in
searching in a text of 1000 zeros for
10000

A. 1000

B. 996

C. 5 × 996 = 4980

D. 5 × 1000 = 5000

!44

Question
✦ Is it possible for the Boyer-Moore

Algorithm to make more comparisons
than the Brute-force algorithm?

!45

