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Space-for-time tradeoffs
✦ Two varieties of space-for-time algorithms: 

✦ input enhancement: preprocess the input 

(all or part) to store some info to be used 
later in solving the problem 

✦ counting sorts

✦ string searching algorithms


✦ prestructuring — preprocess the input to 
make accessing its elements easier

✦ hashing

✦ indexing schemes (e.g., B-trees)
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Hashing
✦ A very efficient method  for implementing a 

dictionary, i.e., a mapping from keys to values 
with the operations:


✦  find(k) — also called at(k), lookup(k), [k]

✦  insert(k, v)  — also called at(k) put(v), put (k, v), [k] := v

✦  delete(k)


✦ Based on representation-change and space-for-
time tradeoff ideas


✦ Important applications:

✦ symbol tables

✦ sets (values are not relevant)

✦ databases (extendible hashing)
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Hash tables and hash functions
✦ The idea of hashing is to map n keys into an array 

of size m, called the hash table, by using a 
predefined function, called the hash function,

               h: key →  index in the hash table

✦ Example: student records, key = StudentID.  

✦ Hash function: h(K) = K mod m  where m is some 

integer (typically, prime)

✦ Generally, a hash function should:


✦ be easy to compute

✦ distribute keys about evenly throughout the hash table

✦ use all the data in the key
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Question:
✦ If m = 1000,  

h(k) = k mod m, 
 
where is record with StudentId = 990159265 
stored?


✦ Numeric answer:
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Collisions
✦ If   h(k1) = h(k2), there is a collision


✦ Good hash functions result in fewer collisions than bad 
ones, but: 


✦ some collisions should be expected (birthday paradox)


✦ Two principal hashing schemes handle collisions differently:

✦ Open hashing 

 – each cell is a header of “chain” — a list of all keys hashed to it

✦ Closed hashing


✦ one key per cell  

✦ in case of collision, finds another cell in the hash table itself by 


✦ linear probing: use next free bucket, or

✦ double hashing: use second hash function to compute increment
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What Levitin didn’t tell you
✦ Hash functions usually designed in 

two parts:

1. the hash 

2. the address calculation 
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Object ! [0..232)

[0..232) ! [0..hashTableSize)



A Real Hash Function:
function robertJenkins32bit5shiftHash(n) {

    var answer = n & 0xFFFFFFFF;

    answer = 0x479AB41D + answer + (answer << 8);

    answer = answer & 0xFFFFFFFF;

    answer = (0xE4AA10CE ⊻ answer) ⊻ (answer >> 5);

    answer = 0x09942F0A6 + answer - (answer << 14);

    answer = (0x5AEDD67D ⊻ answer) ⊻ (answer >> 3);

    answer = 0x17BEA992 + answer + (answer << 7);

    return (answer & 0xFFFFFFFF);

}


Returns 32 “scrambled” bits
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Open hashing (Separate chaining)
✦ Keys are stored in linked lists outside a hash table whose 

elements serve as the lists’ headers.

✦ Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED


h(k) = sum of key’s letters’ positions in the alphabet mod 13 

key A FOOL AND HIS MONEY ARE SOON PARTED

h(key) 1 9 6 10 7 11 11 12

A FOOLAND HISMONEY ARE PARTED

SOON

1211109876543210

Search for KID
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h(KID) = 11



Open hashing (cont.)
✦ The ratio α = n/m is called the load factor

✦ If hash function distributes keys uniformly, 

average length of linked list will be α

✦ Average number of key comparisons in 

successful, S, and unsuccessful  searches, U:

	 	 S ≈ 1+α/2,     U = α


✦ α is typically kept small (ideally, about 1)

✦ Open hashing still works if  n > m

– but it’s much less efficient
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Efficiencies (open hashing)
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α S ≈ 1+α/2 U = α
0.33 1.17 0.33
0.50 1.25 0.5

0.75 1.38 0.75
0.90 1.45 0.9
0.95 1.48 0.95
1.00 1.5 1
1.50 1.75 1.5

2.00 2 2

Successful Unsuccessful



Mnemonic
✦ This method is called open hashing 

because the hash table is open: 

✦ the stored keys and values are not in the 

table, but “hang” out of it ...

✦ on separate chains (hence the alternative 

name) 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A FOOLAND HISMONEY ARE PARTED

SOON

1211109876543210



Question:
✦ Suppose that you have 1000 records in 

memory, and you index them in a hash 
table with α = 1.  How many words of 
additional memory will be needed if you 
use an open hash table with separate 
chaining?


Each pointer occupies 1 word.  Additional 
means beyond the table and the records.)


✦ Numeric answer:
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Closed hashing (Open addressing)
✦ All keys are stored inside the hash table.

A

A FOOL

A AND FOOL

A AND FOOL HIS

A AND MONEY FOOL HIS

A AND MONEY FOOL HIS ARE

A AND MONEY FOOL HIS ARE SOON

PARTED A AND MONEY FOOL HIS ARE SOON

0 1 2 3 4 5 6 7 8 9 10 11 12
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Key A FOOL AND HIS MONEY ARE SOON PARTED

h(K) 1 9 6 10 7 11 11 12



Closed hashing (cont.)
✦ Does not work if n > m

✦ Avoids pointer chains

✦ Deletions are not straightforward

✦ Number of probes to find/insert/delete a key 

depends on  load factor α = n/m and on 
collision resolution strategy.   


✦ For linear probing:   

S ≈ ½ (1+ 1/(1- α))  and  U ≈ ½ (1+ 1/(1- α)²)
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Efficiencies (closed hashing)
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α S ≈ ½(1+1/(1-α)) U ≈ ½(1+1/(1-α)2)
0.33 1.25 1.625

0.50 1.5 2.5

0.75 2.5 8.5

0.90 5.5 50.5

0.95 10.5 200.5
0.99 50.5 5000.5

✦ As the table fills (α approaches 1), number of 
probes in linear probing increases dramatically: 

Successful Unsuccessful



Question:
✦ Suppose that you have 1000 records in 

memory, and you index them in a hash 
table with α = 1/2.  How many words of 
additional memory will be needed if you 
use a closed hash table?


Each pointer occupies 1 word.  Additional 
means beyond the table and the records.


✦ Numeric answer:
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Question:
✦ For the input: 
		 30  20  56  75  31  19 
 
and hash function h(k)= k mod 11

1. Construct an open hash table of size 11


2. What is the largest number of key comparisons in 
a successful search in this table?
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0 1 2 3 4 5 6 7 8 9 10

30 mod 11 = 8

30



30

Question:
✦ For the input: 
		 30  20  56  75  31  19 
 
and hash function h(k)= k mod 11

1. Construct a closed hash table of size 11


2. What is the largest number of key comparisons in 
a successful search in this table?
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0 1 2 3 4 5 6 7 8 9 10

30 mod 11 = 8



Question:
✦ Suppose that you have 1000 records in 

memory, and you have 3000 words of 
memory to use for indexing them. What’s 
the best way to use that memory if most 
searches are expected to be successful?

(Assume that each pointer occupies 1 word)

A. Open Hash table with separate chaining

B. Closed Hash table with open addressing

C. Binary search tree
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Problem
✦ Fill in the following table with the average-case 

efficiencies for 5 implementations of Dictionary
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array sorted 
array

Binary 
search tree

Open Hash 
w/separate 
chaining

Closed Hash 
w/linear 
probing

search

insertion

deletion



2–3 trees
✦ 2–3 trees are perfectly-balanced 

search trees where each node has 
either:

✦ 2 children (and 1 key), or 

✦ 3 children (and 2 keys).


✦ Details:

✦ Levitin pp. 223–5.

✦ Lyn Turbak on 2–3 Trees 

✦ Visualization of 2–3 trees
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http://cs.wellesley.edu/~cs230/spring07/2-3-trees.pdf
http://algoviz.org/OpenDSA/dev/OpenDSA/Books/Everything/html/TwoThreeTree.html


B+ Trees (slides based on those of Miriam Sy)

✦ The B+ Tree index structure is the 
most widely-used of several index 
structures that maintain their efficiency 
despite insertion and deletion of data.


✦ Balanced tree: every path from the 
root of the tree to a leaf is of the same 
length. 


✦ All data are in leaves.

✦ Hence: B+ tree
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B Trees & B+ Trees

B+ Trees: 
• Contains features from B 

Trees 
• Dynamic growth 
• Separates index and data 

pages 
• Internal nodes contain 

just keys 
• All data are at the leaves 
• leaves can be linked 

sequentially
!24

B Trees: 
• Multi-way trees 
• Dynamic growth 
• Data stored with keys 

throughout the tree 
pages



B Tree Order
✦ The “order” of a B tree is the:

A. way the purchasing department buys it

B. maximum number of children any node 

can have

C. minimum number of children any node  

can have

D. number of keys in each index node

E. height of the tree
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Fill Factor
✦ B+ Trees use a “fill factor” to control 

growth: fill factor = fraction of keys filled


✦ What is the minimum  fill factor for a B+ 
Tree?


A. 33.3%

B. 50%

C. 75%

D. None of the above

!26
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B+ Tree Statistics
✦ Each node* has 

between ⌈m/2⌉ 
and m children


✦ 50% fill factor is 
the minimum for a 
B+ Tree.


✦ For tree of order 
5, these 
guidelines must 
be met:

m, max  
pointers/page 5

n = m−1, max 
keys/page 4

⌈m/2⌉, min  
pointers/page

3

min keys/page 2

minimum fill 
factor 50%

!27

* Except the root



B+ Trees
✦ B+ Tree with m=5

✦ Note: B+ Tree in commercial database might 
have m=2048
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Inserting Records
✦ The key determines a record’s 

placement in a B+ Tree

✦ The leaf pages are maintained in 

sequential order. A doubly-linked list 
(usually not shown) connects each leaf 
page with its sibling page(s).

✦ Why?
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Insertion Algorithm

Leaf Page 
Full?

Index 
Page Full?

Action

No No Place the record in sorted position in the 
appropriate leaf page

Yes No
1. Split the leaf page 
2. Copy middle key into the index page in 

sorted order. 
3. Left leaf page contains records with 

keys < the middle key. 
4. Right leaf page contains records with 

keys ≥ than the middle key.
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Insertion Algorithm, cont…
Leaf Page 

Full?
Index 

Page Full?
Action

Yes Yes
1. Split the leaf page 
2. Records with keys < middle key go to the left 
leaf page 
3. Records with keys ≥ middle key go to the 
right leaf page. 
4. Split the index page 
5. Keys < middle key go to the left index page. 
6. Keys > middle key go to the right index page. 
7. The middle key goes to the next (higher) 
level. If the next level index page is full, continue 
splitting the index pages.
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1st Case: leaf page & index page not full
✦ Original Tree:


✦ Insert 28:
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2nd Case: leaf page Full, index page Not Full
✦ Insert a record with a key value of 70. 
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2nd Case: leaf page Full, index page Not Full
✦ Insert a record with a key value of 70. 

✦ This record should go in the leaf page with 50, 

55, 60, and 65. 

✦ This page is full, so we need to split it as follows:

new left leaf page new right leaf page

 50  55  60 65 70

!34

old leaf page

50  55  60  65



Now add the new leaf to the index:
✦ The middle key (60) is copied into the index 

page between 50 and 75.

!35

new page



3rd Case: leaf page & index page both full
✦ To prior example, we need to add 95:
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3rd Case: leaf page & index page both full
✦ We need to add 95 to leaf with 

 75 80 85 90 

which is full. So we need to split it into two 
pages:


✦ The middle key, 85, rises to the index page.

Left leaf page Right leaf page

 75 80  85 90 95

!37



3rd Case: leaf page & index page both full

✦ The index page is also full so we must split it:

!38

Left index page Right index page

 25 50  75 85

New root index page

60



Before…

 and after insertion of 95:



Rotation
✦ B+ Trees can incorporate rotation to 

reduce the number of page splits.

✦ A rotation occurs when a leaf page is 

full, but one of its siblings pages is not 
full. Rather than splitting the leaf page, 
we move a record to its sibling, 
adjusting indices as necessary.


✦ The left sibling is usually checked first, 
then the right sibling.
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Rotation
✦ For example, consider again the B+ Tree before the 

addition of 70. This record belongs in the leaf node 
containing 50 55 60 65. Notice how this node is full 
but its left sibling is not.


✦ Using rotation, we move the record with the lowest 
key to its sibling. We must also modify the index page:
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Before rotation:

After rotation:



Deletion Algorithm
✦ Like the insertion algorithm, there are three 

cases to consider when deleting a record:

Leaf Page Below 
Fill Factor 

Index Page Below 
Fill Factor

Action

No No
Delete the record from the leaf page. 
Arrange keys in ascending order to fill 
void. If the key of the deleted record 
appears in the index page, use the next 
key to replace it.
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Leaf Page 
Below Fill 
Factor ?

Index Page 
Below Fill 
Factor ?

Action

Yes No
1. Combine the leaf page and its sibling.  
2. Change the index page to reflect the 

deletion of the leaf.

Yes Yes

1. Combine the leaf page and its sibling. 
2. Adjust the index page to reflect the 

other change. 
3. Combine the index page with its sibling. 
4. Continue combining index pages until 

you reach a page with the correct fill 
factor, or you reach the root.
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Deletion
✦ To refresh our memories, here’s our B+ 

Tree right after the insertion of 95:
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Deletion (1st case)
✦ Delete record with Key 70
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Deletion (2nd case)
✦ Delete 25 from the B+ Tree

✦ Because 25 appears in the index page, when we 

delete 25, we must replace it with another key (here, 
with 28)

!47



Deletion (3rd case)
✦ Deleting 60 from the B+ Tree

✦ The leaf page containing 60 (60 65) will be 

below the fill factor after the deletion. Thus, 
we must combine leaf pages.


✦ The recombination removes one key from the 
index page. Hence, it will also fall below the fill 
factor. Thus, we must combine index pages.


✦ 60 appears as the only key in the root index 
page. Obviously, it will be removed with the 
deletion.
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Deletion (3rd case)
✦ B+ Tree after deletion of 60
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B+ Trees in Practice
✦ Typical Order: 200 to 1000

✦ Typical Fill Factor: 67%

✦ Typical Capacities:


✦ Height 4: 1334 = 312,900,700 records

✦ Height 3: 1333 = 2,352,637 records
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B+ Trees in Practice
✦ Fill factor for newly created tree is a 

design parameter

✦ Suppose I create a new B+ tree with a 

fill factor of 100%

A. Index occupies minimum number of nodes

B. Adding a new entry will always require 

recursive splitting

C. Both of the above

D. None of the above
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B+ Trees in Practice
✦ Fill factor for newly created tree is a 

design parameter

✦ Suppose I create a new B+ tree with a 

fill factor of 50%

A. Index occupies more nodes

B. Adding a new entry is unlikely to require 

recursive splitting

C. Both of the above

D. None of the above
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Example: IBM Red Brick Warehouse 6.3
Each index node is 8172 bytes and corresponds to one 8 kB file 
system block minus 20 bytes overhead, and key size is the size in 
bytes of the key itself, plus 6 bytes of address.  


Example 
Assume a key size of 10 bytes and a table with 50 000 rows. To 
calculate the number of 8 kbyte blocks required to store the index for 
various fill factors, use the formulas in Estimating the size of indexes. The 
results are:


If this table is to be loaded once and you anticipate no additions, 
use a fill factor of 100%.

!53

Fill factor keys per node Blocks
10% 81 627
50% 409 124
100% 817 63

http://publib.boulder.ibm.com/infocenter/rbhelp/v6r3/index.jsp?topic=%252Fcom.ibm.redbrick.doc6.3%252Fwag%252Fwag50.htm
http://publib.boulder.ibm.com/infocenter/rbhelp/v6r3/topic/com.ibm.redbrick.doc6.3/wag/wag41.htm#sii-04-38777


Concluding Remarks
✦ Tree structured indexes are ideal for 

range-searches, also good for equality 
searches


✦ B+ Tree is a dynamic structure

✦ Insertions and deletions leave tree height-

balanced

✦ High fanout means depth is often just 3 or 4

✦ Root can be kept in main memory

✦ Almost always better than maintaining a 

sorted file
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Problem
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✦ Find the minimum order of the B+ tree 
that guarantees that no more than 3 
disk reads will be necessary to access 
any record in a file of 100 million 
records.

✦ Assume that the root is in main memory.

✦ Hint: look at inequality 7.7

Numeric Answer:

278 Space and Time Trade-Offs

n ≥ 4⌈m/2⌉h− 1 − 1,

which, in turn, yields the following upper bound on the height h of the B-tree of
order m with n nodes:

h ≤ ⌊log⌈m/2⌉
n + 1

4
⌋ + 1. (7.7)

Inequality (7.7) immediately implies that searching in a B-tree is a O(log n)

operation. But it is important to ascertain here not just the efficiency class but
the actual number of disk accesses implied by this formula. The following table
contains the values of the right-hand-side estimates for a file of 100 million records
and a few typical values of the tree’s order m:

order m 50 100 250
h’s upper bound 6 5 4

Keep in mind that the table’s entries are upper estimates for the number of disk
accesses. In actual applications, this number rarely exceeds 3, with the B-tree’s
root and sometimes first-level nodes stored in the fast memory to minimize the
number of disk accesses.

The operations of insertion and deletion are less straightforward than search-
ing, but both can also be done in O(log n) time. Here we outline an insertion
algorithm only; a deletion algorithm can be found in the references (e.g., [Aho83],
[Cor09]).

The most straightforward algorithm for inserting a new record into a B-
tree is quite similar to the algorithm for insertion into a 2-3 tree outlined in
Section 6.3. First, we apply the search procedure to the new record’s key K to
find the appropriate leaf for the new record. If there is room for the record in that
leaf, we place it there (in an appropriate position so that the keys remain sorted)
and we are done. If there is no room for the record, the leaf is split in half by
sending the second half of the records to a new node. After that, the smallest key
K ′ in the new node and the pointer to it are inserted into the old leaf’s parent
(immediately after the key and pointer to the old leaf). This recursive procedure
may percolate up to the tree’s root. If the root is already full too, a new root is
created with the two halves of the old root’s keys split between two children of
the new root. As an example, Figure 7.9 shows the result of inserting 65 into the
B-tree in Figure 7.8 under the restriction that the leaves cannot contain more than
three items.

You should be aware that there are other algorithms for implementing inser-
tions into a B-tree. For example, to avoid the possibility of recursive node splits,
we can split full nodes encountered in searching for an appropriate leaf for the
new record. Another possibility is to avoid some node splits by moving a key to
the node’s sibling. For example, inserting 65 into the B-tree in Figure 7.8 can be
done by moving 60, the smallest key of the full leaf, to its sibling with keys 51 and
55, and replacing the key value of their parent by 65, the new smallest value in



Problem
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Exercises 7.4

1. Give examples of using an index in real-life applications that do not involve

computers.

2. a. Prove the equality

1 +

h−1
∑

i=1

2⌈m/2⌉
i−1

(⌈m/2⌉ − 1) + 2⌈m/2⌉
h−1

= 4⌈m/2⌉
h−1

− 1

that was used in the derivation of upper bound (7.7) for the height of a

B-tree.

b. Complete the derivation of inequality (7.7).

3. Find the minimum order of the B-tree that guarantees that the number of

disk accesses in searching in a file of 100 million records does not exceed

3. Assume that the root’s page is stored in main memory.

4. Draw the B-tree obtained after inserting 30 and then 31 in the B-tree in

Figure 7.8. Assume that a leaf cannot contain more than three items.

5. Outline an algorithm for finding the largest key in a B-tree.

6. a. A top-down 2-3-4 tree is a B-tree of order 4 with the following

modification of the insert operation. Whenever a search for a leaf for a

new key encounters a full node (i.e., a node with three keys), the node is

split into two nodes by sending its middle key to the node’s parent (or, if

the full node happens to be the root, the new root for the middle key is

created). Construct a top-down 2-3-4 tree by inserting the following list

of keys in the initially empty tree:

10, 6, 15, 31, 20, 27, 50, 44, 18.

b. What is the principal advantage of this insertion procedure compared

with the one described for 2-3 trees in Section 6.3? What is its disadvan-

tage?

7. a. ◃ Write a program implementing a key insertion algorithm in a B-tree.

b. " Write a program for visualization of a key insertion algorithm in

a B-tree.

20



Solution
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3. If the tree’s root is stored in main memory, the number of disk accesses

will be equal to the number of the levels minus 1, which is exactly the

height of the tree. So, we need to find the smallest value of the order

m so that the height of the B-tree with n = 10
8
keys does not exceed

3. Using the upper bound of the B-tree’s height, we obtain the following

inequality

⌊log
⌈m/2⌉

n+ 1

4

⌋+ 1 ≤ 3 or ⌊log
⌈m/2⌉

n+ 1

4

⌋ ≤ 2.

By “trial and error,” we can find that the smallest value of m that satisfies

this inequality is 585.

4. Since there is enough room for 30 in the leaf for it, the resulting B-tree

will look as follows

11 15

 4, 7,10 11, 14 15, 16, 19

40.25 34

20, 24 25, 28, 30 34, 38

60

51, 55 60, 68, 8040, 43, 46

20 51

Inserting 31 will require the leaf’s split and then its parent’s split:

11 15

 4, 7,10 11, 14 15, 16, 19

25 30

20, 24 25, 28 34, 38

60

51, 55 60, 68, 8040, 43, 46

5120 34

30, 31

34 40

5. Starting at the root, follow the chain of the rightmost pointers to the

(rightmost) leaf. The largest key is the last key in that leaf.

6. a. Constructing a top-down 2-3-4 tree by inserting the following list of

keys in the initially empty tree:

10, 6, 15, 31, 20, 27, 50, 44, 18.

23



Problem
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Exercises 7.4

1. Give examples of using an index in real-life applications that do not involve

computers.

2. a. Prove the equality

1 +

h−1
∑

i=1

2⌈m/2⌉
i−1

(⌈m/2⌉ − 1) + 2⌈m/2⌉
h−1

= 4⌈m/2⌉
h−1

− 1

that was used in the derivation of upper bound (7.7) for the height of a

B-tree.

b. Complete the derivation of inequality (7.7).

3. Find the minimum order of the B-tree that guarantees that the number of

disk accesses in searching in a file of 100 million records does not exceed

3. Assume that the root’s page is stored in main memory.

4. Draw the B-tree obtained after inserting 30 and then 31 in the B-tree in

Figure 7.8. Assume that a leaf cannot contain more than three items.

5. Outline an algorithm for finding the largest key in a B-tree.

6. a. A top-down 2-3-4 tree is a B-tree of order 4 with the following

modification of the insert operation. Whenever a search for a leaf for a

new key encounters a full node (i.e., a node with three keys), the node is

split into two nodes by sending its middle key to the node’s parent (or, if

the full node happens to be the root, the new root for the middle key is

created). Construct a top-down 2-3-4 tree by inserting the following list

of keys in the initially empty tree:

10, 6, 15, 31, 20, 27, 50, 44, 18.

b. What is the principal advantage of this insertion procedure compared

with the one described for 2-3 trees in Section 6.3? What is its disadvan-

tage?

7. a. ◃ Write a program implementing a key insertion algorithm in a B-tree.

b. " Write a program for visualization of a key insertion algorithm in

a B-tree.

20

+



Problem
✦ Why are “recursive splits” bad news in 

a real database index?
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Problem
✦ Levitin mentions that recursive splits can be 

avoided by “splitting on the way down”.

✦ Construct a B tree of order 4 by inserting (in 

order) into an empty tree

10, 6, 15, 31, 20, 27, 50, 44, 18 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10

10

66, 10 6, 10, 15

10, 20

6 15

20

10

6

31

27

15, 31

10

6 15, 20, 31

27, 31

10, 20

6 15 27, 31, 50

10,20,31

6 15 27 44, 50

15, 18 44, 50

b. The principal advantage of splitting full nodes (4-nodes with 3 keys)

on a way down during insertion of a new key lies in the fact that if the

appropriate leaf turns out to be full, its split will never cause a chain re-

action of splits because the leaf’s parent will always have a room for an

extra key. (If the parent is full before the insertion, it is split before the

leaf is reached.) This is not the case for the insertion algorithm employed

for 2-3 trees (see Section 6.3).

The disadvantage of splitting full nodes on the way down lies in the fact

that it can lead to a taller tree than necessary. For the list of part (a),

for example, the tree before the last one had a room for key 18 in the

leaf containing key 15 and therefore didn’t require a split executed by the

top-down insertion.

7. n/a

24

10

10

66, 10 6, 10, 15

10, 20

6 15

20

10

6

31

27

15, 31

10

6 15, 20, 31

27, 31

10, 20

6 15 27, 31, 50

10,20,31

6 15 27 44, 50

15, 18 44, 50

b. The principal advantage of splitting full nodes (4-nodes with 3 keys)

on a way down during insertion of a new key lies in the fact that if the

appropriate leaf turns out to be full, its split will never cause a chain re-

action of splits because the leaf’s parent will always have a room for an

extra key. (If the parent is full before the insertion, it is split before the

leaf is reached.) This is not the case for the insertion algorithm employed

for 2-3 trees (see Section 6.3).

The disadvantage of splitting full nodes on the way down lies in the fact

that it can lead to a taller tree than necessary. For the list of part (a),

for example, the tree before the last one had a room for key 18 in the

leaf containing key 15 and therefore didn’t require a split executed by the

top-down insertion.

7. n/a

24

10

10

66, 10 6, 10, 15

10, 20

6 15

20

10

6

31

27

15, 31

10

6 15, 20, 31

27, 31

10, 20

6 15 27, 31, 50

10,20,31

6 15 27 44, 50

15, 18 44, 50

b. The principal advantage of splitting full nodes (4-nodes with 3 keys)

on a way down during insertion of a new key lies in the fact that if the

appropriate leaf turns out to be full, its split will never cause a chain re-

action of splits because the leaf’s parent will always have a room for an

extra key. (If the parent is full before the insertion, it is split before the

leaf is reached.) This is not the case for the insertion algorithm employed

for 2-3 trees (see Section 6.3).

The disadvantage of splitting full nodes on the way down lies in the fact

that it can lead to a taller tree than necessary. For the list of part (a),

for example, the tree before the last one had a room for key 18 in the

leaf containing key 15 and therefore didn’t require a split executed by the

top-down insertion.

7. n/a

24

10

10

66, 10 6, 10, 15

10, 20

6 15

20

10

6

31

27

15, 31

10

6 15, 20, 31

27, 31

10, 20

6 15 27, 31, 50

10,20,31

6 15 27 44, 50

15, 18 44, 50

b. The principal advantage of splitting full nodes (4-nodes with 3 keys)

on a way down during insertion of a new key lies in the fact that if the

appropriate leaf turns out to be full, its split will never cause a chain re-

action of splits because the leaf’s parent will always have a room for an

extra key. (If the parent is full before the insertion, it is split before the

leaf is reached.) This is not the case for the insertion algorithm employed

for 2-3 trees (see Section 6.3).

The disadvantage of splitting full nodes on the way down lies in the fact

that it can lead to a taller tree than necessary. For the list of part (a),

for example, the tree before the last one had a room for key 18 in the

leaf containing key 15 and therefore didn’t require a split executed by the

top-down insertion.

7. n/a

24

10

10

66, 10 6, 10, 15

10, 20

6 15

20

10

6

31

27

15, 31

10

6 15, 20, 31

27, 31

10, 20

6 15 27, 31, 50

10,20,31

6 15 27 44, 50

15, 18 44, 50

b. The principal advantage of splitting full nodes (4-nodes with 3 keys)

on a way down during insertion of a new key lies in the fact that if the

appropriate leaf turns out to be full, its split will never cause a chain re-

action of splits because the leaf’s parent will always have a room for an

extra key. (If the parent is full before the insertion, it is split before the

leaf is reached.) This is not the case for the insertion algorithm employed

for 2-3 trees (see Section 6.3).

The disadvantage of splitting full nodes on the way down lies in the fact

that it can lead to a taller tree than necessary. For the list of part (a),

for example, the tree before the last one had a room for key 18 in the

leaf containing key 15 and therefore didn’t require a split executed by the

top-down insertion.

7. n/a

24



Problem
✦ Levitin mentions that recursive splits can be 

avoided by “splitting on the way down”

✦ What are the advantages and disadvantages of 

this variation (called a top-down B tree)?

!61

10

10

66, 10 6, 10, 15

10, 20

6 15

20

10

6

31

27

15, 31

10

6 15, 20, 31

27, 31

10, 20

6 15 27, 31, 50

10,20,31

6 15 27 44, 50

15, 18 44, 50

b. The principal advantage of splitting full nodes (4-nodes with 3 keys)

on a way down during insertion of a new key lies in the fact that if the

appropriate leaf turns out to be full, its split will never cause a chain re-

action of splits because the leaf’s parent will always have a room for an

extra key. (If the parent is full before the insertion, it is split before the

leaf is reached.) This is not the case for the insertion algorithm employed

for 2-3 trees (see Section 6.3).

The disadvantage of splitting full nodes on the way down lies in the fact

that it can lead to a taller tree than necessary. For the list of part (a),

for example, the tree before the last one had a room for key 18 in the

leaf containing key 15 and therefore didn’t require a split executed by the

top-down insertion.

7. n/a

24

10

10

66, 10 6, 10, 15

10, 20

6 15

20

10

6

31

27

15, 31

10

6 15, 20, 31

27, 31

10, 20

6 15 27, 31, 50

10,20,31

6 15 27 44, 50

15, 18 44, 50

b. The principal advantage of splitting full nodes (4-nodes with 3 keys)

on a way down during insertion of a new key lies in the fact that if the

appropriate leaf turns out to be full, its split will never cause a chain re-

action of splits because the leaf’s parent will always have a room for an

extra key. (If the parent is full before the insertion, it is split before the

leaf is reached.) This is not the case for the insertion algorithm employed

for 2-3 trees (see Section 6.3).

The disadvantage of splitting full nodes on the way down lies in the fact

that it can lead to a taller tree than necessary. For the list of part (a),

for example, the tree before the last one had a room for key 18 in the

leaf containing key 15 and therefore didn’t require a split executed by the

top-down insertion.

7. n/a

24


