CS 350 Algorithms and Complexity

Winter 2019
Lecture 14: Greedy Algorithms
(slides based on those of Mark Jones)

Andrew P. Black

Department of Computer Science
Portland State University

Greedy Algorithms

\downarrow Solves an optimization problem by breaking it into a sequence of steps, and making the best choice at each step.

- Key idea: a series of locally-optimal choices yields a globally-optimal choice.
- Not all problems can be solved by Greedy Algorithms; if the problem forms a matroid, then it can be so solved.

Example: making change

Example: making change

\uparrow What is the smallest number of US coins (denominations $1 \$, 5 \phi, 10 \phi$ and $25 \$$) that can be used to make up 41\$?

Example: making change

\uparrow What is the smallest number of US coins (denominations $1 \$, 5 \phi, 10 \phi$ and $25 \$$) that can be used to make up 41\$?

+ Solve the problem using a Greedy Algorithm

Example: making change

\uparrow What is the smallest number of US coins (denominations $1 \$, 5 \phi, 10 \phi$ and 25ϕ) that can be used to make up 41\$?

+ Solve the problem using a Greedy Algorithm
+ Numeric answer

Example: making change

\uparrow What is the smallest number of US coins (denominations $1 \$, 5 \phi, 10 \phi$ and 25ϕ) that can be used to make up 41\$?

+ Solve the problem using a Greedy Algorithm
+ Numeric answer
\uparrow Now suppose that the US had a $20 \$$ coin (as does the UK, for example). Can you still solve the problem using a Greedy Algorithm?

Example: making change

\checkmark What is the smallest number of US coins (denominations $1 \$, 5 \phi, 10 \phi$ and 25ϕ) that can be used to make up 41\$?

+ Solve the problem using a Greedy Algorithm
+ Numeric answer
\uparrow Now suppose that the US had a $20 \$$ coin (as does the UK, for example). Can you still solve the problem using a Greedy Algorithm?
A. Yes

Example: making change

\checkmark What is the smallest number of US coins (denominations $1 \$, 5 \phi, 10 \phi$ and 25ϕ) that can be used to make up 41\$?

+ Solve the problem using a Greedy Algorithm
+ Numeric answer
\checkmark Now suppose that the US had a $20 \$$ coin (as does the UK, for example). Can you still solve the problem using a Greedy Algorithm?
A. Yes
b. No

Example: Knapsack problem

item	weight	value	
1	3	$\$ 25$	
2	2	$\$ 20$	
3	1	$\$ 15$	
4	4	$\$ 40$	
5	5	$\$ 50$	

Example: Knapsack problem

\uparrow This is the instance of the Knapsack problem that we solved previously:

item	weight	value	
1	3	$\$ 25$	
2	2	$\$ 20$	
3	1	$\$ 15$	
4	4	$\$ 40$	
4	5	$\$ 50$	

Example: Knapsack problem

- This is the instance of the Knapsack problem that we solved previously:

| item | weight | value | |
| :---: | :---: | :---: | :--- | :--- |
| 1 | 3 | $\$ 25$ | |
| 2 | 2 | $\$ 20$ | |
| 3 | 1 | $\$ 15$ | , |
| 4 | 4 | $\$ 40$ | |
| 4 | 5 | $\$ 50$ | |

* What is the "greedy solution"?
A. Item 5
B. Items 3 \& 5
C. Items $2 \& 4$
D. Items 1 \& 5
E. None of the above

Example: Knapsack problem

\uparrow This is the instance of the Knapsack problem that we solved previously:

item	weight	value	
1	3	$\$ 25$	
2	2	$\$ 20$	
3	1	$\$ 15$	
4	4	$\$ 40$	
5	5	$\$ 50$	

+ What is the "greedy solution"
+ Is this optimal?
A. Yes
B. No

Example: Knapsack problem

\star This is the instance of the Knapsack problem that we solved previously:

item	weight	value	
1	3	$\$ 25$	
2	2	$\$ 20$	
3	1	$\$ 15$	
4	4	$\$ 40$	
5	5	$\$ 50$	

+ What is the "greedy solution"
+ Is this optimal?
+ Will a greedy algorithm always work?
- Suppose that $W=5$? $W=3$?

Example: Knapsack problem

\downarrow This is the instance of the Knapsack problem that we solved previously:

item	weight	value	
1	3	$\$ 25$	
2	2	$\$ 20$	
3	1	$\$ 15$	
4	4	$\$ 40$	
5	5	$\$ 50$	

+ What is the "greedy solution"
+ Is this optimal?
+ Will a greedy algorithm always work?
- Suppose that $W=5$? $W=3$?
A. Yes
B. No

Example: Knapsack problem

\star This is the instance of the Knapsack problem that we solved previously:

item	weight	value	
1	3	$\$ 25$	
2	2	$\$ 20$	
3	1	$\$ 15$	
4	4	$\$ 40$	
5	5	$\$ 50$	

+ What is the "greedy solution"
+ Is this optimal?
+ Will a greedy algorithm always work?
- Suppose that $W=5$? $W=3$?

Huffman Coding

The Coding Problem:

\uparrow A data file contains
100,000 "characters"
each of which is either
an a, b, c, d, e, or f
\downarrow Using three bits for each character takes:
$3 \times 100,000=300,000$ bits
\uparrow How could we do better?

The Coding Problem:

\checkmark A data file contains 100,000 "characters" each of which is either an a, b, c, d, e or f

Letter Code a 000
b 001

C 010

- Using three bits for each character takes:
$3 \times 100,000=300,000$ bits
d 011
e $\quad 100$
f $\quad 101$
\uparrow How could we do better?

Using Frequency Information:

- Variable length coding gives shorter codes to more frequent letters.
- Encoded size:
(45 * 1
$+(13+12+16+9) * 2$
+5 * 3) * 1,000
$=160,000$
\downarrow A saving of of over 46\%
\star Is there a flaw?

Using Frequency Information:

- Variable length coding gives shorter codes to more frequent letters.
- Encoded size:
(45 * 1
$+(13+12+16+9) * 2$
+5 * 3) * 1,000
$=160,000$
\downarrow A saving of of over 46\%
\star Is there a flaw?
A. Yes
B. No

Unique Decoding:

\checkmark What string does the code 10000011010 represent?
\checkmark One reading:

$$
\begin{array}{ccccc}
100 & 0 & 00 & 11 & 01 \\
\text { f } & \text { a } & d & e & b
\end{array}
$$

Letter Frequency Code

a	45,000	0
b	13,000	01
c	12,000	10
d	16,000	00
e	9,000	11
f	5,000	100

\checkmark Oh dear: we've lost too much of the information that was in the original!

Use a Prefix-free Code

\& Prefix(-free) property: no codeword is a prefix of another codeword
\uparrow Encoded size:
(45 * 1
$+(13+12+16) * 3$
$+(9+5) * 4) * 1,000$
$=224,000$
\downarrow Still reduce size by ~25\%
\uparrow And this time, it can be decoded!

Use a Prefix-free Code

\uparrow Prefix(-free) property: no codeword is a prefix of another codeword
\uparrow Encoded size:
(45 * 1
$+(13+12+16) * 3$
$+(9+5) * 4) * 1,000$
$=224,000$
\downarrow Still reduce size by ~25\%
\checkmark And this time, it can be decoded!

Letter	Frequency	Code
a	45,000	0
b	13,000	101
c	12,000	100
d	16,000	111
e	9,000	1101
f	5,000	1100

Prefix Coding \& Decoding:

- A prefix code can achieve compression that is optimal among any character code
\uparrow Code can be represented by a tree:

Prefix Coding \& Decoding:

\checkmark A prefix code can achieve compression that is optimal among any character code
\uparrow Code can be represented by a tree:

Letter	Frequency	Code
a	45,000	0
b	13,000	101
c	12,000	100
d	16,000	111
e	9,000	1101
f	5,000	1100

Frequencies \& Costs:

+ For any given coding tree T, the number of bits required to code a message is:

$$
\operatorname{cost}(T)=\sum_{c \in C} \operatorname{freq}^{(c) \cdot \operatorname{depth}_{T}(c)}
$$

\uparrow We can use a table to avoid doing a calculation more than once:
initialize a empty priority queue, Q
add a leaf node to Q for each character
 while ($|Q|>1$) do
$\mathrm{I}=$ extractMin(Q)
$r=$ extractMin(Q)
$\mathrm{t}=$ new tree node with left=I, right=r, freq=I.freq+r.freq
insert t into Q
return extractMin(Q)
\checkmark Complexity?
\downarrow Complexity for computing frequencies?

\uparrow We can use a table to avoid doing a calculation more than once:
initialize a empty priority queue, Q
add a leaf node to Q for each character
 while ($|\mathrm{Q}|>1$) do
$\mathrm{I}=$ extractMin(Q)
Greedy choices!
$r=$ extractMin(Q)
$t=$ new tree node with left=l, right=r, freq=l.freq+r.freq
insert t into Q
return extractMin(Q)
\downarrow Complexity?
\downarrow Complexity for computing frequencies?

\uparrow We can use a table to avoid doing a calculation more than once:
initialize a empty priority queue, Q add a leaf node to Q for each character
 while ($|\mathrm{Q}|>1$) do
$\mathrm{I}=$ extractMin(Q)
Greedy choices!
$r=$ extractMin(Q)
$t=$ new tree node with left=l, right=r, freq=l.freq+r.freq
insert t into Q
return extractMin $(\mathrm{Q}) \quad \begin{gathered}\text { Last element in the } \\ \text { queue }\end{gathered}$
\downarrow Complexity?
\downarrow Complexity for computing frequencies?

Example:

5	9	12	13	16
f	e	C	b	d

Example:

Example:

Example:

Example:

Example:

"Optimal Subproblems"

\checkmark At each iteration, our task is to find an optimal code for |Q| items
\checkmark We pick the pair of characters that have the lowest frequencies
\checkmark We reduce the original problem to the task of finding an optimal code for $|\mathrm{Q}|-1$ items
\checkmark We can prove that the resulting coding scheme is indeed optimal

Huffman Trees (2nd Example)

\star Build the optimal Huffman code for the following set of frequencies
a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

$\underbrace{1}_{a} \underset{\mathrm{~b}}{1} \underset{\mathrm{c}}{2} \underset{\mathrm{~d}}{3} \underset{\mathrm{f}}{5} \underset{\mathrm{f}}{8} \underset{\mathrm{~h}}{13}$

2) 2

$$
\underbrace{3}_{\mathrm{d}} \underset{\mathrm{e}}{5} \underset{\mathrm{f}}{8} \underset{\mathrm{~h}}{8}
$$

Correctness of Huffman Code

Proof Idea

+ Step 1: Show that this problem satisfies the greedy choice property, that is, if a greedy choice is made by Huffman's algorithm, an optimal solution remains possible.
+ Step 2: Show that this problem has an optimal substructure property, that is, an optimal solution to Huffman's algorithm contains optimal solutions to subproblems.
+ Step 3: Conclude correctness of Huffman's algorithm using step 1 and step 2.

Lemma: Greedy Choice Property

Let c be an alphabet in which each character c has frequency f[c]. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Lemma: Optimal Substructure Property

- Let T be a full binary tree representing an optimal prefix code over an alphabet C, where each $c \in C$ has frequency f_{c}.
- Consider any two characters x and y that appear as sibling leaves in the tree T.
- Consider alphabet $C^{\prime}=C-\{x, y\} \cup\{z\}$ with frequency $f_{z}=f_{x}+f_{y}$, and label with z the parent of x and y
- Then $T^{\prime}=T-\{x, y\}$ represents an optimal code for alphabet C^{\prime}
T represents an optimal prefix code for alphabet C
x and y appear as sibling leaves

T' represents an optimal prefix code for alphabet C^{\prime}
x and y replaced by z

Priority Queues

Priority Queues

\& A Priority Queue is a data structure optimized for finding and removing the element with the max (or min) key. It has operations to:

* find the highest priority element (with max key)
+ delete the highest priority element
+ add a new item
\uparrow We want to avoid insertion sort at each step
+ Complexity of insertion would be O(n)
\uparrow We use a Heap (Levitin §6.4) - a particular kind of balanced tree.

The ideal:

- $\mathrm{O}(\log \mathrm{n})$ complexity
- Everybody happy

The ideal:

- $\mathrm{O}(\log \mathrm{n})$ complexity
- Everybody happy

The (possible) reality:

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:
1

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality: Unbªlanced!

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

- O(n) complexity
* Could have used lists!

Unbalanced!

The ideal:

- O(log n) complexity
- Everybody happy

The (possible) reality:

- O(n) complexity
* Could have used lists!

What does "balanced" mean?

?

Too constraining!

\star A balanced binary tree of height h has exactly n_{h} elements, where:

$$
n_{-1}=0 \text { and } n_{(h+1)}=1+2 n_{h^{i}}
$$

$\$$ So if T is perfectly balanced, then:

$$
\text { size } T \in\left\{0,1,3,7,15,31,63, \ldots, 2^{h-1}, \ldots\right\} \text {; }
$$

- There is no perfectly balanced tree with any other number of elements.

A perfectly balanced tree:

A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...

A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...

A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...

A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...

A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...

A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...

A perfectly balanced tree:

Think of this as an empty frame that we can fill with elements ...
... filling the rows up one at a time makes the tree as balanced as possible!

Number the nodes - in binary!

Number the nodes - in binary!

There is a common pattern at each node:

Number the nodes - in binary!

There is a common pattern at each node:

Multiply by 2
Multiply by 2 and add 1

Embed a tree in an array

+ A tree with $t<2^{n}$ elements can be implemented using an array a and variable t:
- elements a[1..t], (a[t+1 .. $\left.2^{n}-1\right]$ are empty)
- the root is held in position a[1]
- left child of node a[i] is a[2i]
- right child of node $a[i]$ is $a[2 i+1]$
- parent of node a[i] is a[$\lfloor i / 2\rfloor]$
* True or False: all elements of the array with index $\geq 2^{n-1}$ represent leaf nodes

Too good to be true?

So now we can build (almost) perfectly balanced binary trees with:

+ the smallest possible height for any number of elements stored;
$+\mathrm{O}(1)$ complexity for addition.

Where's the flaw?

Out of order!

- Building a tree in this way does not give binary search trees:

- We cannot preserve the binary search tree invariant and retain O(1) time for insertion.

Properties of a Heap:

1. Shape Property:

The binary tree is essentially complete, that is, all levels are filled except some of the rightmost leaves may be missing in the last level

Properties of a Heap:

2. Parental dominance Property:

The key in each node is greater than or equal to the keys of its children. So, all values in L are $\leq n$, and all values in R are also $\leq n$

Inserting an element:

The new element should be added here (takes O(1) time)

Inserting an element:

New value, a

Inserting an element:

These nodes might not satisfy the parental

But if $a>b$, then we need to do some work to restore the heap property.

Inserting an element:

These nodes might not satisfy the parental dominance property!

But if $a>b$, then we need to do some work to restore the heap property.

Start by swapping a and b ...

Inserting an element:

These nodes might not satisfy the parental

Repeat until we're done.
Takes O(log n) time: we have to worry about the nodes on only one path in the tree.

Implementation:

```
heapInsert(value) \{
    size \(\leftarrow\) size + 1
    int \(i \leftarrow\) size;
    while (i>1 ^ h[parent(i)]<value) do \{
        \(\mathrm{h}[\mathrm{i}] \leftarrow \mathrm{h}[\operatorname{parent}(\mathrm{i})]\)
        i \(\leftarrow \operatorname{parent}(i)\)
```

 \}
 \(h[i] ~ \leftarrow v a l u e ;\)
 \}
$h[]$ is an array containing the heap elements;
size is the number of entries in the heap that have been used.

Removing maximal element:

Finding the maximum element is easy! (takes O(1) time)

Removing maximal element:

We can fill the gap with the last value in the array (takes O(1) time)

Removing maximal element:

We can fill the gap with the last value in the array
(takes O(1) time)

Removing maximal element:

We can fill the gap with the last value in the array
(takes O(1) time)

Removing maximal element:

We can fill the gap with the last value in the array
(takes O(1) time)

Removing maximal element:

If $a>b$ and $a>c$, then this is a heap, and we are done!

Removing maximal element:

Otherwise, suppose $b>a$ and $b>c$.
Then we can swap a with b ...

Removing maximal element:

But now this node

Repeat until we're done.
Takes $\mathrm{O}(\log n)$ time: we have to worry about the nodes on only one path in the tree.

Implementation:

heapExtractMax() \{
size \leftarrow size - 1
int max $\leftarrow \mathrm{h}[1]$;
$\mathrm{h}[1] \quad \mathrm{h}[$ size];
heapify(1);
return max;
\}

Implementation:

```
heapify(i) {
    l }\leftarrow left(i); r \leftarrow right(i)
    largest \leftarrow i;
    if (l\leqsize) {
        if (h[l]>h[i])
            largest \leftarrow l;
        if (r\leqsize ^ h[r]>h[largest])
            largest \leftarrow r;
    }
    if (largest\not=i) {
        h.swap(i, largest);
        heapify(largest);
    }
}
```


Priority queues:

- A priority queue is a variation on the queue data structure with a "highest-priority first out" policy.
\uparrow More concretely, a priority queue supports operations to:
+ Add an element, and
- Remove highest priority element.
\uparrow Heaps can be used as an implementation of priority queues-one of the most common uses of heaps in practice.

Building a heap:

Suppose we start with an arbitrary array of values.
Run heapify on each of the interior nodes, starting at the bottom, and working back to the root. Now we have a heap!

Implementation:

buildHeap() \{
size $\leftarrow \mathrm{h} . l \mathrm{length} ;$
for i from size/2 downto 1 do \{ heapify(i);
\}
\}

Complexity:

\uparrow To a first approximation: there are $\mathrm{O}(n)$ calls to heapify, and $\mathrm{O}(\log n)$ steps for each such call, giving a total:

$$
\mathrm{O}(n \log n)
$$

Complexity:

To a first approximation: there are $\mathrm{O}(n)$ calls to heapify, and $\mathrm{O}(\log n)$ steps for each such call, giving a total:

$$
\mathrm{O}(n \log n)
$$

- But we can do better than this!
- Many of the calls to heapi fy involve trees with heights that are $<\log n$.
\uparrow The total cost of buildHeap is:

$$
\sum_{h=0}^{\lceil\lg n\rceil}\left\lceil\frac{n}{2^{h+1}}\right\rceil O(h)
$$

Simplifying:

$$
\begin{aligned}
\sum_{h=0}^{\lceil\lg n\rceil} \frac{n}{2^{h+1}} O(h) & =O\left(n \sum_{h=0}^{\lceil\lg n\rceil} \frac{h}{2^{h+1}}\right) \\
& \leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)=O(n)
\end{aligned}
$$

\uparrow The total cost of buildHeap is:

$$
\sum_{h=0}^{\lceil\lg n\rceil}\left\lceil\frac{n}{2^{h+1}}\right\rceil O(h)
$$

\# trees of
height h
Simplifying:

$$
\begin{aligned}
\sum_{h=0}^{\lceil\lg n\rceil} \frac{n}{2^{h+1}} O(h) & =O\left(n \sum_{h=0}^{\lceil\lg n\rceil} \frac{h}{2^{h+1}}\right) \\
& \leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)=O(n)
\end{aligned}
$$

\uparrow The total cost of buildHeap is:

Simplifying:

$$
\begin{aligned}
\sum_{h=0}^{\lceil\lg n\rceil} \frac{n}{2^{h+1}} O(h) & =O\left(n \sum_{h=0}^{\lceil\lg n\rceil} \frac{h}{2^{h+1}}\right) \\
& \leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)=O(n)
\end{aligned}
$$

\uparrow The total cost of buildHeap is:

cost of heapify on trees of height h

Simplifying:

$$
\begin{aligned}
\sum_{h=0}^{\lceil\lg n\rceil} \frac{n}{2^{h+1}} O(h) & =O\left(n \sum_{h=0}^{\lceil\lg n\rceil} \frac{h}{2^{h+1}}\right) \\
& \leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)=O(n)
\end{aligned}
$$

\uparrow The total cost of buildHeap is:

Simplifying:

$$
\begin{aligned}
\sum_{h=0}^{\lceil\lg n\rceil} \frac{n}{2^{h+1}} O(h) & =O\left(n \sum_{h=0}^{\lceil\lg n\rceil} \frac{h}{2^{h+1}}\right) \\
& \leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)=O(n)
\end{aligned}
$$

\uparrow The total cost of buildHeap is:

Simplifying:

$$
\begin{aligned}
\sum_{h=0}^{\lceil\lg n\rceil} \frac{n}{2^{h+1}} O(h) & =O\left(n \sum_{h=0}^{\lceil\lg n\rceil} \frac{h}{2^{h+1}}\right) \\
& \leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)=O(n)
\end{aligned}
$$

\uparrow The total cost of buildHeap is:

$\bigcirc(h)$
cost of heapify on trees of height h

Simplifying:
$\sum_{h=0}^{\lceil\lg n\rceil} \frac{n}{2^{h+1}} O(h)=O\left(n \sum_{h=0}^{\lceil\lg n\rceil} \frac{h}{2^{h+1}}\right)$
converges to $2 \longrightarrow O\left(n \sum_{h=0}^{\infty} \frac{h}{2^{h}}\right)=O(n)$

Spanning Trees

Spanning Trees

\checkmark If e is a minimum-weight edge in a connected graph, then e must be an edge in at least one minimum spanning tree

* True or False?

Spanning Trees

\triangleleft If e is a minimum-weight edge in a connected graph, then e must be an edge in all minimum spanning trees of the graph

+ True or False?

Spanning Trees

\uparrow If every edge in a connected graph G has a distinct weight, then G must have exactly one minimum spanning tree

+ True or False?

Kruskal's Algorithm

Building bridges:

- Suppose that we want to link a group of n small islands together with bridges.
\uparrow There will be many possible ways to do this, each corresponding to a connected graph, with the islands as vertices and bridges as edges.
\checkmark What is the minimum number of bridges that we will need to build?

Spanning trees:

- A spanning tree T of a connected graph $G=(V, E)$ is a subgraph of G that is:
- connected;
- acyclic;
- includes all of V as vertices.

Spanning trees:

- A spanning tree T of a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subgraph of G that is:
- connected;
- acyclic;
- includes all of V as vertices.

Spanning trees:

- A spanning tree T of a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subgraph of G that is:
- connected;
- acyclic;
- includes all of V as vertices.

Spanning trees:

- A spanning tree T of a connected graph $G=(V, E)$ is a subgraph of G that is:
- connected;
- acyclic;
- includes all of V as vertices.

- Any spanning tree has $|\mathrm{V}|-1$ edges.

Growing a forest:

\uparrow Find a spanning tree for connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:

```
partition V into IVI singleton sets of the form {v}.
let ET be an empty set of edges.
for each edge (u,v) in E:
    let }\mp@subsup{S}{u}{}\mathrm{ be the set containing u
    let }\mp@subsup{S}{v}{}\mathrm{ be the set containing v
    if Su}\not=\mp@subsup{S}{v}{}\mathrm{ , then
        replace Su}\mathrm{ and S S with Su u S S
        add (u,v) to ET
return (V, ET) as the spanning tree
```

\uparrow We start with |V| sets ...
... we end up with just 1 set.
\uparrow Hence: $|\mathrm{V}|-1$ unions, $|\mathrm{V}|-1$ edges added to E_{T}.

\bigcirc
○

○
O

○

O

O

\bigcirc
\bigcirc
\bigcirc

○

\bigcirc

$$
\begin{aligned}
& K \\
& K i
\end{aligned}
$$

$$
\begin{aligned}
& K W \\
& K V
\end{aligned}
$$

Calculating connected components:

- What if $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is not connected?

```
partition V into IVI singleton sets of the form {v}.
let ET be an empty set of edges.
for each edge (u,v) in E:
        let }\mp@subsup{S}{u}{}\mathrm{ be the set containing u
        let }\mp@subsup{S}{v}{}\mathrm{ be the set containing v
NB: exactly the same
algorithm as before,
but repeated for
convenience!
```

```
if S}\mp@subsup{S}{u}{}\not=\mp@subsup{S}{v}{}\mathrm{ , then
        replace S S and S S with S S u S S
        add (u,v) to ET
```

- We end up with c distinct sets S_{u}, where c is the number of connected components of G;
- E_{T} is a spanning forest for G , with $|\mathrm{V}|-\mathrm{c}$ edges.

\bigcirc
\bigcirc
\bigcirc

\bigcirc
\bigcirc

$$
\begin{aligned}
& n \\
& k i
\end{aligned}
$$

$$
\begin{aligned}
& N \\
& k i
\end{aligned}
$$

Union-find:

- The operations we need are:
- Make a singleton set;
- Test if two sets are equal;
- Union two sets together.
- There is a simple data structure that we can use to implement these operations.

Implementation:

- To make a singleton set:
- To test if two sets are the same:

- Test if the representatives are the same.
- To merge two sets:

Complexity:

- A sequence of m operations can take $\Theta\left(m^{2}\right)$ time (amortized time per operation is $\Theta(\mathrm{m})$)
- More sophisticated variations are possible, with better complexity bounds.
- A tree based approach
- Optimization heuristics:
- Union by rank
- Path compression
- See Levitin §9.2 or CLRS Chapter 21 for more details.

Quick Union:

- Uses Tree-based representation of sets
- root of tree used as representative of set

(a)

Tree representing
$\{1,4,5,2\}$ and $\{3,6\}$

(b)

Path Compression

- Amortized cost can be reduced by updating pointers to point directly to the root when they are queried.
- See Levitin §9.2 or CLRS Chapter 21 for more details.

Back to ...

Kruskal's Algorithm

Growing a tree:

- Suppose that we have a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and pick an arbitrary vertex $r \in V$:
let $W \leftarrow\{r\}, \mathrm{E}_{\mathrm{T}} \leftarrow$ empty set;
while $(W \neq V)$ do \{
find an edge (u,v) with $u \in W$ and $v \notin W$;
$W \leftarrow W \cup\{v\} ;$
$\mathrm{E}_{\mathrm{T}} \leftarrow \mathrm{E}_{\mathrm{T}} \cup\{(\mathrm{u}, \mathrm{v})\}$;
\}

Growing a tree:

- Suppose that we have a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and pick an arbitrary vertex $r \in V$:

$$
\text { let } W \leftarrow\{r\}, \mathrm{E}_{\mathrm{T}} \leftarrow \text { empty set; }
$$

Growing a tree:

- Suppose that we have a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and pick an arbitrary vertex $r \in V$:

Growing a tree:

- Suppose that we have a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and pick an arbitrary vertex $r \in V$:

Growing a tree:

- Suppose that we have a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and pick an arbitrary vertex $\mathrm{r} \in \mathrm{V}$:

○
○

○
O
O

○

\bigcirc
\bigcirc
\bigcirc

\bigcirc
\bigcirc
\bigcirc
\bigcirc
\bigcirc
\bigcirc
o

Minimum Spanning Trees

Back to bridge building ...

- To link a group of n small islands together with bridges, we will need to build at least ($n-1$) bridges; any spanning tree will do for this.
- But now suppose that we want to minimize the total span of all the bridges as well ... How should we proceed?

Minimum spanning trees:

- To take account of the distances between the islands, we need to use a labeled, or weighted graph.

- A minimum spanning tree (MST) is a spanning tree that minimizes the total of the weights on its edges.
- Not all spanning trees have this property.

The MST problem:

- Suppose that we have a connected, undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, with a numerical weighting $w(u, v)$ for each edge (u, v).
Problem: Find an acyclic subset $T \subseteq E$ that connects all of the vertices in V, and minimizes:

$$
\sum\{w(u, v) \mid(u, v) \in T\}
$$

Solution: We will look for an algorithm of the form:

```
ET
while ( }\mp@subsup{E}{T}{}\mathrm{ is not a spanning tree)
    add an edge to ET
```

- At each stage we will ensure that E_{T} is a subset of a MST.
- Obviously true when we start ... the trick is to ensure that the invariant is preserved when we add an element ...

Greedy Choice

\uparrow Whenever we add an edge, let's make the Greedy choice:

+ add the edge with the lowest weight that does not form a cycle
+ Edges that do form a cycle are not needed in the spanning tree
\uparrow Does making the Greedy choice ever add an edge that we don't need?

A key result:

Suppose that we partition V into two sets (a "cut"), and that none of the edges in E_{T} crosses between the two sets (the cut "respects" E_{T}).

Suppose also that (u, v) is an edge that crosses between the two halves, and that no other edge that crosses has lower weight - (u, v) is a "light edge".

Claim: $\mathrm{E}_{\mathrm{T}} \cup\{(\mathrm{u}, \mathrm{v})\}$ is a subset of a minimum spanning tree: (u, v) is "safe" for E_{T}.

Proof:

Proof:

Proof:

Proof:

$\downarrow \mathrm{E}_{\mathrm{T}}$ is a subset of some minimum spanning tree T .

Proof:

$\downarrow \mathrm{E}_{\mathrm{T}}$ is a subset of some minimum spanning tree T .

* Because u and v are on opposite sides, there is an edge e in T that crosses the cut.

Proof:

$\downarrow \mathrm{E}_{\mathrm{T}}$ is a subset of some minimum spanning tree T .

* Because u and v are on opposite sides, there is an edge e in T that crosses the cut.

Proof:

$\uparrow \mathrm{E}_{\mathrm{T}}$ is a subset of some minimum spanning tree T .

* Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
\uparrow By assumption weight of $(u, v) \leq$ the weight of e.

Proof:

$\uparrow \mathrm{E}_{\mathrm{T}}$ is a subset of some minimum spanning tree T .

* Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
- By assumption weight of $(u, v) \leq$ the weight of e.
- So if we replace e with (u, v), we get a minimum spanning tree ... which contains $\mathrm{E}_{\mathrm{T}} \cup\{(\mathrm{u}, \mathrm{v})\}$.

Proof:

$\downarrow \mathrm{E}_{\mathrm{T}}$ is a subset of some minimum spanning tree T .

* Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
\uparrow By assumption weight of $(u, v) \leq$ the weight of e.
- So if we replace e with (u, v), we get a minimum spanning tree ... which contains $\mathrm{E}_{\mathrm{T}} \cup\{(\mathrm{u}, \mathrm{v})\}$.

Proof:

$\downarrow \mathrm{E}_{\mathrm{T}}$ is a subset of some minimum spanning tree T .

* Because u and v are on opposite sides, there is an edge e in T that crosses the cut.
- By assumption weight of $(u, v) \leq$ the weight of e.
- So if we replace e with (u, v), we get a minimum spanning tree ... which contains $\mathrm{E}_{\mathrm{T}} \cup\{(\mathrm{u}, \mathrm{v})\}$.

Corollary:

* Suppose that:
- C is a connected component in the forest $\left(\mathrm{V}, \mathrm{E}_{\mathrm{T}}\right)$;
- (u, v) is a light edge connecting C to some other component in G.
\uparrow Then (u, v) is safe for E_{T}.
\uparrow Follows directly by using a cut to separate the vertices in C from the vertices outside.
\star Requiring C to be a connected component of $\left(\mathrm{V}, \mathrm{E}_{\mathrm{T}}\right)$ ensures that no edge in E_{T} crosses the cut.

Kruskal's algorithm:

+ Given a connected graph G=(V, E):

```
ET
for each v in V
    make a singleton set {v}
```

sort the edges of E by nondecreasing weight
for each edge (u, v) in E
if $S_{u} \neq S_{v}$, then
replace S_{u} and S_{v} with $S_{u} \cup S_{v}$
add (u, v) to E_{T}

+ Complexity is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$.
+ (With our simple union-find, more like $\mathrm{O}\left(|E|^{2}\right)$)

How does this work?

- Suppose that C and D are the two connected components in the forest $\left(\mathrm{V}, \mathrm{E}_{\mathrm{T}}\right)$ that are connected by an edge (u, v).
- Then (u, v) must have the least weight of any edge between C and D (otherwise C and D would have already been connected).

Your turn!

\uparrow Apply Kruskal's algorithm to this graph:

Your turn!

\& Apply Kruskal's algorithm to this graph:

| Tree edges | List of edges (sorted by weight) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | bc_{1} | de_{2} | $\mathrm{bd}_{3} \quad \mathrm{~cd}_{4}$ | $\mathrm{ab}_{5} \quad \mathrm{ad}_{6} \quad \mathrm{ce}_{6}$ |

Your turn!

\& Apply Kruskal's algorithm to this graph:

Tree edges	List of edges (sorted by weight)
bc_{1}	. $\mathrm{de}_{2} \quad \mathrm{bd}_{3} \quad \mathrm{~cd}_{4} \quad \mathrm{ab}_{5} \quad \mathrm{ad}_{6} \quad \mathrm{ce}_{6}$

Your turn!

\star Apply Kruskal's algorithm to this graph:

Tree edges	List of edges (sorted by weight)
bc_{1}	. $\mathrm{de}_{2} \quad \mathrm{bd}_{3} \quad \mathrm{~cd}_{4} \quad \mathrm{ab}_{5} \quad \mathrm{ad}_{6} \quad \mathrm{ce}_{6}$

Try it out!

\bigcirc

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Try it out!

Prim's Algorithm

Prim's algorithm:

- In Kruskal's algorithm, E_{T} is a forest whose components are combined as the algorithm runs until just one component remains.
- Suppose instead that we start with an arbitrary vertex r, and then add edges while ensuring that E_{T} is just a single tree at each stage.
- This is the essence of Prim's algorithm:

```
let }\mp@subsup{\textrm{V}}{T}{}\leftarrow{r}, \mp@subsup{E}{T}{}\leftarrow empty se
while (VT 
    find a light edge (u,v) for some }u\in\mp@subsup{V}{T}{}\mathrm{ and }v\not\in\mp@subsup{V}{T}{
    add v to VT; add (u,v) to ET
(V, ET) is the required MST
```


Why does this work?

- V_{T} cuts V into two pieces: V_{T} and $\left(\mathrm{V}-\mathrm{V}_{\mathrm{T}}\right)$;
- The edges that we add to E_{T} are light edges across the cut;
- Hence, they are safe to add.

Choosing the edges:

- Store all vertices that are not in $\left(\mathrm{V}_{\mathrm{T}}, \mathrm{E}_{\mathrm{T}}\right)$ in a priority queue Q with an extractMin operation.
- If u is a vertex in Q , what's key[u] (the value that determines u's position in Q)?
- $k e y[u]=$ minimum weight of edge from u into V_{T}
- if no such edge exists, key[u] $=\infty$.
- We maintain information about the parent (in $\left(\mathrm{V}_{\mathrm{T}}, \mathrm{E}_{\mathrm{T}}\right)$) of each vertex v in an array parent[].
- E_{T} is kept implicitly as $\{(\mathrm{v}$, parent[$[\mathrm{v}]) \mid \mathrm{v} \in \mathrm{V}-\mathrm{Q}-\{r\}\}$.
- The input is the graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and a root $\mathrm{r} \in \mathrm{V}$.

```
for each v in V
    key[v] }\leftarrow\infty\mathrm{ ;
    parent[v] \leftarrow null;
key[r] \leftarrow 0;
add all vertices in V to the queue Q.
while (Q is nonempty) {
    u }\leftarrow extractMin(Q)
    for each vertex v that is adjacent to u {
        if v Q Q and weight(u,v) < key[v] {
                parent[v] \leftarrow u;
            key[v] \leftarrow weight(u,v);
        }
    }
}
```

- The input is the graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and a root $\mathrm{r} \in \mathrm{V}$.

```
    for each v in V
    key[v] }\leftarrow\infty\mathrm{ ;
    parent[v] }\leftarrow null
key[r] \leftarrow 0;
add all vertices in V to the queue Q.
while (Q is nonempty) {
    u \leftarrow extractMin(Q);
    for each vertex v that is adjacent to u {
        if v}\inQ and weight(u,v) < key[v] {
                parent[v] }\leftarrow\textrm{u}\mathrm{ ;
                        key[v] \leftarrow weight(u,v);
            }
            }
}
```

How can this test
be implemented
in $\mathrm{O}(1)$?

- The input is the graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and a root $\mathrm{r} \in \mathrm{V}$.
for each v in V

$$
\operatorname{key}[v] \quad \leftarrow \infty \text {; }
$$

$$
\text { parent[v] } \leftarrow \text { null; }
$$

$k e y[r] \leftarrow 0$;
add all vertices in V to the queue Q .
while (Q is nonempty) \{
$u \leftarrow$ extractMin(Q);
for each vertex v that is adjacent to u \{

Complexity:

+ Assuming a binary heap ...
- Initialization takes $\mathrm{O}(|\mathrm{V}|)$ time.
- Main loop is executed |V| times, and each extractMin takes $\mathrm{O}(\log |\mathrm{V}|)$.
- The body of the inner loop is executed a total of O(|E|) times; each adjustment of the queue takes O(log $|\mathrm{V}|$) time.
+ Overall complexity: $\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \log |\mathrm{V}|)$
$=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.

Your turn!

- Apply Prim's algorithm to this graph:

Your turn!

\star Apply Prim's algorithm to this graph:

Tree vertices	Priority Queue of remaining vertices

Your turn!

* Apply Prim's algorithm to this graph:

Tree vertices	Priority Queue of remaining vertices
$\mathrm{a}(-,-)$	

Your turn!

\star Apply Prim's algorithm to this graph:

Your turn!

*Apply Prim's algorithm to this graph:

Apply Prim's Algorithm

Try it out!

