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How to Prove a Program Correct
1. Decide what programming language 

statements mean.

• Some sort of formal semantics


2. Decide what “correct” means.

• This means writing a specification of the 

problem

3. Write the program with the proof in mind

4. Check the proof mechanically.

!2



Correctness
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Correctness
✦ Original characterization:

‣ Given a specification (in a formal logic) 

and

‣ an implementation (in a programming 

language),

‣ prove that the implementation satisfies 

the specification
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Correctness
✦ Original characterization:

‣ Given a specification (in a formal logic) 

and

‣ an implementation (in a programming 

language),

‣ prove that the implementation satisfies 

the specification
✦ Maybe possible

‣ … but very, very hard
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Correctness
✦ Modern characterization
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‣ construct a program that satisfies the 

specification
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Correctness
✦ Modern characterization
‣ Given a specification
‣ construct a program that satisfies the 

specification
✦ Program and proof are written together
‣ not necessarily easy, 
‣ but much easier!
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Example
{ true }

var x: int; 

read(x); 

{ x: Integer } 
if (x mod 2 = 1) then

    { odd(x) }

    x := x + 1;

fi 
{ even(x) }
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Example
{ true }

var x: int; 

read(x); 

{ x: Integer } 
if (x mod 2 = 1) then

    { odd(x) }

    x := x + 1;

fi 
{ even(x) }
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Note: Modern notation is 
different from that of Hoare’s 
Axiomatic Basis:
the predicates are in braces, 
not program statements.



An Axiomatic Basis for 
Computer Programming 

C. A. R. HOARE 
The Queen's University of Belfast,* Northern Ireland 

In this paper an attempt is made to explore the logical founda- 

tions of computer programming by use of techniques which 

were first applied in the study of geometry and have later 

been extended to other branches of mathematics. This in- 

volves the elucidation of sets of axioms and rules of inference 

which can be used in proofs of the properties of computer 

programs. Examples are given of such axioms and rules, and 

a formal proof of  a simple theorem is displayed. Finally, it is 

argued that important advantages, both theoretical and prac- 

tical, may follow f rom a pursuance of  these topics. 

KEY WORDS AND PHRASES: axiomatic method, theory of programming' 

proofs of programs, formal language definition, programming language 

design, machine-independent programming, program documentation 

CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24 

1. Introduction 

Computer  programming is an exact science in tha t  all 

the properties of a program and all the consequences of 

executing it  in any given environment can, in principle, 

be found out from the text of the program itself by means 

of purely deductive reasoning. Deductive reasoning in- 

volves the application of valid rules of inference to sets of 

valid axioms. I t  is therefore desirable and interesting to 

elucidate the axioms and rules of inference which underlie 

our reasoning about computer programs. The exact choice 

of axioms will to some extent depend on the choice of 

programming language. For illustrative purposes, this 

paper is confined to a very simple language, which is effec- 

tively a subset of all eurrent procedure-oriented languages. 

2. Computer Arithmetic  

The first requirement in valid reasoning about a pro- 

gram is to know the properties of the elementary operations 

which it  invokes, for example, addition and multiplication 

of integers. Unfortunately, in several respects computer 

arithmetic is not the same as the arithmetic familiar to 

mathematicians, and it  is necessary to exercise some care 

in selecting an appropriate set of axioms. For example, the 

axioms displayed in Table I are rather a small selection 

of axioms relevant to integers. From this incomplete set 

* Depurtment of Computer Science 

of axioms it is possible to deduce such simple theorems as: 

x = x + y X O  

y < r  ~ r  + y  X q = ( r -  y) + y  X (1 + q )  

The proof of the second of these is: 

A5 ( r - - y )  + y X ( l + q )  

= ( r - - y ) +  ( y X l + y X q )  

A9 = ( r - -  y) + (y + y  X q) 

A3 = ( ( r - - y ) + y ) + y X q  

A6 = r + y X q p rov idedy  < r 

The axioms A1 to A9 are, of course, true of the tradi- 

tional infinite set of integers in mathematics. However, 

they are also true of the finite sets of "integers" which are 

manipulated by computers provided that  they are con- 

fined to nonnegative numbers. Their  t ru th  is independent 

of the size of the set; furthermore, it is largely independent 

of the choice of technique applied in the event of "over- 

flow"; for example: 
(1) Strict interpretation: the result of an overflowing 

operation does not exist; when overflow occurs, the offend- 

ing program never completes its operation. Note that  in 

this case, the equalities of A1 to A9 are strict, in the sense 

that  both sides exist or fail to exist together. 

(2) Firm boundary:  the result of an overflowing opera- 

tion is taken as the maximum value represented. 

(3) Modulo arithmetic: the result of an overflowing 

operation is computed modulo the size of the set of integers 

represented. 
These three techniques are illustrated in Table I I  by 

addition and multiplication tables for a trivially small 

model in which 0, 1, 2, and 3 are the only integers repre- 

sented. 
I t  is interesting to note that  the different systems satisfy- 

ing axioms A1 to A9 may be rigorously distinguished from 

each other by choosing a particular one of a set of mutually 

exclusive supplementary axioms. For  example, infinite 

arithmetic satisfies the axiom: 

A10z ~ 3 x V y  (y < x), 

where all finite arithmetics satisfy: 

A10~ Vx (x < max) 

where "max" denotes the largest integer represented. 

Similarly, the three treatments of overflow may be 

distinguished by a choice of one of the following aMoms 

relating to the value of max + 1: 

A l l s  ~ 3 x  (x = max + 1) (strict interpretation) 

A l l ,  max + 1 = max (firm boundary)  

AllM max + 1 = 0 (modulo arithmetic) 

Having selected one of these axioms, it  is possible to 

use it  in deducing the properties of programs; however, 

576 Communications of the ACM 
Volume 12 / Number 10 / October, 1969 

“An Axiomatic Basis …”
✦ Classic paper shows how to define a language, 

specify a problem, & design a program with the 
proof in mind; foreshadowed mechanical proof.


✦ He won the Turing Award for this work

‣ basic ideas have not changed.
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Notation
✦ The two most common notations are 

Hoare triples and Dijkstra weakest 
preconditions (or predicate transformers)


✦ I’ll focus primarily on Hoare triples 

✦ A Hoare triple is a logical predicate:


{P} S {Q} 

– P and Q are predicates, S is a program 


‣ {P} S {Q} is true when

– if P is true initially, then after S terminates,  

Q will be true
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Notation
✦ The two most common notations are 
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– P and Q are predicates, S is a program 
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Q will be true
!7Note: the notation in "An Axiomatic Basis…" is different



True or False?
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True or False?
Assume that you know what assignment does!
1. {true} y:=x*x {y≥0}
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True or False?
Assume that you know what assignment does!
1. {true} y:=x*x {y≥0}
2. {true} y:=x*x {y<0}
3. {x>0} x:=x+1 {x>1} 
4. {x>1} x:=x+1 {x>0}
5. {x=X ∧ y=Y} t := x; x := y; y := t {x=Y∧y=X}
6. {x=X ∧ y=Y} t := x; x := y; y := t {x=Y∧t=Y}
7. {x≠0} if x > 0 then skip else x:= -x {x>0}
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But what does assignment do?
✦ We can also use axioms to define what 

programming language statements do

‣ the meaning of a programming language 

can be given by axioms!

‣ big advantage: axioms let us leave some 

details up to the implementation
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Landmark Paper:
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Data Types: Enumerated types
type T = (c1, c2, … , cn)


1. c1, c2, … cn are distinct elements of T

2. These are the only elements of T

3. ci+1 = succ(ci)   for i = 1 … n-1

4. pred(succ(u)) = u,   succ(pred(v)) = v

5. ¬ (v < v)

6. (u < v) ∧ (v ≤ w) ⊃ u < w

7. v = succ(u) ∨ u = pred (v) ⊃ u < v

8. (u > v) ≡ (v < u)

9. (u ≤ v) ≡ ¬ (u > v)

10. (u ≥ v) ≡ ¬ (u < v)

11. (u ≠ v) ≡ ¬ (u = v)

!11

We define minT = c1 and 
maxT = cn (not available 
to the Pascal Programmer)



Declarations
✦ D is a sequence of declarations

✦ S is a compound statement

✦ then D; S is a block and obeys the 

following rule of inference

H ˫ {P} S {Q}

{P} D; S {Q}


where H is the set of assertions 
describing the properties established by 
the declarations in D
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Statements
✦ Assignment


{P[exp/x]}  x := exp  {P}

✦ Compound Statements


{Pi-1} Si {Pi},    for i = 1…n 
{P0} begin S1; S2; … Sn end {Pn}


✦ If Statements

{Q1}S1{R}, {Q2}S2{R}, P∧B⊃Q1, P∧¬B⊃Q2 

{P} if B then S1 else S2 {R}

✦ While Statements


{Q∧B}S{Q} 
{Q} while B do S {Q∧¬B}
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Also written P x
exp
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Rule of Assignment
{Px     } x :=exp {P} 

 
{P[exp/x]} x := exp {P}


✦ Suppose that you want P to hold after the 
execution of some assignment to x:

‣ What has to be true before?  Consider two 

cases: 

– if P doesn’t mention x (e.g., P ≡ w = y), then P 

better also hold before the assignment to x 

– if P mentions x (e.g., P ≡ even(x)), then P better 

hold with x replaced by exp (P[exp/x] ≡ even(exp))
!14
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Assignment Examples

{         } x := 1 { x = 1 } 
!15

rule:   {P[exp/x]} x := exp {P}

Fill in the blank: 
A. true 
B. false 
C. y = 1 
D. 1 = 1 
E. None of the above   



Assignment Examples

{         } x := x + 1 { x = 7 }
!16

Fill in the blank: 
A. true 
B. false 
C. y = 7 
D. x + 1 = 7 
E. x = 6 
F. None of the above   

rule:   {P[exp/x]} x := exp {P}



Assignment Examples

{         } y := 4  { x = 7 }
!17

Fill in the blank: 
A. true 
B. false 
C. y = 1 
D. x = 7 
E. None of the above   

rule:   {P[exp/x]} x := exp {P}



Assignment Examples

{ true }             {x =  7} 
!18

Fill in the blank: 
A. x := true 
B. x := 7 
C. y := 1 
D. 1 = 1 
E. None of the above   

rule:   {P[exp/x]} x := exp {P}



Rule for Compound Statements
{Pi-1} Si {Pi},    for i = 1…n 

{P0} S1; S2; … Sn {Pn}

✦ Basic idea:

‣ The postcondition of each statement in 

the sequence has to achieve the 
precondition for the next


✦ Recall Hoare’s rules of Consequences:

‣ if {P} Q {R} and S ⊃ P then {S} Q {R}

‣ if {P} Q {R} and R ⊃ S then {P} Q {S}
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Example
{Pi-1} Si {Pi},    for i = 1…n 

{P0} S1; S2; … Sn {Pn}

for n = 2:


{P0} S1 {P1},    {P1} S2 {P2} 
{P0} S1; S2 {P2}


Suppose that P2 ≡  x ≥ m ∧ y > n.  P0 ≡ true.   
(m and n are constants.) What are S1 and S2 ?


{ true } x := m; { x ≥ m ∧ n+1 > n} y := n+1 { x ≥ m ∧ y > n}
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If Statements
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If Statements
{Q1}S1{R}, {Q2}S2{R}, P∧B⊃Q1, P∧¬B⊃Q2 

{P}if B then S1 else S2{R}
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If Statements
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{P}if B then S1 else S2{R}
✦ Basic idea:
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If Statements
{Q1}S1{R}, {Q2}S2{R}, P∧B⊃Q1, P∧¬B⊃Q2 

{P}if B then S1 else S2{R}
✦ Basic idea:
‣ What do you know when you execute S1 ?

– P
– B

‣ Life is good if, taken together, P∧B implies 
the precondition of Q1

‣ If you want R to be true after the if, then R 
better be true after both S1 and S2

!22



Example
{ m > 0  ∧  n > 0  ∧  n ≠ m  ∧  n + m = s }  
if m > n then


	 	 m := m − n 

	 else  
	 	 n := n − m

{ m > 0  ∧  n > 0  ∧  n + m < s }
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Let’s prove it!
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{ m > 0 ∧ n − m > 0 ∧ (n − m) + m < s }
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{ m > 0 ∧ n > m ∧ n < s }

{ (m − n) > 0 ∧ n > 0 ∧ n + (m − n) < s) }



Example
{ m > 0  ∧  n > 0  ∧  n ≠ m  ∧  n + m = s }  
if m > n then
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{ m > 0 ∧ n > m ∧ n < s }

{ m > n ∧ n > 0 ∧ m < s) }



While Statements
{Q∧B} S {Q} 

{Q} while B do S{Q∧¬B}

✦ This is the hard part!

✦ Q is called a “loop invariant”:

‣ it’s true before the loop starts

‣ it’s true when the loop ends

‣ we say: Q is “maintained” by the loop


– typically, Q is invalidated by the initial 
code in S, and then it is restored by 
later code.
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While Statements
{Q∧B}S{Q} 

{Q} while B do S {Q∧¬B}

✦ Also often written:


P ⊃ J   {J∧B}S{J}   (J ∧¬B) ⊃ Q 
{P} while B do S {Q} 
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Example
{ true } 
s := 0; 
n := 0; 
while n ≠ a.Length do  
    s := s + a[n];  n := n + 1;

od;

{ s = a[0] + a[1] + … + a[a.Length-1] }


✦ What’s the invariant?

s = a[0] + a[1] + … + a[n-1]  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Loop invariants
✦ Every loop that you write has an invariant!

‣ Figuring out what the invariant is is a 

major part of designing loop program.

‣ Most specification tools can’t guess 

your invariant—they make you write it 
down explicitly


‣ Invariants are also a big help in informal 
correctness arguments.


✦ Every loop will also have a variant, if it can 
be guaranteed to terminate
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Loop Invariants in Spec #
✦ Video

‣ http://channel9.msdn.com/Blogs/Peli/

The-Verification-Corner-Loop-Invariants 
(22 mins)


‣ more: http://channel9.msdn.com/search?
term=verification+corner


✦ Spec# in your browser

‣ http://rise4fun.com/specsharp/
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Procedures
✦ Non-recursive procedures can be 

handled by substitution:

‣ if proc p(a) = S and  {P} S {Q}

‣ then {P[e/a]} p(e) {Q[e/a]}


✦ What about recursive procedures?

‣ programmer must specify the pre-and 

post-conditions explicitly

‣ This is good practice anyway (e.g., every 

algorithm in Levitin)
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Binary Search Example
int BinarySearch(int[ ] a, int key)

    requires forall{int i in (0..a.Length-1),  
                            int j in (i..a.Length-1); a[i] <= a[j] };

    ensures 0 <= result ==> a[result] == key;

    ensures result < 0 ==>  
                           forall{int i in (0..a.Length-1); a[i] ≠ key};

  {…}
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Program Proofs in Real Life
✦ SLAM

‣ Automated safety checks for drives in MS 

Windows

‣ Drastically reduced the incidence of blue-

screens of death

‣ Part of the SDK
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November 16, 2010

Paris Metro replaces testing of interlocking and CBTC systems with formal safety
verification using Prover Certifier

Stockholm, Sweden and Toulouse, France - November 16, 2010. Prover Technology today
announced that its software product Prover Certifier has replaced traditional safety testing of
interlocking and Communication-Based Train Control (CBTC) systems that entered revenue service
in 2010 at RATP (Regie Autonome des Transports Parisiens), the Paris Metro infrastructure
manager.

The product was used for formal verification of the safety of the PIPC interlocking systems
supplied by Thales for Paris Metro line 3b, and the wayside CBTC system supplied by Ansaldo STS
for Paris Metro Line 3. The application of the product provided independent, formal proof that
these state-of-the-art railway signaling software systems always respect the safety requirements
stipulated by RATP. 
Pierre Chartier, safety director at RATP, said "RATP and Prover have collaborated since 2004 on
formal safety verification of interlocking and CBTC systems. We're very satisfied to have reached
the point that formal verification with Prover Certifier can replace testing-based methods. We use
formal verification to reduce costs while maintaining the highest possible level of safety
verification."

Prover Certifier was developed to meet the highest Safety Integrity Level, SIL 4, of the CENELEC
(European Committee for Electrotechnical Standardization) standard EN50128. This makes it
possible to replace time-consuming and incomplete testing-based methods for safety verification
with exhaustive, formal proof-based safety verification. 
In addition to the signaling systems whose safety assessment was based solely on the application
of Prover Certifier, a number of interlocking systems installed on line 11 and line 12 of Paris Metro
have previously been formally verified using Prover Certifier. 

About Formal Verification 
Formal verification is an analysis method based on mathematical proof. Formal verification is
strongly recommended by safety standards organizations such as CENELEC, and several leading
railway infrastructure managers, such as Paris Metro, Swedish National Rail, Norwegian National
Rail and New York City Transit require formal verification for safety assessment of certain types of
systems. The reason: formal verification increases safety and quality, and provides more efficient
processes for otherwise costly and time-consuming safety testing. 

About Prover Technology
Prover Technology provides software products and services for development of control and
signaling systems. The company was founded in 1989 and is privately held. It is headquartered in
Stockholm, Sweden with wholly owned subsidiaries in France and USA. Prover Technology's
customer base includes Ansaldo STS, ABB, Bombardier Transportation, Canadian Pacific Railway,
Invensys Rail, New York City Transit, Norwegian National Rail, Paris Metro (RATP), Stockholm
Metro, Swedish National Rail, Thales, and many others. For more information and office locations,
visit Prover Technology's web site at http://www.prover.com/.

​  HOME   PRODUCTS   PISPEC   PROVER ILOCK   SERVICES   COMPANY      CASE STUDIES   CONTACT      CHINESE
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Program Proofs in Real Life
✦ seL4

‣ “secure embedded” L4 operating system

‣ 8,700 lines of C and ARM assembly

‣ 200k lines of Isabelle proof script


– 25 person-years of work!

‣ Guarantees:


– no null-pointer derefs, no indexing out of 
bounds,  
no space leaks.


‣ http://ertos.nicta.com.au/research/sel4/
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Program Proofs in Real Life
✦ CompCert (http://compcert.inria.fr/)

‣ “Verified Compiler” from C to various 

assembly languages

‣ comes with a “mathematical, machine-

checked proof that the generated executable 
code behaves exactly as prescribed by the 
semantics of the source program”
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Spec # Video
✦ Video:  

– http://channel9.msdn.com/Blogs/Peli/
The-Verification-Corner-Specifications-
in-Action-with-SpecSharp


✦ Binary Search:

– http://rise4fun.com/SpecSharp/BinarySearch


✦ more examples: 
– http://www.rosemarymonahan.com/specsharp/
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