CS 350 Algorithms and Complexity

Winter 2019

Lecture 16: Proving Programs Correct

Andrew P. Black

Department of Computer Science
Portland State University

How to Prove a Program Correct

1. Decide what programming language
statements mean.

e Some sort of formal semantics
2. Decide what “correct” means.

* This means writing a specification of the
problem

3. Write the program with the proof in mind
4. Check the proof mechanically.

Correctness

Correctness

+ Original characterization:

» Given a specification (in a formal logic)
and

» an implementation (in a programming
language),

» prove that the implementation satisfies
the specification

Correctness

+ Original characterization:

» Given a specification (in a formal logic)
and

» an implementation (in a programming
language),
» prove that the implementation satisfies
the specification
+ Maybe possible
» ... but very, very hard

Correctness

Correctness

4+ Modern characterization
» Given a specification

» construct a program that satisfies the
specification

Correctness

+ Modern characterization
» Given a specification
» construct a program that satisfies the
specification
+ Program and proof are written together

Correctness

+ Modern characterization
» Given a specification
» construct a program that satisfies the
specification
+ Program and proof are written together
» not necessarily easy,

Correctness

+ Modern characterization
» Given a specification
» construct a program that satisfies the
specification
+ Program and proof are written together
» not necessarily easy,
» but much easier!

Example

{ true }

var Xx: int;

read(x);

{ x: Integer }

if (x mod 2 =1) then
{ odd(x) }
X=X+ 1;

fi

{ even(x) }

Example

{ true }

var Xx: int;
read(X);

{ x: Integer }

p

Note: Modern notation is

Axiomatic Basis:

not program statements.

different from that of Hoare’s

the predicates are in braces,

=N

J

if (x mod 2 =1) then

1 odd(x) }
X=X+ 1;
fi
{ even(x) }

“An Axiomatic Basis ..."”

Clasgic paper shows how to define a language
spemfy a problem, & design a program with the
proof in mind; foreshadowed mechanical proof.

He won the Turing Award for this work
basic ideas have not changed.

An Axioma‘tic Basis for of axioms it is possible to deduce such simple theorems as:
z=x+y X0

y<rortyxag= -y +tyX 1+49
C. A. R. Hoare The proof of the second of these is:

Computer Programming

The Queen’s University of Belfast,* Northern Ireland A5 (r—y)+yX a+q

= —y)+ @X1+yXa
In this paper an attempt is made to explore the logical founda- A9 = (r—y)+ (y +y X q)
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later A3 (r—y) +y) tyxXd
been extended to other branches of mathematics. This in- A6 =7+ y X g providedy < v
volves the elucidation of sets of axioms and rules of inference

I

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers” which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES: axiomotic method, theory of programming’
e $ormal language definition, programming language

TR 7Y S « PR

Notation

+ The two most common notations are
Hoare triples and Dijkstra weakest
preconditions (or predicate transformers)

+ I'll focus primarily on Hoare triples

+ A Hoare triple is a logical predicate:
{P} S {Q}
— P and Q are predicates, S is a program
» {P} S {Q} is true when

— If P is true initially, then after S terminates,
Q will be true

Notation

+ The two most common notations are
Hoare triples and Dijkstra weakest
preconditions (or predicate transformers)

+ I'll focus primarily on Hoare triples

+ A Hoare triple is a logical predicate:
{P} S {Q}
— P and Q are predicates, S is a program
» {P} S {Q} is true when

— If P is true initially, then after S terminates,
Q will be true

Note: the notation in "An Axiomatic Basis..." is different

True or False?

True or False?

Assume that you know what assignment does!

1. {true} y:=x*x {y=0}

True or False?

Assume that you know what assignment does!

1. {true} y:=x*x {y=0}
2. {true} y:=x*x {y<0}

True or False?

Assume that you know what assignment does!
1. {true} y:=x*x {y=0}
2. {true} y:=x*x {y<0}
3. {x>0} x:=x+1 {x>1}

True or False?
Assume that you know what assignment does!
1. {true} y:=x*x {y=0}
2. {true} y:=x*x {y<0}
3. {x>0} x:=x+1 {x>1}
a. {x>1} x:=x+1 {x>0}

True or False?

Assume that you know what assignment does!

1. {true} y:=x*x {y=0}
2. {true} y:=x*x {y<0}
3. {x>0} x:=x+1 {x>1}
4. {x>1} x:=x+1 {x>0}
5. {X=XAy=Y}t:=X;X:=Vy;y:=t{x=Yry=X}

True or False?

Assume that you know what assignment does!

1. {true} y:=x*x {y=0}
2. {true} y:=x*x {y<0}
3. {x>0} x:=x+1 {x>1}
4. {x>1} x:=x+1 {x>0}
5. {X=XAy=Y}t:=X;X:=Vy;y:=t{x=Yry=X}
6. {X=XAy=Y}t:=Xx;X:=Vy;y:=t{X=YAt=Y}

True or False?

Assume that you know what assignment does!

1. {true} y:=x*x {y=0}

2. {true} y:=x"x {y<0}

3. {x>0} x:=x+1 {x>1}

4. {x>1} x:=x+1 {x>0}

5. {X=XAy=Y}ti=x;Xx:=y;y:=t{Xx=Yry=X}
6. {X=XAy=Y}t:=Xx;X:=Vy;y:=t{X=YAt=Y}
7. {x£0} if x > 0 then skip else x:= -x {x>0}

But what does assignment do?

+ We can also use axioms to define what
programming language statements do

» the meaning of a programming language
can be given by axioms!

» big advantage: axioms let us leave some
details up to the implementation

Landmark Paper:

Acta Informatica 2, 335—355 (1973)
© by Springer-Verlag 1973

An Axiomatic Definition
of the Programming Language PASCAL

C. A. R. Hoare and N. Wirth

Received December ¢ 1, 1972

Summary. The axiomatic definition method proposed in reference (5] is extended
and applied to define the meaning of the programming language PASCAL [1]. The

whole language is covered with the exception of real arithmetic and go to state

Introduction

The programming language PASCAL was designed as a general purpose
language efficiently implementable on many computers and sufficiently flexible
to be able to serve in many areas of application. Its defining report [1] was
given in the stvle of the ALGOI. 60 renort 121 A formalisin was nsed to define

10

Data Types: Enumerated types

type T =(c1, C2, ..., Cn)

© © N o O b~ 0 Db -

[
- O

We define mint = ¢1 and
maxT = Cn (not available

C1, C2, ... Chare distinct elements of T
These are the only elements of T
Ci+1 = succ(c) fori=1...n-1
pred(succ(u)) = u, succ(pred(v)) =v
= (V< V)

U<V)A(VEW)DU<W
v=succuyvu=pred(v)ou<v
(Uu>v)=(v<u)

Usv)=-(U>V)

U=Vv)=-(u<V)

(UzV)=-(u=V)

to the Pascal Programmer)

11

Declarations

4+ D is a sequence of declarations
+ S is a compound statement

+then D; S is a block and obeys the
following rule of inference
H+{P}S {Q}
{P} D; S {Q}
where H is the set of assertions

describing the properties established by
the declarations in D

12

Statements

+ Assignment
{Plexp/x]} x:=exp {P}
+ Compound Statements

{Pia} Si{P}, fori=1...n
{Po} begin S1; Sg; ... Sn end {Pn}

+ If Statements

{Q1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q2
{P} if B then S else S> {R]}

+ While Statements

{QAB}S{Q)
{Q} while B do S {QA-B}

13

Statements @

+ Assignment J
{Plexp/x]} x:=exp {P}
+ Compound Statements

{Pia} Si{P}, fori=1...n
{Po} begin S1; Sg; ... Sn end {Pn}

+ If Statements

{Q1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q2
{P} if B then S else S> {R]}

+ While Statements

Iso written P*)

exp

{QAB}S{Q)
{Q} while B do S {QA-B}

13

Rule of Assignment
{P)éxp} X .=exp {P}

{Plexp/x]} x := exp {P}
+ Suppose that you want P to hold after the
execution of some assignment to x:

» What has to be true before? Consider two
CasSes.
— if P doesn’t mention x (e.g., P =w =y), then P
better also hold before the assignment to x

— if P mentions x (e.g., P = even(x)), then P better
hold with x replaced by exp (P[exp/X] = even(exp))

14

Assignment Examples

rule: {Plexp/X]} x := exp {P}

Fill in the blank:
A. true
B. false
C.y=1
D.1=1
E. None of the above

{ Ix=1{x=1}

15

Assignment Examples

rule: {Plexp/X]} x := exp {P}

Fill in the blank:
A. true
B. false
C.y=7/
D.x+1=7
E. Xx=6

F. None of the above

{ IX=x+1{x=7}

16

Assignment Examples

rule: {Plexp/X]} x := exp {P}

Fill in the blank:
A. true

B. false

C.y=1

D. x=7/

E. None of the above

{ Jy=4{x=7)

17

Assignment Examples

rule: {Plexp/X]} x := exp {P}

Fill in the blank:

A. X := true
7
1

1

B.
C.
D.
E. None of the above

X :
Y-
1
Non

{ true } {x= 7}

18

Rule for Compound Statements
{Pi} Si{Pi}, fori=1...n
{Po} S1; So; ... Sn {Pn}
+ Basic idea:

» The postcondition of each statement in
the sequence has to achieve the
precondition for the next

4+ Recall Hoare’s rules of Consequences:
» if {P}Q{R}and S > P then {S} Q {R}
» if {P} Q {R} and R > S then {P} Q {S}

19

Example

{Pi-1} Si{Pi}, fori=1...n
{Po} S1; S2; ... Sn {Pn}

for n = 2:
{Po} S1 {P1}, {P1} Sz {P2}
{Po} S1; So {P2}

Suppose that P= x=m Ay >n. Po=true.
(M and n are constants.) What are S and Sz ?

{true } {x=mAy>n}

20

Example

{Pi-1} Si{Pi}, fori=1...n
{Po} S1; S2; ... Sn {Pn}

for n = 2:
{Po} S1 {P1}, {P1} Sz {P2}
{Po} S1; So {P2}

Suppose that P= x=m Ay >n. Po=true.
(M and n are constants.) What are S and Sz ?

{ true } y:=ml{X=mAay>nj}

20

Example

{Pi-1} Si{Pi}, fori=1...n
{Po} S1; S2; ... Sn {Pn}

forn = 2:
{Po} S1{P1}, {P1} Sz {P2}
{Po} S1; So {P2}

Suppose that P= x=m Ay >n. Po=true.
(M and n are constants.) What are S and Sz ?

{ true } {XmAan+l1>nly:=n+tl1{X=mAay>nj

20

Example

{Pi-1} Si{Pi}, fori=1...n
{Po} S1; S2; ... Sn {Pn}

forn = 2:
{Po} S1{P1}, {P1} Sz {P2}
{Po} S1; So {P2}

Suppose that P= x=m Ay >n. Po=true.
(M and n are constants.) What are S and Sz ?

{ true {X=mAa true}y:=nm+1{x=may>nj}

21

Example

{Pi-1} Si{Pi}, fori=1...n
{Po} S1; S2; ... Sn {Pn}

forn = 2:
{Po} S1{P1}, {P1} Sz {P2}
{Po} S1; So {P2}

Suppose that P= x=m Ay >n. Po=true.
(M and n are constants.) What are S and Sz ?

{true} x'=m;{x=mna true}y:=n+l1{xX=may>nj

21

If Statements

22

If Statements

IQ1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q>
{P}if B then S+ else S»{R}

22

If Statements

IQ1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q>
{P}if B then S+ else S»{R}

+ Basic idea:

22

If Statements
IQ1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q>
{P}if B then S1 else S»{R}

+ Basic idea:
» What do you know when you execute S1?

22

If Statements

IQ1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q>
{P}if B then S1 else S»{R}
4+ Basic idea:

» What do you know when you execute S1?
- P

22

If Statements

IQ1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q>
{P}if B then S1 else S»{R}
4+ Basic idea:

» What do you know when you execute S1?
- P
- B

22

If Statements

IQ1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q>
{P}if B then S+ else S»{R}
4+ Basic idea:
» What do you know when you execute S1?
- P
- B
» Life is good if, taken together, PAB implies
the precondition of Q1

22

If Statements

IQ1}S1{R}, {Q2}S2{R}, PAB>Q1, PA-B>Q>
{P}if B then S1 else S»{R}

4+ Basic idea:
» What do you know when you execute S1?
- P
- B
» Life is good if, taken together, PAB implies
the precondition of Q1

» If you want R to be true after the if, then R
better be true after both S1 and S»

22

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:=m —n
else
Nn=N-m
{ImMm>0 AnNn>0 A n+m<s}

23

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:=m —n
else
Nn=N-m
{ImMm>0 AnNn>0 A n+m<s}

Let’s prove it!

23

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:=m —n
else
Nn=N-m
{ImMm>0 AnNn>0 A n+m<s}

23

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:.=m —-n
else {(M>0An>0An+m<s)[(n—-m)n]}
n.=N-m

{ImMm>0 AnNn>0 A n+m<s}

23

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:=m —n
else
Nn=N-m
{ImMm>0 AnNn>0 A n+m<s}

23

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:=m —n
else{m>0An-m>0A(N-m+m<s}
Nn=N-m

{ImMm>0 AnNn>0 A n+m<s}

23

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:=m —n
else
Nn=N-m
{ImMm>0 AnNn>0 A n+m<s}

23

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:=m —n
else
Nn=N-m
{ImMm>0 AnNn>0 A n+m<s}

24

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then

m:.=m —-n
else{m>0An>man<s}
n.=N-m

{ImMm>0 AnNn>0 A n+m<s}

24

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then
{(M>0An>0AnNn+m<s)[(m-n)/m]}

m:.=m —-n
else{m>0An>man<s}
n.=N-m

{ImMm>0 AnNn>0 A n+m<s}

24

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then
{(M-nN>0An>0An+(M-=-n)<s)}

m:.=m —-n
else{m>0An>man<s}
n.=N-m

{ImMm>0 AnNn>0 A n+m<s}

25

Example

{ImMm>0 AnN>0AnNn£m A nN+m=s}
If m > n then
{m>nAn>0Amx<s)}

m:.=m —-n
else{m>0An>man<s}
n.=N-m

{ImMm>0 AnNn>0 A n+m<s}

26

While Statements

{QAB} S {Q}
{Q} while B do S{QA-B}
4+ This is the hard part!
+ Q is called a “loop invariant”:
» it’s true before the loop starts
» It’s true when the loop ends
» we say: Q is “maintained” by the loop

— typically, Q is invalidated by the initial
code in S, and then it is restored by
later code.

27

While Statements

{QAB}S{Q}
{Q} while B do S {QA-B}
4+ Also often written:
Po>dJd {UAB}S{J} (J A-B)>Q
{P} while B do S {Q}

28

Example

{ true }
s :=0;
n:=0;

while n # a.Length do
s:=s+aln}; ni=n+1;
od;
{s=al0] +a[1] + ... + ala.Length-1] }
+ What’s the invariant?

29

Example

{ true }
s :=0;
n:=0;

while n # a.Length do
s:=s+aln}; ni=n+1;
od;
{s=al0] +a[1] + ... + ala.Length-1] }
+ What’s the invariant?
S =

29

Example

{ true }
s :=0;
n:=0;

while n # a.Length do
s:=s+aln}; ni=n+1;
od;
{s=al0] +a[1] + ... + ala.Length-1] }
+ What’s the invariant?
s = al0] +

29

Example

{ true }
s :=0;
n:=0;

while n # a.Length do
s:=s+aln}; ni=n+1;
od;
{s=al0] +a[1] + ... + ala.Length-1] }
+ What’s the invariant?
s =a[0] + a[1] + ... + a[n-1]

29

Example

{ true }
s :=0;
n:=0;

while n # a.Length do
s:=s+aln]; n:=n+1;

od;
{s=al0] +a[1] + ... + ala.Length-1] }
4+ What’s the invariant? o

1
s=a[0] +a[1] + ... +ajn-1] =) afi]

1=0

29

Loop Invariants

+ Every loop that you write has an invariant!

» Figuring out what the invariant is is a
major part of designing loop program.

» Most specification tools can’t guess
your invariant—they make you write it
down explicitly

» Invariants are also a big help in informal
correctness arguments.

+ Every loop will also have a variant, If it can
be guaranteed to terminate

30

Loop Invariants in Spec #

+ Video

» http://channel9.msdn.com/Blogs/Peli/
The-Verification-Corner-Loop-Invariants
(22 mins)

» more: http://channel9.msdn.com/search?
term=verification+corner

+ Spec# in your browser
» http://risedfun.com/specsharp/

31

http://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Loop-Invariants
http://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Loop-Invariants
http://channel9.msdn.com/search?term=verification+corner
http://channel9.msdn.com/search?term=verification+corner
http://channel9.msdn.com/search?term=verification+corner
http://rise4fun.com/specsharp/

Procedures

+ Non-recursive procedures can be
handled by substitution:
» if proc p(a) =S and {P} S {Q}
» then {P[e/a]} p(e) {Q[e/a]}

+ What about recursive procedures?

» programmer must specify the pre-and
post-conditions explicitly

» This is good practice anyway (e.g., every
algorithm in Levitin)

32

Binary Search Example

int BinarySearch(int[] a, int key)
requires forall{int i in (0..a.Length-1),
int j in (i..a.Length-1); a[i] <= a[j] };
ensures 0 <= result ==> a[result] == key;

ensures result < 0 ==>
forall{int i in (0..a.Length-1); a[i] # key};

(.}

33

Program Proofs in Real Life
+ SLAM

» Automated safety checks for drives in MS
Windows

» Drastically reduced the incidence of blue-
screens of death

» Part of the SDK

34

Program Proofs in Paris Metro

PREVER COMPANY

engineering a safer waorld”

About | Press Releases

Executive Team
November 16, 2010
Employment
Paris Metro replaces testing of interlocking and CBTC systems with formal safety

Events verification using Prover Certifier

Press Stockholm, Sweden and Toulouse, France - November 16, 2010. Prover Technology today
announced that its software product Prover Certifier has replaced traditional safety testing of

Client List interlocking and Communication-Based Train Control (CBTC) systems that entered revenue service
in 2010 at RATP (Regie Autonome des Transports Parisiens), the Paris Metro infrastructure

Downloads manager.

Partner Programs
g The product was used for formal verification of the safety of the PIPC interlocking systems

supplied by Thales for Paris Metro line 3b, and the wayside CBTC system supplied by Ansaldo STS
for Paris Metro Line 3. The application of the product provided independent, formal proof that
these state-of-the-art railway signaling software systems always respect the safety requirements
stipulated by RATP.

Pierre Chartier, safety director at RATP, said "RATP and Prover have collaborated since 2004 on
formal safety verification of interlocking and CBTC systems. We're very satisfied to have reached
the point that formal verification with Prover Certifier can replace testing-based methods. We use
formal verification to reduce costs while maintaining the highest possible level of safety

Contact

November 16, 2010

Paris Metro replaces testing of interlocking and CBTC systems with formal safety
verification using Prover Certifier

Stockholm, Sweden and Toulouse, France - November 16, 2010. Prover Technology today
announced that its software product Prover Certifier has replaced traditional safety testing of
interlocking and Communication-Based Train Control (CBTC) systems that entered revenue service
in 2010 at RATP (Regie Autonome des Transports Parisiens), the Paris Metro infrastructure
manager.

The product was used for formal verification of the safety of the PIPC interlocking systems
supplied by Thales for Paris Metro line 3b, and the wayside CBTC system supplied by Ansaldo STS
for Paris Metro Line 3. The application of the product provided independent, formal proof that
these state-of-the-art railway signaling software systems always respect the safety requirements
stipulated by RATP.

Pierre Chartier, safety director at RATP, said "RATP and Prover have collaborated since 2004 on
formal safety verification of interlocking and CBTC systems. We're very satisfied to have reached
the point that formal verification with Prover Certifier can replace testing-based methods. We use
formal verification to reduce costs while maintaining the highest possible level of safety
verification."

Prover Certifier was developed to meet the highest Safety Integrity Level, SIL 4, of the CENELEC
(European Committee for Electrotechnical Standardization) standard EN50128. This makes it
possible to replace time-consuming and incomplete testing-based methods for safety verification
with exhaustive, formal proof-based safety verification.

In addition to the signaling systems whose safety assessment was based solely on the application
of Prover Certifier, a number of interlocking systems installed on line 11 and line 12 of Paris Metro
have previouslv been formallv verified usina Prover Certifier.

BOELFING \)

\

Emerging Directions from Internal R&D %~

* Early analysis

— Formal Methods / Model checking can detect errors
earlier

» Saves cost (from escaped defects)
* Problems with scalability, use on production programs

— Formal Language for requirements specification

e Automation

— Generate test suite from design model or
requirements

— Automate verification to match automation of
development

Program Proofs in Real Life

+ sel 4
“secure embedded” L4 operating system

<
4
)

4

8,700 lines of C and ARM assembly

200k lines of Isabelle proof script
— 25 person-years of work!

(Guarantees:

— no null-pointer derefs, no indexing out of
bounds,
no space leaks.

http://ertos.nicta.com.au/research/sel4/

38

http://ertos.nicta.com.au/research/sel4/

Program Proofs in Real Life

+ CompCert (http://compcert.inria.fr/)

» “Verified Compiler” from C to various
assembly languages

» comes with a “mathematical, machine-
checked proof that the generated executable
code behaves exactly as prescribed by the
semantics of the source program”

http://compcert.inria.fr

Spec # Video

+ Video:

— http://channel9.msdn.com/Blogs/Peli/
The-Verification-Corner-Specifications-
iIn-Action-with-SpecSharp

+ Binary Search:
— http://risedfun.com/SpecSharp/BinarySearch

+ more examples:

— http://www.rosemarymonahan.com/specsharp/

40

http://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Specifications-in-Action-with-SpecSharp
http://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Specifications-in-Action-with-SpecSharp
http://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Specifications-in-Action-with-SpecSharp
http://rise4fun.com/SpecSharp/BinarySearch
http://www.rosemarymonahan.com/specsharp/

