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Cloud Haskell in a Nutshell
• A DSL for Cloud Computing implemented 

as a Haskell library
- From Erlang:

‣ Processes with message-passing parallelism

‣ Failure and recovery model

- From Haskell:
‣ Types: purity and monads

‣ Typed Channels

‣ Shared-memory concurrency within a process
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What's a Cloud?
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many separate processors connected by a network

independent failure modes



This Talk:

1. Erlang-style concurrency in Haskell
- Processes, messages & failures

2. Typed Channels
3. Serialization of function closures
4. Assessment
- Example applications
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Erlang in Haskell

• Processes & Messages

• Linking Processes

• Selective Receive of Messages
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Processes & Messages
• Process: a concurrent activity that has the 

ability to send and receive messages
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• Processes cannot share memory

Process A Process B
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instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a



• Ping pong:
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data Ping = Ping ProcessId
data Pong = Pong ProcessId
— omitted: Serializable instance for Ping and Pong

ping :: ProcessM ()
ping = do { self ← getSelfPid
          ; Pong partner ← expect
          ; send partner (Ping self)
          ; ping }

instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a



• Compare with the Erlang version:
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data Ping = Ping ProcessId
data Pong = Pong ProcessId
— omitted: Serializable instance for Ping and Pong

ping :: ProcessM ()
ping = do { self ← getSelfPid
          ; Pong partner ← expect
          ; send partner (Ping self)
          ; ping }

ping() → receive
             {pong, Partner} → Partner ! {ping, self()}
            end,
            ping().               

instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a



• Key idea: only Serializable values can be sent 
in messages.

• Certain values are deliberately not serializable

- MVars, IVars and TVars, in particular
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instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a →ProcessM ()
expect :: Serializable a ⇒ ProcessM a
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Process A Process B

• Consequently:
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Process A Process B

Processes can be moved from one computer to 
another without invalidating the programming 
model



Consequently:
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Process A Process B

Thread 1
Thread 2

Thread 3 Thread 1
Thread 2



Consequently:
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Process A Process B

Concurrent Haskell’s threads, MVars, STM, etc., 
can all be used inside a single Process

Thread 1
Thread 2

Thread 3 Thread 1
Thread 2
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• Would it be possible to serialize MVars?
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• Would it be possible to serialize MVars?
= Is it possible to simulate shared memory in a 

distributed memory environment?

- Yes!

• Would it be a good idea to serialize MVars?
- We don’t think so.
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• Would it be possible to serialize MVars?
= Is it possible to simulate shared memory in a 

distributed memory environment?

- Yes!

• Would it be a good idea to serialize MVars?
- We don’t think so.

- Glasgow Distributed Haskell disagrees!
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Why?



Starting & Positioning Processes

• A Node (address space, or virtual computer) 
is identified by a NodeId

• Processes are created by spawn
- First try:
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— wrong
spawn :: NodeId → ProcessM () → ProcessM ProcessId
do  { pingProc ← spawn someNode ping
     ; pongProc ← spawn otherNode pong
     ; send pingProc (Pong pongProc) }



Actual type of Spawn
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— wrong
spawn :: NodeId → ProcessM () → ProcessM ProcessId
do  { pingProc ← spawn someNode ping
     ; pongProc ← spawn otherNode pong
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— right
spawn :: NodeId → Closure (ProcessM ()) 
              → ProcessM ProcessId
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Actual type of Spawn
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— wrong
spawn :: NodeId → ProcessM () → ProcessM ProcessId
do  { pingProc ← spawn someNode ping
     ; pongProc ← spawn otherNode pong
     ; send pingProc (Pong pongProc) }

— right
spawn :: NodeId → Closure (ProcessM ()) 
              → ProcessM ProcessId

More about Closures later



Selective Receive
• Erlang provides selective receive by pattern-

matching on atoms.
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math() →
   receive
      {add, Pid, Num1, Num2} → 
          Pid ! Num1 + Num2; 
      {divide, Pid, Num1, Num2} when Num2 ≠ 0 → 
          Pid ! Num1 / Num2;
      {divide, Pid, _, _} → 
          Pid ! div_by_zero
   end,
   math().



• Haskell programmers would use type 
constructors instead of atoms:
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data MathOp =  Add ProcessId Double Double
              |  Divide ProcessId Double double
              |  Answer Double
              |  DivByZero

• However, this breaks modularity, e.g, it forces 
servers to respond to Answer and clients to 
respond to Add.



• It’s better to use several independent types:
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data Add   = Add ProcessId Double Double
data Divide  = Divide ProcessId Double Double
data DivByZero  = DivByZero

• However, now we need something more than 
expect, because we don’t know which message 
will arrive first.



match & receiveWait
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math :: ProcessM ()
math =
   receiveWait
    [  match   (λ(Add pid num1 num2) → 
                   send pid (num1 + num2)),
       matchIf  (λ(Divide _ _ num2) → num2 ≠ 0) 
                (λ(Divide pid num1 num2) → 
                   send pid (num1 / num2)),
       match   (λ(Divide pid _ _) → 
                   send pid DivByZero) ]
        ≫ math
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match & receiveWait
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math :: ProcessM ()
math =
   receiveWait
    [  match   (λ(Add pid num1 num2) → 
                   send pid (num1 + num2)),
       matchIf  (λ(Divide _ _ num2) → num2 ≠ 0) 
                (λ(Divide pid num1 num2) → 
                   send pid (num1 / num2)),
       match   (λ(Divide pid _ _) → 
                   send pid DivByZero) ]
        ≫ math

match :: Serializable a ⇒
(a → ProcessM q) → MatchM q ()

receiveWait :: 
  [MatchM q ()] → ProcessM q

matchIf :: Serializable a ⇒ 
(a → Bool) → (a → 
ProcessM q) → MatchM q ()



Also: receiveTimeout and matchUnkown
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instance Monad MatchM
receiveWait    :: [MatchM q ()] → ProcessM q
receiveTimeout :: Int → [MatchM q ()] 
                          → ProcessM (Maybe q)
match   :: Serializable a ⇒ (a → ProcessM q) 
                     → MatchM q ()
matchIf :: Serializable a ⇒ (a → Bool) 
                → (a → ProcessM q) → MatchM q ()
matchUnknown :: ProcessM q → MatchM q ()



Typed Channels

• We can use types to ensure that processes 
are prepared to accept the messages that are 
sent to them

• Instead of sending a message to a process, 
we send it on a channel, specialized for a 
single type
- A channel is a pair of ports: a send port and a 

receive port
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Channel Interface
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newChan  :: Serializable a ⇒ 
       ProcessM (SendPort a, ReceivePort a)
sendChan :: Serializable a ⇒
       SendPort a → a → ProcessM ()
receiveChan :: Serializable a ⇒ 
       ReceivePort a → ProcessM a
mergePortsBiased :: Serializable a ⇒ 
       [ReceivePort a]→ ProcessM (ReceivePort a)
mergePortsRR :: Serializable a ⇒ 
       [ReceivePort a] → ProcessM (ReceivePort a)

SendPort a is serializable; ReceivePort a is not serializable



Ping-Pong: once more, with Channels
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ping2 :: SendPort Ping → ReceivePort Pong → 
                    ProcessM ()
ping2 pingout pongin = 
   do  { (Pong partnersPort) ← receiveChan pongin
        ; sendChan partnersPort (Ping pongin) 
        ; ping2 pingout pongin }



Combing Ports
• Suppose that we have several 

communication partners,
- e.g., messages arrive from the hardware that 

we are monitoring, and from other control 
processes in the network.

• We want to receive from one of several 
ports.

30

MergePortsBiased CombinePortsBiased
MergePortsRR CombinePortsRR



Serializing function closures
• Sending a function to a remote address space 

involves serializing not only its code, but also 
its free variables:
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— wrong
sendFunc :: SendPort (Int→Int) → Int → ProcessM ()
sendFunc p x = sendChan p (λy → x + y + 1)

• The function being sent is (λy → x + y + 1), 
which captures the variable x.



Key insight

• Whether a function is serializable or not has 
nothing to do with its type.
- It depends on whether it has free variables,

- whether those free variables are serializable

which are not extensional properties of the 
function

32



Prior Solutions

• Make the runtime responsible for serializing 
anything and everything
- But some things should be serialized specially

- And others should not be serialized at all

• Java does essentially this

• Yet: de-serialization must still be built-in
- this requires runtime reflection
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More modest magic
• Some functions are easy to serialize
- those with no free variables

- How? Serialize the code address
‣ assuming the same code is running at both ends

• We need a way of charactering such 
definitions as a type:
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instance Serializable (Static a)

• Intuition: values of type (Static a) are always 
serializable, regardless what a is!



• Two new terms: static exp and unstatic exp

- intuition: static exp is well-typed iff exp can be 
serialized.

• Top-level bindings are tagged S; all others 
are tagged D

• A term static exp has type τ iff exp :: τ and 
all the free variables in exp are S-bound

35

Static and non-Static types
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Γ ::= x :δ σ

δ ::= S | D

Γ ↓ = {x :s σ | x :s σ ∈ Γ}

Γ ↓ � e : τ

Γ � static e : Static τ
(Static intro)

Γ � e : Static τ

Γ � unstatic e : τ
(Static elim)



Examples:
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id :: a → a
id x = x

id is S-bound, but has a 
non-static type.
id :S a → a
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Examples:
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id :: a → a
id x = x

id is S-bound, but has a 
non-static type.
id :S a → a

f :: Static a → (Static a, Int)
f x = (x, 3)

x is D-bound, but has a 
static type
x :D Static a

static  (length  o filter id) Free variables of a static term 
need not have static types



• So what?   We need to serialize functions 
that do have free variables. 

• Static values make it possible to do closure 
conversion

• Let’s try:

• This makes the environment explicit:
- env is the (existentially quantified) type of the 

environment of our function
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— wrong
data Closure a where
  MkClosure :: Static (env → a) → env → Closure a



• Slight snag: env is not serializable

• OK: let’s make it so!

• Now serialization is easy:

• But what about de-serialization?
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— still wrong
data Closure a where
  MkClosure :: Serialzable env ⇒ 
          Static (env → a) → env → Closure a
  deriving Typeable

instance Binary (Closure a) where
  put (MkClosure f env) = put f ≫ put env



• Deserialization is a problem because, at the 
receiving end, we don’t know what env is.
- Can we send a representation of its type?

- And then what?  
‣ Do a run-time type-class lookup?

- Send a representation of the de-serialization 
function?
‣ This would require us to serialize closures …

• Simple and (in hindsight!) obvious solution:
- get rid of the existential!
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• Isn’t this awfully restrictive?
No!  Any env that is serializable is equipped 
with encode and decode functions that convert 
it to and from a ByteString!

• The (de)-serialization is now done at closure-
construction time

41

The solution
— finally right
data Closure a where
  MkClosure :: Static (ByteString → a) → ByteString →
                     Closure a



Examples

42

sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p clo
    where clo = MkClosure (static sfun) (encode x)

sfun :: ByteString → Int → Int
sfun = λbs → let x = decode bs 
                in λy → x + y + 1

Add newWorker example
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sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p clo
    where clo = MkClosure (static sfun) (encode x)

sfun :: ByteString → Int → Int
sfun = λbs → let x = decode bs 
                in λy → x + y + 1

p is a SendPort that expects a 
(Closure (Int→Int))

In the Closure 
we put a pre-
serialized 
version of the 
free variable xsfun de-serializes its 

own argument

Add newWorker example



Summary
• New type constructor Static, with built-in 

serialization.

• A new term form (static e)

• A new primitive function unstatic :: Static a → a

• These primitives let us construct closures 
manually and control when and how they are 
serialized.
- This looks tiresome, and programmers will probably 

want some syntactic support: future work
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Faking it

•  Static is not yet implemented in GHC

•  We use Template Haskel workarounds
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• Programmer is still doing closure-conversion
- by defining add1 as a top-level function whose 

first argument is an explicit environment (Int)

- mkClosure operates on the names of functions:

‣ mkClosure :: Name → Q Exp

45

sendFunc :: SendPort (Closure (Int → Int)) → Int → ProcessM ()
sendFunc p x = sendChan p ($( mkClosure ’add1) x)
add1 :: Int → Int → Int
add1 x y = x + y + 1

$(remotable [’add1])



Assessment

• Limited experience so far

• Small examples on local networks, and k-
means on an Amazon EC2 cluster.
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k-means

Data clustering algorithm:
1. Guess at centroids of k clusters

2. Put each point in nearest cluster

3. Compute the centroids of these cluster of 
points

4. Use the computed centroids as the next guess

5. Continue until convergence
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k-means
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k-means results
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Related Work

• Inspired by Erlang
- Also by Ciel execution engine and the 

Skywriting language [Murray et al]

• MPI from the HPC community
- language independent

• RPC and RMI mechanisms
- Birrell & Nelson, Emerald, CORBA, Java RMI, 

SOAP, …
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• Distributed functional languages: GDH 
(distributed shared memory), Concurrent ML, 
paraML
- Acute [Sewell et al.]: uses runtime representations 

of datatypes

- HashCaml: does support serialization of function 
values, also with explicit type-passing

- Alice [Rossberg’s Thesis]

- Clean: type-safe pickling, including function 
closures

• Our design point: serialization of closures is 
not built-in
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Future Work

• Low level: implement Static in GHC

• Restartable task level
- inspired by Skywriting project

- tasks: idempotent, restartable computations

- system tracks data dependencies between tasks

- allocates tasks to processors

- recovers from failure
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Summary

• Cloud Haskell: a starting point for building 
distributed applications

• Contributions:
- Typed version of Erlang’s process & messaging 

interfaces

- Typed channels; receive port is not Serializable

- Serialization of function closures

- It works (on 90 Amazon EC2 nodes)
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