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Eden Project:1980

Early days for distributed systems

e John White first wrote about RPC (1976)

 RPC design alternatives explored by Nelson in
his Ph.D. Research (1981)

« RPC implemented efficiently at PARC (1982)

e Bsd Unix does not yet have any IPC or
networking system calls.

« “Department network” was a piece of cable Iin
computer room connecting 2 Vaxen
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Key lIdeas of Object Orientation

Alan Kay (early 1970s)

* Objects localize data structures and code

* Objects are a recursion on the idea of the
computer itself

“The basic principle of recursive design is to make
the parts have the same power as the whole”.

Rather than dividing the computer into “lesser stuffs”,
like data structures and procedures, we should

divide it into lots of little computers that communicate
together.
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Goals of RPC

3 Implementing remote procedure calls
F Andrew D. Birrell , Bruce Jay Nelson

ACM Transactions on Computer Systems (TOCS) February 1984
Volume 2 Issue 1

The primary purpose of our RPC project was to make distributed computatior.
easy. Previously, it was observed within our research community that the con-
struction of communicating programs was a difficult task, undertaken only by
members of a select group of communication experts. Even researchers with
substantial systems experience found it difficult to acquire the specialized exper-
tise required to build distributed systems with existing tools. This seemed
undesirable. We have available to us a very large, very powerful communication
network, numerous powerful computers, and an environment that makes building
programs relatively easy. The existing communication mechanisms appeared to
be a major factor constraining further development of distributed computing.
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1999: Lampson’s Evaluation:
History: What Worked?

YES NO (Not Yet?)
Virtual memory* Capabilities™
Address spaces™ Fancy type systems*
Packet nets* Functional programming
Objects / subtypes Formal methods*
RDB and SQL Software engineering
Transactions™ RPC (except for Web)™
Bitmaps and GUIs* Distributed computing*
Web Persistent objects
Algorithms Security*
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Birrell & Nelson Continue ...

3 Implementing remote procedure calls

F Andrew D. Birrell , Bruce Jay Nelson
ACM Transactions on Computer Systems (TOCS) February 1984
Volume 2 Issue 1

Our hope is that by providing communication with almost as much ease as local
procedure calls, people will be encouraged to build and experiment with distrib-
uted applications. RPC will, we hope, remove unnecessary difficulties, leaving
only the fundamental difficulties of building distributed systems: timing, inde-
pendent failure of components, and the coexistence of independent execution
environments.
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The Object Model

— ubiquitous object reference mechanism
— objects export an interface
— objects are instances of a class

— send messages to objects, with objects as
arguments

— objects respond by autonomously executing a
method

— state of an object is (somewhat) encapsulated
— objects sharing is the normal form of data access

— objects are not explicitly deallocated
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Objects and Distributed Systems

e Good match

— expression 2 + 3 finally makes sense!

— the target of a message formalizes the idea of a
“binding”

— objects export an interface
— send messages to objects ...

— objects respond by autonomously executing a
method

— Objects are a natural unit of mobility
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 Problematic

— ubiquitous object reference mechanism
- identity of Objects
— objects are instances of a class
— state of an object is {semewhat) encapsulated
— objects sharing is the normal form of data access
— ... with objects as arguments
— objects are not explicitly deallocated
— Objects are not a natural unit of mobility

- because there is nothing in an object but object
references!
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What the Object Model Missed

e Sharing Is not enough
— eventually, you need the bits

e Immutablility — our secret weapon!
— Monotonicity?

e Replication and Caching
— Object model gives us no help

e Both sides of Information Hiding

— what

— from whom
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“Fundamental Difficulties”
of Distribution

e Heterogeneity

e Openness

e Security

o Scalability

 Failures

 Time and Ordering of Events

e Concurrency
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Largely Solved Problems (I claim)

e Heterogeneity

— Standards/Protocols (wire support)
— Middleware (API support)
— JITs and VMs (Mobile code support)

e Openness
— Structural typing

— Published Interfaces

— Open Source movement
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Largely Solved Problems (cont.)

e Security

— Authentication and Access Control are technically
solved

— Social and regulatory issues dominate

— Security for mobile code/objects is still problematic

o Scalability

— “The web won't scale” — but it has x 10°...

...In numbers of computers
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The Hard Problems

e Scaling in other dimensions

— number of instances of an object

— capacity of individual computers

e Evolution over time

— versioning object
— safe and unsafe type changes
— new interfaces for old objects

— new objects for old interfaces
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Hard Problems for Languages

e Fallure

— always partial
— mask by replication in space or time
— propagate to software that can’t know what has gone

wrong
— building “firewalls” that contain the consequences of
failure
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Hard Problems for Languages (cont)
e TIming
— speed gap between local and remote is growing

— no global clock or global event ordering

— how can a language with no concept of time help us
to reason about timing?

e Concurrency

— modular construction of concurrent programs
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So What Am | doing about it?

« Timing for distributed object systems

— Real-Rate media streaming — Infopipes

— Embedded control applications — Timber

 Transactions and Failures

— Does “ACID” mean anything?
- current work with Martin Oderski et al. at EPFL

 What about Programming Languages?

— Programming Languages are dead!
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Infopipes

Joint work with Jonathan Walpole
& Calton Pu
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Infopipes — An Abstraction for
Multimedia Streaming

Restricted Domain: Information flow

— applications that transfer and process streams of
Information

« Examples:

— distributed multimedia
- streaming video and/or audio in real-time
— environmental observation

- Columbia River data: Forecast/Nowcast

¥ ) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 190f 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY




Application Requirements

« Applications need to direct streams of
iInformation

— to the right place

— at the right time

— containing the right information
— with the right Quality

- Quality of Service is a compromise between
application specific desires and available resources
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¥ ) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes
%4 OREGON HEALTH & SCIENCE UNIVERSITY




The Solution
« CORBA ORB, DCE RPC, Java RMI...
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Solution
s CORBA ORB-DCERPCIJavaRMI—
] ] "
No!
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Solution

NoO!

e These abstractions hide communication
* We want to reify communication

to reify = ““to make the abstract real”

— create concrete objects that represent
communications abstraction

— messages to these objects let us examine and
change the properties of the communication link
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Infopipes Reify Information Flows

* Infopipes reify communication
...but at the application level

not at the implementation level

 Example

— bandwidth of Infopipe carrying compressed video
— measured in frames per second, not bits per second

e Why?

— If the application is going to do anything with flow
Information, it must be in application-level terms
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What are Infopipes?

e System and distributed system abstraction

 Have well-defined characteristics,
specifically, rate, latency and jitter.

« Compositional: the characteristics of a
composite Infopipe can be calculated from
those of its components

— Seamless interconnection
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Think “Plumbing”

P

)

L =
source buffer sink pump
L= =X 7= i@
filter split tee merge tee netpipe

* An Infopipe has zero or more “Inports” and
zero or more “Outports”

Y
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Composite Components

« Complex components can be built by
putting a “black box” abstraction boundary
around a Pipeline.

1\ A
J

l

— enables modularity and reuse
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Feedback

rate control
]
r} = Qﬁ%; m,/[ﬁilfj}]
k———) Pump
Source buffer with

fill-level sensor

« Rate of the pump Is adjusted to keep buffer
fill level within bounds.
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Feedback

rate control

] Dropper [ /l r[; I

 Feedback control drops packets selectively

— avoid random dropping!

— e.g., video trans-coder labels packets with high-
resolution imagery as “low priority”.
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» “Polarity Checking” for ensuring well-

formed pipelines

Status

* “Activity” abstraction at a higher level than

threads

o Library of reusable Infopipe components

* Look for a Technical Report “real soon

NOow

Y
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Timber

Joint work with Magnus Carlsson, Mark
Jones, Dick Kieburtz, Johan Nordlander
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Timber objectives:

e

— design a language with explicit time behavior

— explore reactivity as the basic programming model
— build upon the full power of a functional language
— Include OO concepts

— support static timing analysis as well as dynamic
adaptivity

 Starting point: O’Haskell

— Johan Nordlander’s thesis work
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Concurrency & Objects

Object: State-carrying identity = autonomous thread of control

serialized
execution

local state local state

asynchronous .
y serialized

execution

concurrent execution

Y
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Reactivity

 Event = method invocation = message
send

— Output event: sending a message
— Input event: being invoked = receiving a message

— No active input
 Method = non-blocking code sequence

* Objects alternate between transient activity
and indefinite periods of rest

— Update local state / create new objects / send
messages
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Controlling Timing

m Each event is associated with a
baseline ...and a... deadline

N =

| “Finish before’

“Start after” |
|  methodm | |

m Default values same as those of sender

m Can also be set explicitly:

after (10*seconds) m
before (25*m | liseconds) m

Main theme: code can be time-dependent, yet platform-
Independent. Static analysis determines feasibility.

Y
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Accessing the Timeline

e Built-in constants baseline and deadline

— defined only within methods

— provide access to the baseline and the deadline for
the current method execution

* For methods initiated by the environment,
timeline must be defined appropriately

— e.g., for an interrupt, baseline might be time at which
the hardware event occurred

— deadline might be time within which registers must
be read
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Example: Ping Program

-> hosts = ["'dogbert', "ratbert', 'ratberg”, '‘theboss'"]

-> ping hosts (Port 515)

dogbert: lookup & connect after 20.018 ms
ratbert: lookup & connect after 41.432 ms

ratberg: NetError "Host name lookup failure"™ after 70.282 ms
theboss: no response within 2 s
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ping hosts port env =

Yy

object
outstanding := hosts
in let
client host start peer =
record
connect = action
env.putStrLn(host ++
++
outstanding := remove
peer.close
deliver _ = action done

neterror e = action
env.putStrLn(host ++

++
outstanding := remove
close = action done

cleanup = action

forall h <- outstanding do
env.putStrLn(h ++ '':

env.quit

timeout = 2*seconds

in record

main = action

forall h <- hosts do

no response within ”

lookup & connect after ™
show (baseline-start))
host outstanding

: " ++ show e ++ " after "
show (baseline-start))
host outstanding

env.inet.tcp.open h port (client h baseline)

after timeout cleanup
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Java Version

http://java.sun.com/j2se/1.4/docs/guide/nio/example/Ping. java
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Comparison

e Timber version

— all actions are defined inside p1Ng object

- can safely manipulate outstanding
— solution is straightforward:
- one object, one instance variable

e Java version

— 10 class variables
— 3 threads

- timeout, printing, de-multiplex of connection events
— Less concurrency (gethostbyname bug!)
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Perspectives

Joint work with Mark Jones
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What comes after Text?

* Program transformations are common
currency at PoPL

e Refactoring is common practice in industry

e Both are semantics preserving ...
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Equivalences

space of all programs

<«
4" program

transformation

refactoring
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Use equivalence classes, not withesses?

View 1 m View 2

\

pand,

’
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