Foundations of Object Oriented Languages 2002

Distributed Objects

The Next Ten Years

Andrew P. Black

OGI School of Science & Engineering
Oregon Health & Science University

black@cse.ogi.edu

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years lof44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Eden Project:1980

Early days for distributed systems

e John White first wrote about RPC (1976)

 RPC design alternatives explored by Nelson in
his Ph.D. Research (1981)

« RPC implemented efficiently at PARC (1982)

e Bsd Unix does not yet have any IPC or
networking system calls.

« “Department network” was a piece of cable Iin
computer room connecting 2 Vaxen

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 2 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Key lIdeas of Object Orientation

Alan Kay (early 1970s)

* Objects localize data structures and code

* Objects are a recursion on the idea of the
computer itself

“The basic principle of recursive design is to make
the parts have the same power as the whole”.

Rather than dividing the computer into “lesser stuffs”,
like data structures and procedures, we should

divide it into lots of little computers that communicate
together.

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 3of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Goals of RPC

3 Implementing remote procedure calls
F Andrew D. Birrell , Bruce Jay Nelson

ACM Transactions on Computer Systems (TOCS) February 1984
Volume 2 Issue 1

The primary purpose of our RPC project was to make distributed computatior.
easy. Previously, it was observed within our research community that the con-
struction of communicating programs was a difficult task, undertaken only by
members of a select group of communication experts. Even researchers with
substantial systems experience found it difficult to acquire the specialized exper-
tise required to build distributed systems with existing tools. This seemed
undesirable. We have available to us a very large, very powerful communication
network, numerous powerful computers, and an environment that makes building
programs relatively easy. The existing communication mechanisms appeared to
be a major factor constraining further development of distributed computing.

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 4 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

1999: Lampson’s Evaluation:
History: What Worked?

YES NO (Not Yet?)
Virtual memory* Capabilities™
Address spaces™ Fancy type systems*
Packet nets* Functional programming
Objects / subtypes Formal methods*
RDB and SQL Software engineering
Transactions™ RPC (except for Web)™
Bitmaps and GUIs* Distributed computing*
Web Persistent objects
Algorithms Security*

¥,) OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years Sorad

%4 OREGON HEALTH & SCIENCE UNIVERSITY

Birrell & Nelson Continue ...

3 Implementing remote procedure calls

F Andrew D. Birrell , Bruce Jay Nelson
ACM Transactions on Computer Systems (TOCS) February 1984
Volume 2 Issue 1

Our hope is that by providing communication with almost as much ease as local
procedure calls, people will be encouraged to build and experiment with distrib-
uted applications. RPC will, we hope, remove unnecessary difficulties, leaving
only the fundamental difficulties of building distributed systems: timing, inde-
pendent failure of components, and the coexistence of independent execution
environments.

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 6 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

The Object Model

— ubiquitous object reference mechanism
— objects export an interface
— objects are instances of a class

— send messages to objects, with objects as
arguments

— objects respond by autonomously executing a
method

— state of an object is (somewhat) encapsulated
— objects sharing is the normal form of data access

— objects are not explicitly deallocated

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 7 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Objects and Distributed Systems

e Good match

— expression 2 + 3 finally makes sense!

— the target of a message formalizes the idea of a
“binding”

— objects export an interface
— send messages to objects ...

— objects respond by autonomously executing a
method

— Objects are a natural unit of mobility

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 8 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

 Problematic

— ubiquitous object reference mechanism
- identity of Objects
— objects are instances of a class
— state of an object is {semewhat) encapsulated
— objects sharing is the normal form of data access
— ... with objects as arguments
— objects are not explicitly deallocated
— Objects are not a natural unit of mobility

- because there is nothing in an object but object
references!

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 9 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

What the Object Model Missed

e Sharing Is not enough
— eventually, you need the bits

e Immutablility — our secret weapon!
— Monotonicity?

e Replication and Caching
— Object model gives us no help

e Both sides of Information Hiding

— what

— from whom

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 10 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

“Fundamental Difficulties”
of Distribution

e Heterogeneity

e Openness

e Security

o Scalability

 Failures

 Time and Ordering of Events

e Concurrency

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 11 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Largely Solved Problems (I claim)

e Heterogeneity

— Standards/Protocols (wire support)
— Middleware (API support)
— JITs and VMs (Mobile code support)

e Openness
— Structural typing

— Published Interfaces

— Open Source movement

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 12 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Largely Solved Problems (cont.)

e Security

— Authentication and Access Control are technically
solved

— Social and regulatory issues dominate

— Security for mobile code/objects is still problematic

o Scalability

— “The web won't scale” — but it has x 10°...

...In numbers of computers

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 13 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

The Hard Problems

e Scaling in other dimensions

— number of instances of an object

— capacity of individual computers

e Evolution over time

— versioning object
— safe and unsafe type changes
— new interfaces for old objects

— new objects for old interfaces

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 14 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Hard Problems for Languages

e Fallure

— always partial
— mask by replication in space or time
— propagate to software that can’t know what has gone

wrong
— building “firewalls” that contain the consequences of
failure
V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 15 of 44

%4 OREGON HEALTH & SCIENCE UNIVERSITY

Hard Problems for Languages (cont)
e TIming
— speed gap between local and remote is growing

— no global clock or global event ordering

— how can a language with no concept of time help us
to reason about timing?

e Concurrency

— modular construction of concurrent programs

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 16 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

So What Am | doing about it?

« Timing for distributed object systems

— Real-Rate media streaming — Infopipes

— Embedded control applications — Timber

 Transactions and Failures

— Does “ACID” mean anything?
- current work with Martin Oderski et al. at EPFL

 What about Programming Languages?

— Programming Languages are dead!

V OGI SCHOOL OF SCIENCE & ENGINEERING Distributed Objects — The Next Ten Years 17 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Infopipes

Joint work with Jonathan Walpole
& Calton Pu

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 18 0f 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Infopipes — An Abstraction for
Multimedia Streaming

Restricted Domain: Information flow

— applications that transfer and process streams of
Information

« Examples:

— distributed multimedia
- streaming video and/or audio in real-time
— environmental observation

- Columbia River data: Forecast/Nowcast

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 190f 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Application Requirements

« Applications need to direct streams of
iInformation

— to the right place

— at the right time

— containing the right information
— with the right Quality

- Quality of Service is a compromise between
application specific desires and available resources

20 of 44

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes
%4 OREGON HEALTH & SCIENCE UNIVERSITY

The Solution
« CORBA ORB, DCE RPC, Java RMI...

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 21 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Solution
s CORBA ORB-DCERPCIJavaRMI—
]] "
No!
V OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 22 of 44

%4 OREGON HEALTH & SCIENCE UNIVERSITY

Solution

NoO!

e These abstractions hide communication
* We want to reify communication

to reify = ““to make the abstract real”

— create concrete objects that represent
communications abstraction

— messages to these objects let us examine and
change the properties of the communication link

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 23 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Infopipes Reify Information Flows

* Infopipes reify communication
...but at the application level

not at the implementation level

 Example

— bandwidth of Infopipe carrying compressed video
— measured in frames per second, not bits per second

e Why?

— If the application is going to do anything with flow
Information, it must be in application-level terms

24 of 44

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes
%4 OREGON HEALTH & SCIENCE UNIVERSITY

What are Infopipes?

e System and distributed system abstraction

 Have well-defined characteristics,
specifically, rate, latency and jitter.

« Compositional: the characteristics of a
composite Infopipe can be calculated from
those of its components

— Seamless interconnection

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 25 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Think “Plumbing”

P

)

L =
source buffer sink pump
L= =X 7= i@
filter split tee merge tee netpipe

* An Infopipe has zero or more “Inports” and
zero or more “Outports”

Y

Infopipes 26 of 44

OGI SCHOOL OF SCIENCE & ENGINEERING
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Composite Components

« Complex components can be built by
putting a “black box” abstraction boundary
around a Pipeline.

1\ A
J

l

— enables modularity and reuse

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 27 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Feedback

rate control
]
r} = Qﬁ%; m,/[ﬁilfj}]
k———) Pump
Source buffer with

fill-level sensor

« Rate of the pump Is adjusted to keep buffer
fill level within bounds.

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 28 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Feedback

rate control

] Dropper [/l r[; I

 Feedback control drops packets selectively

— avoid random dropping!

— e.g., video trans-coder labels packets with high-
resolution imagery as “low priority”.

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Infopipes 29 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

» “Polarity Checking” for ensuring well-

formed pipelines

Status

* “Activity” abstraction at a higher level than

threads

o Library of reusable Infopipe components

* Look for a Technical Report “real soon

NOow

Y

OGI SCHOOL OF SCIENCE & ENGINEERING

%4 OREGON HEALTH & SCIENCE UNIVERSITY

Infopipes

30 of 44

Timber

Joint work with Magnus Carlsson, Mark
Jones, Dick Kieburtz, Johan Nordlander

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Timber 31 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Timber objectives:

e

— design a language with explicit time behavior

— explore reactivity as the basic programming model
— build upon the full power of a functional language
— Include OO concepts

— support static timing analysis as well as dynamic
adaptivity

 Starting point: O’Haskell

— Johan Nordlander’s thesis work

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Timber 32 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Concurrency & Objects

Object: State-carrying identity = autonomous thread of control

serialized
execution

local state local state

asynchronous .
y serialized

execution

concurrent execution

Y

OGI SCHOOL OF SCIENCE & ENGINEERING Timber

%4 OREGON HEALTH & SCIENCE UNIVERSITY

33 of 44

Reactivity

 Event = method invocation = message
send

— Output event: sending a message
— Input event: being invoked = receiving a message

— No active input
 Method = non-blocking code sequence

* Objects alternate between transient activity
and indefinite periods of rest

— Update local state / create new objects / send
messages

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Timber 34 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Controlling Timing

m Each event is associated with a
baseline ...and a... deadline

N =

| “Finish before’

“Start after” |
| methodm | |

m Default values same as those of sender

m Can also be set explicitly:

after (10*seconds) m
before (25*m | liseconds) m

Main theme: code can be time-dependent, yet platform-
Independent. Static analysis determines feasibility.

Y

OGI SCHOOL OF SCIENCE & ENGINEERING Timber
%4 OREGON HEALTH & SCIENCE UNIVERSITY

35 of 44

Accessing the Timeline

e Built-in constants baseline and deadline

— defined only within methods

— provide access to the baseline and the deadline for
the current method execution

* For methods initiated by the environment,
timeline must be defined appropriately

— e.g., for an interrupt, baseline might be time at which
the hardware event occurred

— deadline might be time within which registers must
be read

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Timber 36 0f44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Example: Ping Program

-> hosts = ["'dogbert', "ratbert', 'ratberg”, '‘theboss'"]

-> ping hosts (Port 515)

dogbert: lookup & connect after 20.018 ms
ratbert: lookup & connect after 41.432 ms

ratberg: NetError "Host name lookup failure"™ after 70.282 ms
theboss: no response within 2 s

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

ping hosts port env =

Yy

object
outstanding := hosts
in let
client host start peer =
record
connect = action
env.putStrLn(host ++
++
outstanding := remove
peer.close
deliver _ = action done

neterror e = action
env.putStrLn(host ++

++
outstanding := remove
close = action done

cleanup = action

forall h <- outstanding do
env.putStrLn(h ++ '':

env.quit

timeout = 2*seconds

in record

main = action

forall h <- hosts do

no response within ”

lookup & connect after ™
show (baseline-start))
host outstanding

: " ++ show e ++ " after "
show (baseline-start))
host outstanding

env.inet.tcp.open h port (client h baseline)

after timeout cleanup

OGI SCHOOL OF SCIENCE & ENGINEERING

74 OREGON HEALTH & SCIENCE UNIVERSITY

++ show timeout)

Java Version

http://java.sun.com/j2se/1.4/docs/guide/nio/example/Ping. java

% OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Comparison

e Timber version

— all actions are defined inside p1Ng object

- can safely manipulate outstanding
— solution is straightforward:
- one object, one instance variable

e Java version

— 10 class variables
— 3 threads

- timeout, printing, de-multiplex of connection events
— Less concurrency (gethostbyname bug!)

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Timber 40 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Perspectives

Joint work with Mark Jones

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Perspectives 41 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

What comes after Text?

* Program transformations are common
currency at PoPL

e Refactoring is common practice in industry

e Both are semantics preserving ...

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Perspectives 42 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Equivalences

space of all programs

<«
4" program

transformation

refactoring

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Perspectives 43 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

Use equivalence classes, not withesses?

View 1 m View 2

\

pand,

’

¥) OGI SCHOOL OF SCIENCE & ENGINEERING Perspectives 44 of 44
%4 OREGON HEALTH & SCIENCE UNIVERSITY

	Distributed Objects — The Next Ten Years
	Eden Project:1980
	Early days for distributed systems
	• John White first wrote about RPC (1976)
	• RPC design alternatives explored by Nelson in his Ph.D. Research (1981)
	• RPC implemented efficiently at PARC (1982)
	• Bsd Unix does not yet have any IPC or networking system calls.
	• “Department network” was a piece of cable in computer room connecting 2 Vaxen

	Key Ideas of Object Orientation
	Alan Kay (early 1970s)
	• Objects localize data structures and code
	• Objects are a recursion on the idea of the computer itself

	Goals of RPC
	1999: Lampson’s Evaluation:
	Birrell & Nelson Continue …
	The Object Model
	Objects and Distributed Systems
	• Good match
	• Problematic

	What the Object Model Missed
	• Sharing is not enough
	• Immutability — our secret weapon!
	• Replication and Caching
	• Both sides of Information Hiding

	“Fundamental Difficulties” of Distribution
	• Heterogeneity
	• Openness
	• Security
	• Scalability
	• Failures
	• Time and Ordering of Events
	• Concurrency

	Largely Solved Problems (I claim)
	• Heterogeneity
	• Openness

	Largely Solved Problems (cont.)
	• Security
	• Scalability

	The Hard Problems
	• Scaling in other dimensions
	• Evolution over time

	Hard Problems for Languages
	• Failure

	Hard Problems for Languages (cont)
	• Timing
	• Concurrency

	So What Am I doing about it?
	• Timing for distributed object systems
	• Transactions and Failures
	• What about Programming Languages?

	Infopipes
	Joint work with Jonathan Walpole & Calton Pu
	Infopipes — An Abstraction for Multimedia Streaming
	Restricted Domain: Information flow
	• Examples:

	Application Requirements
	• Applications need to direct streams of information

	The Solution
	• CORBA ORB, DCE RPC, Java RMI…

	Solution
	• CORBA ORB, DCE RPC, Java RMI…

	No!
	Solution
	• CORBA ORB, DCE RPC, Java RMI…

	No!
	• These abstractions hide communication
	• We want to reify communication

	Infopipes Reify Information Flows
	• Infopipes reify communication
	…but at the application level
	not at the implementation level
	• Example
	• Why?

	What are Infopipes?
	• System and distributed system abstraction
	• Have well-defined characteristics, specifically, rate, latency and jitter.
	• Compositional: the characteristics of a composite Infopipe can be calculated from those of its ...

	Think “Plumbing”
	• An Infopipe has zero or more “Inports” and zero or more “Outports”

	Composite Components
	• Complex components can be built by putting a “black box” abstraction boundary around a Pipeline.

	Feedback�
	• Rate of the pump is adjusted to keep buffer fill level within bounds.

	Feedback
	• Feedback control drops packets selectively

	Status
	• “Polarity Checking” for ensuring well- formed pipelines
	• “Activity” abstraction at a higher level than threads
	• Library of reusable Infopipe components
	• Look for a Technical Report “real soon now”

	Timber
	Joint work with Magnus Carlsson, Mark Jones, Dick Kieburtz, Johan Nordlander
	Timber objectives:
	• To
	• Starting point: O’Haskell

	Concurrency & Objects
	Reactivity
	• Event = method invocation = message send
	• Method = non-blocking code sequence
	• Objects alternate between transient activity and indefinite periods of rest

	Controlling Timing
	Accessing the Timeline
	• Built-in constants baseline and deadline
	• For methods initiated by the environment, timeline must be defined appropriately

	Example Program: Ping
	Java Version
	Comparison
	• Timber version
	• Java version

	Perspectives
	Joint work with Mark Jones
	What comes after Text?
	• Program transformations are common currency at PoPL
	• Refactoring is common practice in industry
	• Both are semantics preserving …

	Equivalences
	Use equivalence classes, not witnesses?

