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Eden Project:1980

Early days for distributed system

• John White first wrote about RPC 

• RPC design alternatives explored 
his Ph.D. Research (1981)

• RPC implemented efficiently at PA

• Bsd Unix does not yet have any IP
networking system calls.

• “Department network” was a piece
computer room connecting 2 Vaxe
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Key Ideas of Object Orien

Alan Kay (early 1970s)

• Objects localize data structures

• Objects are a recursion on the i
computer itself

“The basic principle of recursive desig
the parts have the same power as the

Rather than dividing the computer into 
like data structures and procedures, w
divide it into lots of little computers that
together.
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Goals of RPC
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1999: Lampson’s Evaluation:

YES

Virtual memory*

Address spaces*

Packet nets*

Objects / subtypes

RDB and SQL

Transactions*

Bitmaps and GUIs*

Web

Algorithms

History: What Worked?

NO (No

Capabilities*

Fancy type sy

Functional pr

Formal metho

Software eng

RPC (except for

Distributed co

Persistent obj

Security*
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The Object Model

– ubiquitous object reference mechanis

– objects export an interface

– objects are instances of a class

– send messages to objects, with objec
arguments

– objects respond by autonomously exe
method

– state of an object is (somewhat) enca

– objects sharing is the normal form of d

– objects are not explicitly deallocated
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Objects and Distributed S

• Good match

– expression 2 + 3 finally makes sense!

– the target of a message formalizes the
“binding”

– objects export an interface

– send messages to objects …

– objects respond by autonomously exe
method

– Objects are a natural unit of mobility
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• Problematic

– ubiquitous object reference mechanis

- identity of Objects

– objects are instances of a class

– state of an object is (somewhat) enca

– objects sharing is the normal form of d

– … with objects as arguments

– objects are not explicitly deallocated

– Objects are not a natural unit of mobil

- because there is nothing in an object
references!
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What the Object Model M

• Sharing is not enough

– eventually, you need the bits

• Immutability — our secret weap

–  Monotonicity?

• Replication and Caching

– Object model gives us no help

• Both sides of Information Hiding

– what 

– from whom
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“Fundamental Difficult
of Distribution

• Heterogeneity

• Openness

• Security

• Scalability

• Failures

• Time and Ordering of Events

• Concurrency
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Largely Solved Problems (

• Heterogeneity

– Standards/Protocols (wire support)

– Middleware (API support)

– JITs and VMs (Mobile code support)

• Openness

– Structural typing

– Published Interfaces

– Open Source movement
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Largely Solved Problems 

• Security

– Authentication and Access Control are
solved

– Social and regulatory issues dominate

– Security for mobile code/objects is stil

• Scalability

– “The web won’t scale” — but it has x 1

…in numbers of computers
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The Hard Problems

• Scaling in other dimensions

– number of instances of an object

– capacity of individual computers

• Evolution over time

– versioning object

– safe and unsafe type changes

– new interfaces for old objects

– new objects for old interfaces
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Hard Problems for Langu

• Failure

– always partial

– mask by replication in space or time

– propagate to software that can’t know w
wrong

– building “firewalls” that contain the con
failure
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Hard Problems for Languag

• Timing

– speed gap between local and remote 

– no global clock or global event orderin

– how can a language with no concept o
to reason about timing?

• Concurrency

– modular construction of concurrent pr
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So What Am I doing abo

• Timing for distributed object sys

– Real-Rate media streaming — Infopip

– Embedded control applications — Tim

• Transactions and Failures

– Does “ACID” mean anything?

- current work with Martin Oderski et a

• What about Programming Lang

– Programming Languages are dead!
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Joint work with Jonathan Wa
& Calton Pu

Infopipes
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Infopipes — An Abstracti
Multimedia Streamin

Restricted Domain: Information

– applications that transfer and process
information

• Examples:

– distributed multimedia

- streaming video and/or audio in real-

– environmental observation

- Columbia River data: Forecast/Nowc
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Application Requireme

• Applications need to direct strea
information

– to the right place

– at the right time

– containing the right information

– with the right Quality

- Quality of Service is a compromise b
application specific desires and avail



21 of 44es 

© Andrew P. Black 2

RMI…
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

The Solution

• CORBA ORB, DCE RPC, Java 
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Solution

• CORBA ORB, DCE RPC, Java 

No!
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Solution

• CORBA ORB, DCE RPC, Java 

No!

• These abstractions hide commu

• We want to reify communication

to reify = “to make the abstra
– create concrete objects that represen

communications abstraction

– messages to these objects let us exam
change the properties of the commun
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Infopipes Reify Information

• Infopipes reify communication

…but at the application level

not at the implementation level

• Example

– bandwidth of Infopipe carrying compre

– measured in frames per second, not b

• Why? 

– If the application is going to do anythin
information, it must be in application-l
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What are Infopipes?

• System and distributed system 

• Have well-defined characteristic
specifically, rate, latency and jit

• Compositional: the characteristi
composite Infopipe can be calcu
those of its components

– Seamless interconnection
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Think “Plumbing”

• An Infopipe has zero or more “In
zero or more “Outports”

source buffer sink

filter split tee merge tee
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Composite Componen

• Complex components can be b
putting a “black box” abstraction
around a Pipeline.

– enables modularity and reuse
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Feedback

• Rate of the pump is adjusted to k
fill level within bounds.

Source
Pump

rate control

buffer with 
fill-level senso
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Feedback

• Feedback control drops packets

– avoid random dropping!

– e.g., video trans-coder labels packets
resolution imagery as “low priority”.

Not under our control

rate con

Dropper
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Status

• “Polarity Checking” for ensuring
formed pipelines

• “Activity” abstraction at a higher
threads

• Library of reusable Infopipe com

• Look for a Technical Report “re
now”
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Joint work with Magnus Carls
Jones, Dick Kieburtz, Johan N

Timber
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Timber objectives:

• To 

– design a language with explicit time b

– explore reactivity as the basic program

– build upon the full power of a function

– include OO concepts

– support static timing analysis as well a
adaptivity

• Starting point: O’Haskell

– Johan Nordlander’s thesis work
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Concurrency & Objec
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a1:

a2:

local state

b1:

b2:

local stat

concurrent execution

serialized
execution

asynchronous
message send



34 of 44er 

© Andrew P. Black 2

essage 

 a message

quence

ient activity 

s / send 
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Reactivity

• Event = method invocation = m
send
– Output event: sending a message

– Input event: being invoked = receiving

– No active input 

• Method = non-blocking code se

• Objects alternate between trans
and indefinite periods of rest
– Update local state / create new object

messages
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Controlling Timing
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aaaafffftttteeeerrrr (10*seconds) m

bbbbeeeeffffoooorrrreeee (25*milliseconds) m

method m
“Start after”

Main theme: code can be time-dependent,
independent. Static analysis determines fe
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Accessing the Timeli

• Built-in constants baseline and

– defined only within methods 

– provide access to the baseline and th
the current method execution

• For methods initiated by the env
timeline must be defined approp

– e.g., for an interrupt, baseline might be
the hardware event occurred

– deadline might be time within which re
be read



Example: Ping Program

-> hosts = ["dogbert", "ratbert", "ratberg”, "theboss"]

-> ping hosts (Port 515)

dogbert: lookup & connect after 20.018 ms

ratbert: lookup & connect after 41.432 ms

ratberg: NetError "Host name lookup failure" after 70.282 ms

theboss: no response within 2 s



ping hosts port env =
oooobbbbjjjjeeeecccctttt

outstanding := hosts
iiiinnnn lllleeeetttt

client host start peer =
rrrreeeeccccoooorrrrdddd

connect    = aaaaccccttttiiiioooonnnn
env.putStrLn(host ++ ": lookup & connect after "

++ show (baseline-start))
outstanding := remove host outstanding
peer.close

deliver  _ = aaaaccccttttiiiioooonnnn done
neterror e = aaaaccccttttiiiioooonnnn

env.putStrLn(host ++ ": " ++ show e ++ " after "
++ show (baseline-start))

outstanding := remove host outstanding
close      = aaaaccccttttiiiioooonnnn done

cleanup = aaaaccccttttiiiioooonnnn
ffffoooorrrraaaallllllll h <- outstanding ddddoooo

env.putStrLn(h ++ ": no response within ” ++ show timeout)
env.quit

timeout = 2*seconds
iiiinnnn rrrreeeeccccoooorrrrdddd

main = aaaaccccttttiiiioooonnnn
ffffoooorrrraaaallllllll h <- hosts ddddoooo

env.inet.tcp.open h port (client h baseline)
aaaafffftttteeeerrrr timeout cleanup



Java Version
http://java.sun.com/j2se/1.4/docs/guide/nio/example/Ping.java

Page 1 of 4Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Printed: 17:16:00

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.*;
import java.util.regex.*;

public class Ping {

static int DAYTIME_PORT = 13;

static int port = DAYTIME_PORT;

static class Target {

InetSocketAddress address;
SocketChannel channel;
Exception failure;
long connectStart;
long connectFinish = 0;
boolean shown = false;

Target(String host) {
try {
address = new InetSocketAddress(InetAddress.getByName(host),

port);
} catch (IOException x) {
failure = x;
}

}

void show() {
String result;
if (connectFinish != 0)
result = Long.toString(connectFinish - connectStart) + "ms";
else if (failure != null)
result = failure.toString();
else
result = "Timed out";
System.out.println(address + " : " + result);
shown = true;

}

}

static class Printer
extends Thread
{
LinkedList pending = new LinkedList();

Printer() {
setName("Printer");
setDaemon(true);

}

void add(Target t) {
synchronized (pending) {

Page 2 of 4Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Printed: 17:16:00

pending.add(t);
pending.notify();
}

}

public void run() {
for (;;) {
Target t = null;
synchronized (pending) {

try {
pending.wait();
} catch (InterruptedException x) {
return;
}
while (pending.size() > 0) {
t = (Target)pending.removeFirst();
}

}
t.show();
}

}
}

static class Connector
extends Thread
{
Selector sel;
Printer printer;

LinkedList pending = new LinkedList();

Connector(Printer pr) throws IOException {
printer = pr;
sel = Selector.open();
setName("Connector");

}

void add(Target t) {
SocketChannel sc = null;
try {

sc = SocketChannel.open();
sc.configureBlocking(false);
sc.connect(t.address);

t.channel = sc;
t.connectStart = System.currentTimeMillis();

synchronized (pending) {
pending.add(t);

}

sel.wakeup();

} catch (IOException x) {
if (sc != null) {

try {
sc.close();
} catch (IOException xx) { }

}
t.failure = x;

Page 3 of 4Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Printed: 17:16:00

printer.add(t);
}

}

void processPendingTargets() throws IOException {
synchronized (pending) {
while (pending.size() > 0) {

Target t = (Target)pending.removeFirst();

SelectionKey sk;
try {
sk = t.channel.register(sel,

SelectionKey.OP_CONNECT);
} catch (IOException x) {
t.channel.close();
t.failure = x;
printer.add(t);
continue;
}

sk.attach(t);

}
}

}

void processSelectedKeys() throws IOException {
for (Iterator i = sel.selectedKeys().iterator(); i.hasNext();) {

SelectionKey sk = (SelectionKey)i.next();
i.remove();

Target t = (Target)sk.attachment();
SocketChannel sc = (SocketChannel)sk.channel();

try {
if (sc.finishConnect()) {
sk.cancel();
t.connectFinish = System.currentTimeMillis();
sc.close();
printer.add(t);
}

} catch (IOException x) {
sc.close();
t.failure = x;
printer.add(t);

}
}

}

volatile boolean shutdown = false;

void shutdown() {
shutdown = true;
sel.wakeup();

}

public void run() {
for (;;) {
try {

int n = sel.select();
if (n > 0)

Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Pri

processSelectedKeys();
processPendingTargets();
if (shutdown) {
sel.close();
return;
}

} catch (IOException x) {
x.printStackTrace();

}
}

}

}

public static void main(String[] args)
throws InterruptedException, IOException
{
if (args.length < 1) {

System.err.println("Usage: java Ping [port] host...");
return;

}
int firstArg = 0;

if (Pattern.matches("[0-9]+", args[0])) {
port = Integer.parseInt(args[0]);
firstArg = 1;

}

Printer printer = new Printer();
printer.start();
Connector connector = new Connector(printer);
connector.start();

LinkedList targets = new LinkedList();
for (int i = firstArg; i < args.length; i++) {

Target t = new Target(args[i]);
targets.add(t);
connector.add(t);

}

Thread.sleep(2000);
connector.shutdown();
connector.join();

for (Iterator i = targets.iterator(); i.hasNext();) {
Target t = (Target)i.next();
if (!t.shown)
t.show();

}

}

}
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Comparison

• Timber version

– all actions are defined inside ping ob

- can safely manipulate outstandi
– solution is straightforward:

- one object, one instance variable

• Java version
– 10 class variables
– 3 threads

- timeout, printing, de-multiplex of con
– Less concurrency (gethostbyname bu
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Joint work with Mark Jon

Perspectives
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What comes after Tex

• Program transformations are co
currency at PoPL

• Refactoring is common practice

• Both are semantics preserving 
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Equivalences

refactorin

program

transform

space of all programs
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Use equivalence classes, not w
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RefactoringView 1 Vi
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