

1 of 44

The Next Ten Years

© Andrew P. Black 2

ages 2002

s

g
y

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Foundations of Object Oriented Langu

Distributed Objects
—

The Next Ten Year

Andrew P. Black
OGI School of Science & Engineerin
Oregon Health & Science Universit

black@cse.ogi.edu

2 of 44

The Next Ten Years

© Andrew P. Black 2

s

(1976)

by Nelson in

RC (1982)

C or

 of cable in
n

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Eden Project:1980

Early days for distributed system

• John White first wrote about RPC

• RPC design alternatives explored
his Ph.D. Research (1981)

• RPC implemented efficiently at PA

• Bsd Unix does not yet have any IP
networking system calls.

• “Department network” was a piece
computer room connecting 2 Vaxe

3 of 44

The Next Ten Years

© Andrew P. Black 2

tation

 and code

dea of the

n is to make
 whole”.

“lesser stuffs”,
e should
 communicate
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Key Ideas of Object Orien

Alan Kay (early 1970s)

• Objects localize data structures

• Objects are a recursion on the i
computer itself

“The basic principle of recursive desig
the parts have the same power as the

Rather than dividing the computer into
like data structures and procedures, w
divide it into lots of little computers that
together.

4 of 44

 The Next Ten Years

© Andrew P. Black 2

���

��"����,�#$%*�����
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Goals of RPC

�

2 �-���-�
��
,���-���������������	
�������2���	��������������8�,����
��

'���!��9)

���#
��.���	
�	����
���
���-�������&���-���

5 of 44

The Next Ten Years

© Andrew P. Black 2

t Yet?)

stems*

ogramming

ds*

ineering

 Web)*

mputing*

ects
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

1999: Lampson’s Evaluation:

YES

Virtual memory*

Address spaces*

Packet nets*

Objects / subtypes

RDB and SQL

Transactions*

Bitmaps and GUIs*

Web

Algorithms

History: What Worked?

NO (No

Capabilities*

Fancy type sy

Functional pr

Formal metho

Software eng

RPC (except for

Distributed co

Persistent obj

Security*

6 of 44

The Next Ten Years

© Andrew P. Black 2

e …

���

��"����,�#$%*�����
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Birrell & Nelson Continu

�

2 �-���-�
��
,���-���������������	
�������2���	��������������8�,����
��

'���!��9)

���#
��.���	
�	����
���
���-�������&���-���

7 of 44

The Next Ten Years

© Andrew P. Black 2

m

ts as

cuting a

psulated

ata access

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

The Object Model

– ubiquitous object reference mechanis

– objects export an interface

– objects are instances of a class

– send messages to objects, with objec
arguments

– objects respond by autonomously exe
method

– state of an object is (somewhat) enca

– objects sharing is the normal form of d

– objects are not explicitly deallocated

8 of 44

 The Next Ten Years

© Andrew P. Black 2

ystems

 idea of a

cuting a

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Objects and Distributed S

• Good match

– expression 2 + 3 finally makes sense!

– the target of a message formalizes the
“binding”

– objects export an interface

– send messages to objects …

– objects respond by autonomously exe
method

– Objects are a natural unit of mobility

9 of 44

The Next Ten Years

© Andrew P. Black 2

m

psulated

ata access

ity

 but object
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

• Problematic

– ubiquitous object reference mechanis

- identity of Objects

– objects are instances of a class

– state of an object is (somewhat) enca

– objects sharing is the normal form of d

– … with objects as arguments

– objects are not explicitly deallocated

– Objects are not a natural unit of mobil

- because there is nothing in an object
references!

10 of 44

The Next Ten Years

© Andrew P. Black 2

issed

on!

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

What the Object Model M

• Sharing is not enough

– eventually, you need the bits

• Immutability — our secret weap

– Monotonicity?

• Replication and Caching

– Object model gives us no help

• Both sides of Information Hiding

– what

– from whom

11 of 44

The Next Ten Years

© Andrew P. Black 2

ies”

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

“Fundamental Difficult
of Distribution

• Heterogeneity

• Openness

• Security

• Scalability

• Failures

• Time and Ordering of Events

• Concurrency

12 of 44

The Next Ten Years

© Andrew P. Black 2

I claim)

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Largely Solved Problems (

• Heterogeneity

– Standards/Protocols (wire support)

– Middleware (API support)

– JITs and VMs (Mobile code support)

• Openness

– Structural typing

– Published Interfaces

– Open Source movement

13 of 44

The Next Ten Years

© Andrew P. Black 2

(cont.)

 technically

l problematic

0

6

…

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Largely Solved Problems

• Security

– Authentication and Access Control are
solved

– Social and regulatory issues dominate

– Security for mobile code/objects is stil

• Scalability

– “The web won’t scale” — but it has x 1

…in numbers of computers

14 of 44

The Next Ten Years

© Andrew P. Black 2

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

The Hard Problems

• Scaling in other dimensions

– number of instances of an object

– capacity of individual computers

• Evolution over time

– versioning object

– safe and unsafe type changes

– new interfaces for old objects

– new objects for old interfaces

15 of 44

The Next Ten Years

© Andrew P. Black 2

ages

hat has gone

sequences of
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Hard Problems for Langu

• Failure

– always partial

– mask by replication in space or time

– propagate to software that can’t know w
wrong

– building “firewalls” that contain the con
failure

16 of 44

The Next Ten Years

© Andrew P. Black 2

es (cont)

is growing

g

f time help us

ograms
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

Hard Problems for Languag

• Timing

– speed gap between local and remote

– no global clock or global event orderin

– how can a language with no concept o
to reason about timing?

• Concurrency

– modular construction of concurrent pr

17 of 44

The Next Ten Years

© Andrew P. Black 2

ut it?

tems

es

ber

l.

 at EPFL

uages?

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Distributed Objects —

001

So What Am I doing abo

• Timing for distributed object sys

– Real-Rate media streaming — Infopip

– Embedded control applications — Tim

• Transactions and Failures

– Does “ACID” mean anything?

- current work with Martin Oderski et a

• What about Programming Lang

– Programming Languages are dead!

18 of 44es

© Andrew P. Black 2

lpole
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Joint work with Jonathan Wa
& Calton Pu

Infopipes

19 of 44es

© Andrew P. Black 2

on for
g

 flow

 streams of

time

ast
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Infopipes — An Abstracti
Multimedia Streamin

Restricted Domain: Information

– applications that transfer and process
information

• Examples:

– distributed multimedia

- streaming video and/or audio in real-

– environmental observation

- Columbia River data: Forecast/Nowc

20 of 44es

© Andrew P. Black 2

nts

ms of

etween
able resources
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Application Requireme

• Applications need to direct strea
information

– to the right place

– at the right time

– containing the right information

– with the right Quality

- Quality of Service is a compromise b
application specific desires and avail

21 of 44es

© Andrew P. Black 2

RMI…
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

The Solution

• CORBA ORB, DCE RPC, Java

22 of 44es

© Andrew P. Black 2

RMI…
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Solution

• CORBA ORB, DCE RPC, Java

No!

23 of 44es

© Andrew P. Black 2

RMI…

nication

ct real”
t

ine and
ication link
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Solution

• CORBA ORB, DCE RPC, Java

No!

• These abstractions hide commu

• We want to reify communication

to reify = “to make the abstra
– create concrete objects that represen

communications abstraction

– messages to these objects let us exam
change the properties of the commun

24 of 44es

© Andrew P. Black 2

 Flows

ssed video

its per second

g with flow
evel terms
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Infopipes Reify Information

• Infopipes reify communication

…but at the application level

not at the implementation level

• Example

– bandwidth of Infopipe carrying compre

– measured in frames per second, not b

• Why?

– If the application is going to do anythin
information, it must be in application-l

25 of 44es

© Andrew P. Black 2

abstraction

s,
ter.

cs of a
lated from
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

What are Infopipes?

• System and distributed system

• Have well-defined characteristic
specifically, rate, latency and jit

• Compositional: the characteristi
composite Infopipe can be calcu
those of its components

– Seamless interconnection

26 of 44es

© Andrew P. Black 2

ports” and

pump

netpipe
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Think “Plumbing”

• An Infopipe has zero or more “In
zero or more “Outports”

source buffer sink

filter split tee merge tee

27 of 44es

© Andrew P. Black 2

ts

uilt by
 boundary
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Composite Componen

• Complex components can be b
putting a “black box” abstraction
around a Pipeline.

– enables modularity and reuse

28 of 44es

© Andrew P. Black 2

eep buffer

r

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Feedback

• Rate of the pump is adjusted to k
fill level within bounds.

Source
Pump

rate control

buffer with
fill-level senso

29 of 44es

© Andrew P. Black 2

 selectively

 with high-

trol
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Feedback

• Feedback control drops packets

– avoid random dropping!

– e.g., video trans-coder labels packets
resolution imagery as “low priority”.

Not under our control

rate con

Dropper

30 of 44es

© Andrew P. Black 2

 well-

 level than

ponents

al soon
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Infopip

001

Status

• “Polarity Checking” for ensuring
formed pipelines

• “Activity” abstraction at a higher
threads

• Library of reusable Infopipe com

• Look for a Technical Report “re
now”

31 of 44er

© Andrew P. Black 2

son, Mark
ordlander
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Joint work with Magnus Carls
Jones, Dick Kieburtz, Johan N

Timber

32 of 44er

© Andrew P. Black 2

ehavior

ming model

al language

s dynamic
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Timber objectives:

• To

– design a language with explicit time b

– explore reactivity as the basic program

– build upon the full power of a function

– include OO concepts

– support static timing analysis as well a
adaptivity

• Starting point: O’Haskell

– Johan Nordlander’s thesis work

33 of 44er

© Andrew P. Black 2

ts

������������

e

serialized
execution
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Concurrency & Objec

��������	�
����
��
�����������
���
��������������

a1:

a2:

local state

b1:

b2:

local stat

concurrent execution

serialized
execution

asynchronous
message send

34 of 44er

© Andrew P. Black 2

essage

 a message

quence

ient activity

s / send
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Reactivity

• Event = method invocation = m
send
– Output event: sending a message

– Input event: being invoked = receiving

– No active input

• Method = non-blocking code se

• Objects alternate between trans
and indefinite periods of rest
– Update local state / create new object

messages

35 of 44er

© Andrew P. Black 2

dline

������

“Finish before”

 yet platform-
asibility.
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Controlling Timing

� �
������������
�����
���������

baseline������������
���
�������������dea

� ���
�����
������
���
�����������

� �
��
������������ !������
�
aaaafffftttteeeerrrr (10*seconds) m

bbbbeeeeffffoooorrrreeee (25*milliseconds) m

method m
“Start after”

Main theme: code can be time-dependent,
independent. Static analysis determines fe

36 of 44er

© Andrew P. Black 2

ne

 deadline

e deadline for

ironment,
riately

 time at which

gisters must
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Accessing the Timeli

• Built-in constants baseline and

– defined only within methods

– provide access to the baseline and th
the current method execution

• For methods initiated by the env
timeline must be defined approp

– e.g., for an interrupt, baseline might be
the hardware event occurred

– deadline might be time within which re
be read

Example: Ping Program

-> hosts = ["dogbert", "ratbert", "ratberg”, "theboss"]

-> ping hosts (Port 515)

dogbert: lookup & connect after 20.018 ms

ratbert: lookup & connect after 41.432 ms

ratberg: NetError "Host name lookup failure" after 70.282 ms

theboss: no response within 2 s

ping hosts port env =
oooobbbbjjjjeeeecccctttt

outstanding := hosts
iiiinnnn lllleeeetttt

client host start peer =
rrrreeeeccccoooorrrrdddd

connect = aaaaccccttttiiiioooonnnn
env.putStrLn(host ++ ": lookup & connect after "

++ show (baseline-start))
outstanding := remove host outstanding
peer.close

deliver _ = aaaaccccttttiiiioooonnnn done
neterror e = aaaaccccttttiiiioooonnnn

env.putStrLn(host ++ ": " ++ show e ++ " after "
++ show (baseline-start))

outstanding := remove host outstanding
close = aaaaccccttttiiiioooonnnn done

cleanup = aaaaccccttttiiiioooonnnn
ffffoooorrrraaaallllllll h <- outstanding ddddoooo

env.putStrLn(h ++ ": no response within ” ++ show timeout)
env.quit

timeout = 2*seconds
iiiinnnn rrrreeeeccccoooorrrrdddd

main = aaaaccccttttiiiioooonnnn
ffffoooorrrraaaallllllll h <- hosts ddddoooo

env.inet.tcp.open h port (client h baseline)
aaaafffftttteeeerrrr timeout cleanup

Java Version
http://java.sun.com/j2se/1.4/docs/guide/nio/example/Ping.java

Page 1 of 4Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Printed: 17:16:00

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.*;
import java.util.regex.*;

public class Ping {

static int DAYTIME_PORT = 13;

static int port = DAYTIME_PORT;

static class Target {

InetSocketAddress address;
SocketChannel channel;
Exception failure;
long connectStart;
long connectFinish = 0;
boolean shown = false;

Target(String host) {
try {
address = new InetSocketAddress(InetAddress.getByName(host),

port);
} catch (IOException x) {
failure = x;
}

}

void show() {
String result;
if (connectFinish != 0)
result = Long.toString(connectFinish - connectStart) + "ms";
else if (failure != null)
result = failure.toString();
else
result = "Timed out";
System.out.println(address + " : " + result);
shown = true;

}

}

static class Printer
extends Thread
{
LinkedList pending = new LinkedList();

Printer() {
setName("Printer");
setDaemon(true);

}

void add(Target t) {
synchronized (pending) {

Page 2 of 4Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Printed: 17:16:00

pending.add(t);
pending.notify();
}

}

public void run() {
for (;;) {
Target t = null;
synchronized (pending) {

try {
pending.wait();
} catch (InterruptedException x) {
return;
}
while (pending.size() > 0) {
t = (Target)pending.removeFirst();
}

}
t.show();
}

}
}

static class Connector
extends Thread
{
Selector sel;
Printer printer;

LinkedList pending = new LinkedList();

Connector(Printer pr) throws IOException {
printer = pr;
sel = Selector.open();
setName("Connector");

}

void add(Target t) {
SocketChannel sc = null;
try {

sc = SocketChannel.open();
sc.configureBlocking(false);
sc.connect(t.address);

t.channel = sc;
t.connectStart = System.currentTimeMillis();

synchronized (pending) {
pending.add(t);

}

sel.wakeup();

} catch (IOException x) {
if (sc != null) {

try {
sc.close();
} catch (IOException xx) { }

}
t.failure = x;

Page 3 of 4Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Printed: 17:16:00

printer.add(t);
}

}

void processPendingTargets() throws IOException {
synchronized (pending) {
while (pending.size() > 0) {

Target t = (Target)pending.removeFirst();

SelectionKey sk;
try {
sk = t.channel.register(sel,

SelectionKey.OP_CONNECT);
} catch (IOException x) {
t.channel.close();
t.failure = x;
printer.add(t);
continue;
}

sk.attach(t);

}
}

}

void processSelectedKeys() throws IOException {
for (Iterator i = sel.selectedKeys().iterator(); i.hasNext();) {

SelectionKey sk = (SelectionKey)i.next();
i.remove();

Target t = (Target)sk.attachment();
SocketChannel sc = (SocketChannel)sk.channel();

try {
if (sc.finishConnect()) {
sk.cancel();
t.connectFinish = System.currentTimeMillis();
sc.close();
printer.add(t);
}

} catch (IOException x) {
sc.close();
t.failure = x;
printer.add(t);

}
}

}

volatile boolean shutdown = false;

void shutdown() {
shutdown = true;
sel.wakeup();

}

public void run() {
for (;;) {
try {

int n = sel.select();
if (n > 0)

Boulder:Users:black:Andrew Black:talks:Timber:Ping.java
Wednesday, 5 December 2001 Pri

processSelectedKeys();
processPendingTargets();
if (shutdown) {
sel.close();
return;
}

} catch (IOException x) {
x.printStackTrace();

}
}

}

}

public static void main(String[] args)
throws InterruptedException, IOException
{
if (args.length < 1) {

System.err.println("Usage: java Ping [port] host...");
return;

}
int firstArg = 0;

if (Pattern.matches("[0-9]+", args[0])) {
port = Integer.parseInt(args[0]);
firstArg = 1;

}

Printer printer = new Printer();
printer.start();
Connector connector = new Connector(printer);
connector.start();

LinkedList targets = new LinkedList();
for (int i = firstArg; i < args.length; i++) {

Target t = new Target(args[i]);
targets.add(t);
connector.add(t);

}

Thread.sleep(2000);
connector.shutdown();
connector.join();

for (Iterator i = targets.iterator(); i.hasNext();) {
Target t = (Target)i.next();
if (!t.shown)
t.show();

}

}

}

40 of 44er

© Andrew P. Black 2

ject

ng

nection events
g!)
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Timb

001

Comparison

• Timber version

– all actions are defined inside ping ob

- can safely manipulate outstandi
– solution is straightforward:

- one object, one instance variable

• Java version
– 10 class variables
– 3 threads

- timeout, printing, de-multiplex of con
– Less concurrency (gethostbyname bu

41 of 44tives

© Andrew P. Black 2

es
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Perspec

001

Joint work with Mark Jon

Perspectives

42 of 44tives

© Andrew P. Black 2

t?

mmon

 in industry

…

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Perspec

001

What comes after Tex

• Program transformations are co
currency at PoPL

• Refactoring is common practice

• Both are semantics preserving

43 of 44tives

© Andrew P. Black 2

g

ation
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Perspec

001

Equivalences

refactorin

program

transform

space of all programs

44 of 44tives

© Andrew P. Black 2

itnesses?

ew 2

pand,
notate
OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Perspec

001

Use equivalence classes, not w

APS

RefactoringView 1 Vi

project
ex
an

	Distributed Objects — The Next Ten Years
	Eden Project:1980
	Early days for distributed systems
	• John White first wrote about RPC (1976)
	• RPC design alternatives explored by Nelson in his Ph.D. Research (1981)
	• RPC implemented efficiently at PARC (1982)
	• Bsd Unix does not yet have any IPC or networking system calls.
	• “Department network” was a piece of cable in computer room connecting 2 Vaxen

	Key Ideas of Object Orientation
	Alan Kay (early 1970s)
	• Objects localize data structures and code
	• Objects are a recursion on the idea of the computer itself

	Goals of RPC
	1999: Lampson’s Evaluation:
	Birrell & Nelson Continue …
	The Object Model
	Objects and Distributed Systems
	• Good match
	• Problematic

	What the Object Model Missed
	• Sharing is not enough
	• Immutability — our secret weapon!
	• Replication and Caching
	• Both sides of Information Hiding

	“Fundamental Difficulties” of Distribution
	• Heterogeneity
	• Openness
	• Security
	• Scalability
	• Failures
	• Time and Ordering of Events
	• Concurrency

	Largely Solved Problems (I claim)
	• Heterogeneity
	• Openness

	Largely Solved Problems (cont.)
	• Security
	• Scalability

	The Hard Problems
	• Scaling in other dimensions
	• Evolution over time

	Hard Problems for Languages
	• Failure

	Hard Problems for Languages (cont)
	• Timing
	• Concurrency

	So What Am I doing about it?
	• Timing for distributed object systems
	• Transactions and Failures
	• What about Programming Languages?

	Infopipes
	Joint work with Jonathan Walpole & Calton Pu
	Infopipes — An Abstraction for Multimedia Streaming
	Restricted Domain: Information flow
	• Examples:

	Application Requirements
	• Applications need to direct streams of information

	The Solution
	• CORBA ORB, DCE RPC, Java RMI…

	Solution
	• CORBA ORB, DCE RPC, Java RMI…

	No!
	Solution
	• CORBA ORB, DCE RPC, Java RMI…

	No!
	• These abstractions hide communication
	• We want to reify communication

	Infopipes Reify Information Flows
	• Infopipes reify communication
	…but at the application level
	not at the implementation level
	• Example
	• Why?

	What are Infopipes?
	• System and distributed system abstraction
	• Have well-defined characteristics, specifically, rate, latency and jitter.
	• Compositional: the characteristics of a composite Infopipe can be calculated from those of its ...

	Think “Plumbing”
	• An Infopipe has zero or more “Inports” and zero or more “Outports”

	Composite Components
	• Complex components can be built by putting a “black box” abstraction boundary around a Pipeline.

	Feedback�
	• Rate of the pump is adjusted to keep buffer fill level within bounds.

	Feedback
	• Feedback control drops packets selectively

	Status
	• “Polarity Checking” for ensuring well- formed pipelines
	• “Activity” abstraction at a higher level than threads
	• Library of reusable Infopipe components
	• Look for a Technical Report “real soon now”

	Timber
	Joint work with Magnus Carlsson, Mark Jones, Dick Kieburtz, Johan Nordlander
	Timber objectives:
	• To
	• Starting point: O’Haskell

	Concurrency & Objects
	Reactivity
	• Event = method invocation = message send
	• Method = non-blocking code sequence
	• Objects alternate between transient activity and indefinite periods of rest

	Controlling Timing
	Accessing the Timeline
	• Built-in constants baseline and deadline
	• For methods initiated by the environment, timeline must be defined appropriately

	Example Program: Ping
	Java Version
	Comparison
	• Timber version
	• Java version

	Perspectives
	Joint work with Mark Jones
	What comes after Text?
	• Program transformations are common currency at PoPL
	• Refactoring is common practice in industry
	• Both are semantics preserving …

	Equivalences
	Use equivalence classes, not witnesses?

