
Grace

James Noble
Victoria U. Wellington

Andrew Black 
Portland State U

Kim Bruce 
Pomona College

1

An Object-Oriented

Language

for Novices

Why?

Assumption: Programming
Languages Matter

• You are going to teach object-oriented
programming to 1st year students.

• Following Aristotle (and Brooks):

° What are the essential difficulties you must teach?

° What are the accidental difficulties imposed by the
language you choose?

• How will you and your students divide your
time?

3

Which language?

• ECOOP 2010: we don’t like the available options

° Java, Scala, C++, C# and other “professional” languages
— too complex for teaching

° Smalltalk — no static types

° Python — inconsistent method syntax, no
encapsulation, “accidental” declarations …

• All available options emphasize the accidental
• Group decision: design a modern object-oriented

language specifically for teaching

4

Java has, but Grace does not:

1 Type-based overloading of methods.
2 null
3 Primitive data — int, boolean, char, byte, short, long, float, double.
4 Classes (as built-in non-objects).
5 Packages (as built-in non-objects).
6 Constructors (as distinct from methods) and new.
7 Object initializers (code in a class enclosed in { and })
8 import * — introduction of names invisibly.
9 Operations on variables, like x++ meaning x	:=	x	+	1.
10 Multiple numeric types (so that, for example, 3.0 and 3	are different).
11 Numeric literals with F and L.
12 Integer arithmetic defined to wrap.
13 ==	as a built-in operation on objects.

14 static variables.
15 static methods.
16 static initializers.
17 final.
18 private (which is much more complicated than most people realize,

since it interacts with the type system).
19 C-style for loops.
20 switch statements.
21 Class-types.
22 Packages
23 Package-based visibility.
24 Arrays (as a special built-in construct with their own special syntax

and type rules).
25 Required semicolons.
26 () in method requests that take no parameters.
27 public	static	void	main(String[]	args) — necessary to run your code.
28 Object with “functional interfaces” treated as λ-expressions.

Grace has:

1. multi-part method names if(_)then(_)else(_)	
2. String interpolation: "The	value	of	x	is	{x}"
3. Object expressions
4. Nested objects (lexical scope)
5. Closures w/correct scope
6. Operators defined as methods
7. match(_)case(_)... statement for examining variant types

Best of 20th Century-Technology

• Closures
• Assertions, unit testing, traces, and tools for

finding errors
• High-level constructs for concurrency

• Support for immutable data
• Parameterized types (done right) 

e.g.,	List⟦String⟧

8

Talk Outline
• Meta-babble

• Quick Overview,
terminology

• Objects and methods

• Classes

• λ-expressions

• Program and module
structure

• Dialects

• Types

• Pattern-matching

• Exceptions

• Concurrency

• Teaching with Grace

• Dialects

9

Grace Fundamentals

• Everything is an object

• Simple method dispatch

• Single inheritance

• Types are interfaces (classes ≠ types)

° Pedagogically, types come after objects

• Blocks: { syntax for λ-expressions }
• Extensible via libraries (control & data)

10

						method	average(in	:	InputStream)	→	Number	{	
	 //	reads	numbers	from	stream	and	averages	them	
	 var	total	:=	0		
	 var	count	:=	0	
	 while	{	!	in.atEnd	}	do	{	
				 			 count	:=	count	+	1		
				 	 						total	:=	total	+	in.readNumber	  
	 }	
	 if	(count	==	0)	then	{	return	0	}	
	 total	/	count	
						}

Grace Example

11

						method	average(in	:	InputStream)	→	Number	{	
	 //	reads	numbers	from	stream	and	averages	them	
	 var	total	:=	0		
	 var	count	:=	0	
	 while	{	!	in.atEnd	}	do	{	
				 			 count	:=	count	+	1		
				 	 						total	:=	total	+	in.readNumber	  
	 }	
	 if	(count	==	0)	then	{	return	0	}	
	 total	/	count	
						}

Grace Example

11

What questions do you have?

One true “method request”
• Like Smalltalk and Self:

° no static overloading
• a “method request” names the target,  

the method, and provides the arguments
• “dynamic dispatch” selects the

correspondingly-named method in the
receiver

• “method execution” occurs in the receiver

(We’re learning not to say “message-send” or “method call”.)
12

Method Requests

aPerson.printOn(outputStream)	

printOn(outputStream)			 	 	 					//	implicit	receiver	

((x	+	y)	>	z)	&&	q.not			 	 	 	 //	operators	are	methods	

while	{	!	in.atEnd	}	do	{	print	(in.readNumber)	}  
		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	multi-part	method	name			

13

Constructing Objects

15

object	{	
			def	x	:	Number	is	public	=	2	
			def	y	:	Number	is	public	=	3	
			method	distanceTo(other	:	Point)	→	Number	{	
						((x	-	other.x)^2	+	(y	-	other.y)^2)^(1/2)	}  
}

Object constructors

2

y 3

distanceTo(Point) ...

x

15

object	{	
			def	x	:	Number	is	public	=	2	
			def	y	:	Number	is	public	=	3	
			method	distanceTo(other	:	Point)	→	Number	{	
						((x	-	other.x)^2	+	(y	-	other.y)^2)^(1/2)	}  
}

Object constructors

2

y 3

distanceTo(Point) ...

x

x 2

y 3

distanceTo(Point) ...

x 2

y 3

distanceTo(Point) ...

class	x(x’:	Number)y(y’:	Number)	→	Point	{		
	 def	x	:	Number	is	public	=	x’	
	 def	y	:	Number	is	public	=	y’	
	 method	distanceTo(other	:	Point)	→	Number	{	
	 	 ((x	-	other.x)^2	+	(y	-	other.y)^2)^(1/2)	}		
}

x 2

y 3

distanceTo(Point) ...

Classes

x 2

y 3

distanceTo(Point) ...

x 2

y 3

distanceTo(Point) ...x()y()

class	x(x’:	Number)y(y’:	Number)	→	Point	{		
	 def	x	:	Number	is	public	=	x’	
	 def	y	:	Number	is	public	=	y’	
	 method	distanceTo(other	:	Point)	→	Number	{	
	 	 ((x	-	other.x)^2	+	(y	-	other.y)^2)^(1/2)	}		
}

x 2

y 3

distanceTo(Point) ...

Classes

Classes
• A Class is a shorthand for a factory method: a method

that returns the result of an object constructor.

 method	x(x’:	Number)y(y’:	Number)	→	Point	{	
	 	 	 return	object	{	
												 	 def	x	:	Number	is	public	=	x’	
												 	 def	y	:	Number	is	public	=	y’	
												 	 method	distanceTo(other:Point)→Number	{	
								 	 	 	 	 ((x	-	other.x)^2	+	(y	-	other.y)^2)^(1/2)	}	
									 	 }	 	
			}

Class: Summary
class	x(x’)y(y’)		{			
			def	x	is	public	=	x’	
			def	y	is	public	=	y’	
			method	distanceTo	other	→	{	
						((x	-	other.x)^2	+	(y	-	other.y)^2)^(1/2)	}		
}

23

method	x(x’)y(y’)	{	
	 return	object	{  
	 	 def	x	is	public	=	x’	
	 	 def	y	is	public	=	y’	
	 	 method	distanceTo(other)	→	{	
	 	 	 ((x	-	other.x)^2	+	(y	-	other.y)^2)	^(1/2)	}}	
}		

Inheritance
class	x(x:Number)	y(y:Number)	colour(c:Colour)	{		
				inherit	cartesianPoint.x(x)y(y)			
				def	color	:	Colour	is	public	=	c	
}	

• Objects created by x(_)y(_)colour(_) have:
- all the methods of aCartesianPoint.x(_)y(_), plus
- methods colour and colour:=(_)

19

Uniform reference to attributes

20

Uniform reference to attributes

theObject.x		

20

Uniform reference to attributes

theObject.x		
	 	 //	could	be	a	request	of	a	method,	or	access  
	 	 //	to	a	public	variable:	theObject	knows	which

20

Uniform reference to attributes

theObject.x		
	 	 //	could	be	a	request	of	a	method,	or	access  
	 	 //	to	a	public	variable:	theObject	knows	which

var	x:Number	:=	3												 //	confidential	variable

20

Uniform reference to attributes

theObject.x		
	 	 //	could	be	a	request	of	a	method,	or	access  
	 	 //	to	a	public	variable:	theObject	knows	which

var	x:Number	:=	3												 //	confidential	variable
var	x:Number	is	public	:=	3			 	 	 	 //	public	variable

20

Uniform reference to attributes

theObject.x		
	 	 //	could	be	a	request	of	a	method,	or	access  
	 	 //	to	a	public	variable:	theObject	knows	which

var	x:Number	:=	3												 //	confidential	variable
var	x:Number	is	public	:=	3			 	 	 	 //	public	variable

var	x’:Number	:=	3																																			//	confidential  
method	x	→	Number	{	return	x’	}					//	public  
method	x:=	(newX:Number)	→Done	{	x’	:=	newX	}		//	public

20

Uniform reference to attributes

theObject.x		
	 	 //	could	be	a	request	of	a	method,	or	access  
	 	 //	to	a	public	variable:	theObject	knows	which

var	x:Number	:=	3												 //	confidential	variable
var	x:Number	is	public	:=	3			 	 	 	 //	public	variable

var	x’:Number	:=	3																																			//	confidential  
method	x	→	Number	{	return	x’	}					//	public  
method	x:=	(newX:Number)	→Done	{	x’	:=	newX	}		//	public

method	helper(...)→Done	is	confidential	{...} 
																													 	 	 	 	 	 	 	 	 	 //	confidential	method

20

λ-expressions
“Lambdas are relegated to relative obscurity until
Java makes them popular by not having them.”

 James Iry

Grace has λs. We call them “blocks”:
for	(1..10)	do	{						 //	multi-part	method	name 
	 i	→	print(i)  
}		

21

Blocks

def	welcomeAction	:=	{	print	"Hello"	}

object	{	method	apply		
	 	 	 	 	 	 	{	print	"Hello"	}	}	welcomeAction.apply

• Blocks are objects that represent functions

• {	this	is	a	block	} — a λ-expression

• blocks create objects that mimic functions 
(like Smalltalk)

Examples

if	(x	==	3)	then	(print	"3")	
															 	 //	type	error

Examples

if	(x	==	3)	then	(print	"3")	
															 	 //	type	error

if	(x	==	3)	then			print	"3"	

Examples

if	(x	==	3)	then	(print	"3")	
															 	 //	type	error

if	(x	==	3)	then			print	"3"	
	 	 //	no	implicit	call-by-name 
																						

Examples

{ }

if	(x	==	3)	then	(print	"3")	
															 	 //	type	error

if	(x	==	3)	then			print	"3"	
	 	 //	no	implicit	call-by-name 
																						

block.apply	 	 //	these	are	different!

Examples

{ }

if	(x	==	3)	then	(print	"3")	
															 	 //	type	error

if	(x	==	3)	then			print	"3"	
	 	 //	no	implicit	call-by-name 
																						

block.apply	 	 //	these	are	different!
block	 	 //	application	is	never	implicit

Examples

{ }

Program Structure
& Modules

a whole Grace Program
def	graceProgram	=	object	{
	 print	"Hello	World"

25

def	graceModule378	=	object	{
	 print	"Hello	World"	

}

a whole Grace Program
def	graceProgram	=	object	{
	 print	"Hello	World"

25

def	graceModule378	=	object	{
	 print	"Hello	World"	

}

a whole Grace Program
def	graceProgram	=	object	{
	 print	"Hello	World"

every Grace file defines a module

25

Modules are Objects

	 def	list	is	public	=	object	{	…	}	

	 def	set	is	public	=	object	{	…	}	

	 def	dictionary	is	public	=	object	{	…	}

in a file called collections.grace :

26

Modules are Objects

import	"collections"	as	coll	

def	set	=	coll.set		

def	bingoCard	=	set.with	"Free	Space"	

	 …

in a file called bingoGame.grace:

27

Recall "collections.grace"

28

	 def	list	is	public	=	object	{	…	}	

	 def	set	is	public	=	object	{	…	}	

	 def	dictionary	is	public	=	object	{	…	}

28

	 def	list	is	public	=	object	{	…	}	

	 def	set	is	public	=	object	{	…	}	

	 def	dictionary	is	public	=	object	{	…	}

import	"collections"	as	coll

28

	 def	list	is	public	=	object	{	…	}	

	 def	set	is	public	=	object	{	…	}	

	 def	dictionary	is	public	=	object	{	…	}

import	"collections"	as	coll

28

	 def	list	is	public	=	object	{	…	}	

	 def	set	is	public	=	object	{	…	}	

	 def	dictionary	is	public	=	object	{	…	}

import	"collections"	as	coll

def	temp917	=	object	{

}

28

	 def	list	is	public	=	object	{	…	}	

	 def	set	is	public	=	object	{	…	}	

	 def	dictionary	is	public	=	object	{	…	}

import	"collections"	as	coll

def	temp917	=	object	{

}

28
def	coll	=	temp917

	 def	list	is	public	=	object	{	…	}	

	 def	set	is	public	=	object	{	…	}	

	 def	dictionary	is	public	=	object	{	…	}

Example: importing a module
in a file called bingoGame.grace :

29

import	"collections"	as	coll	

def	set	=	coll.set		

def	bingoCard	=	set.with	"Free	Space"	

	 …

Example: importing a module
in a file called bingoGame.grace :

30

def	coll	=	temp917	

def	set	=	coll.set		

def	bingoCard	=	set.with	"Free	Space"	

	 …

• “Outermost” object: defines methods
without explicit receiver

° e.g., turtle graphics, loops with invariants, TDD

• Top level code of dialect runs before module
in the dialect

° e.g. initialize canvas, turtle ...

• Dialect runs checker over AST of module in
the dialect

° Can generate new errors, such as missing type
annotations, use of [] or match()case()	…

31

Dialects

					//	dialect	=	outermost	enclosing	object  
					method	do	(action:	Block)	unless	(c:	Boolean)	{  
										if	(c)	then		(action.apply)	  
					}  
					method	repeat	(n	:	Number)	times	(a	:	Block)	{  
										(1..n).do	{	_	→	a.apply	}	

					object	{  
									 	//	your	program	here;	sends	messages	to 
									 	//	implicit	receiver	outer 
					} 

Dialects can define control methods

Types
• Types classify objects
- Type come after objects, not before
- Structural, Gradual, Optional

type	Point	=	interface	{  
		 x	→	Number  
		 y	→	Number  
		 distanceTo	(other:Point)	→	Number  
}	

• Interfaces are sets of method signatures
• Types can take types as parameters (a.k.a.

Generics)

33

No null pointer exceptions!

No null pointer exceptions!

35

No null pointer exceptions!

35

• No null

No null pointer exceptions!

35

• No null
• Accessing uninitialized variable is an error

No null pointer exceptions!

35

• No null
• Accessing uninitialized variable is an error
• Define objects for empty lists, empty trees, etc.,

and give them appropriate behavior

No null pointer exceptions!

35

• No null
• Accessing uninitialized variable is an error
• Define objects for empty lists, empty trees, etc.,

and give them appropriate behavior
def	emptyList	=	object	{  
	 method	length	{	0	}  
	 method	isEmpty	{	true	}  
	 method	head	{	  
	 						noValue.raise	"can't	take	the	head	of	an	empty	list"  
	 }  
	 method	tail	{	…	}  
}

Type Operations

• Variants: Point	|	nil, Leaf⟦X⟧	|	Node⟦X⟧

° x	:	(A	|	B)		≡	x	:	A	∨	x	:	B

• Algebraic constructors:

° T1 & T2: intersection, conforms to T1 and T2

• Used to extend types

° T3 + T4: union, conforms to T3 or T4

° T5	-	T6: structural subtraction, T5 without T6

• Type parameters don't need variance annotations

36

Match – Case
match	(x)																			 //	x	:	0	|	String	|	Student		
 
		 	 //	match	against	a	constant	
				case	{	0	→	print("Zero")	}	
		
		 	 //	typematch,	binding	a	variable		
				case	{	s	:	String	→	print(s)	}		

		 	 //	destructuring	match,	binding	variables	...		
				case	{	Student(name,	id)	→	print	(name)	}	

37

Pattern-matching
through method dispatch

38

Pattern-matching
through method dispatch

38

match (s)
case p1
case p2  

Pattern-matching
through method dispatch

match…case

38

match (s)
case p1
case p2  

Pattern-matching
through method dispatch

match…case p:Pattern

38

match (s)
case p1
case p2  

Pattern-matching
through method dispatch

match…case p:Pattern

match(s)

38

match (s)
case p1
case p2  

Pattern-matching
through method dispatch

match…case p:Pattern

match(s)

MatchResult

38

match (s)
case p1
case p2  

Pattern-matching
through method dispatch

match…case p:Pattern

match(s) match does
different things in
different patterns:

Type patterns ask
s for its type

Literal patterns
check for =

 etc

MatchResult

38

match (s)
case p1
case p2  

Pattern-matching
through method dispatch

match…case p:Pattern

match(s)

MatchResult

38

match (s)
case p1
case p2  

Teaching with Grace

Designed for Flexibility

• We are not trying to prescribe how to teach
programming

• Grace tries to make it possible to teach in
many styles, e.g.,

40

✓procedural first ✓object-graphics

✓objects first ✓functional?

✓turtle graphics ✓test-driven

Java vs. Grace

method	toCelsius(f:Number)	{	
				if	(f	<	-459.4)	then	{		Error.raise	"{f}°F	is	below	absolute	zero"		}	
				(f	–	32)	*	(5	/	9)	
}	

print	"212°F	is	{toCelsius(212)}°C"	

public	class	Celsius	{	

	 public	static	double	toCelsius(double	f)	{	
	 				if	(f	<	-459.4)		{		
	 					 		throw	new	RuntimeException(
																	f+"°	Fahrenheit	is	below	absolute	zero");	
	 				}	
	 				return	(f	–	32.0)	*	(5.0	/	9.0);	
	 }	
	 	
	 public	static	void	main(String[]	args)	{	
	 	 	System.out.println("212°F	is	"+	toCelsius(212)	+	"°C");	
	 }	
}

Java vs. Grace

Java vs. Grace
public	class	Celsius	{	

	 public	static	double	toCelsius(double	f)	{	
	 				if	(f	<	-459.4)		{		
	 					 		throw	new	RuntimeException(
																	f+"°	Fahrenheit	is	below	absolute	zero");	
	 				}	
	 				return	(f	–	32.0)	*	(5.0	/	9.0);	
	 }	
	 	
	 public	static	void	main(String[]	args)	{	
	 	 	System.out.println("212°F	is	"+	toCelsius(212)	+	"°C");	
	 }	
}

Java vs. Grace
public	class	Celsius	{	

	 public	static	double	toCelsius(double	f)	{	
	 				if	(f	<	-459.4)		{		
	 					 		throw	new	RuntimeException(
																	f+"°	Fahrenheit	is	below	absolute	zero");	
	 				}	
	 				return	(f	–	32.0)	*	(5.0	/	9.0);	
	 }	
	 	
	 public	static	void	main(String[]	args)	{	
	 	 	System.out.println("212°F	is	"+	toCelsius(212)	+	"°C");	
	 }	
}

Java vs. Grace
public	class	Celsius	{	

	 public	static	double	toCelsius(double	f)	{	
	 				if	(f	<	-459.4)		{		
	 					 		throw	new	RuntimeException(
																	f+"°	Fahrenheit	is	below	absolute	zero");	
	 				}	
	 				return	(f	–	32.0)	*	(5.0	/	9.0);	
	 }	
	 	
	 public	static	void	main(String[]	args)	{	
	 	 	System.out.println("212°F	is	"+	toCelsius(212)	+	"°C");	
	 }	
}

Turtle graphics
dialect	"logo"	

def	length	=	150	
def	root2	=	2^0.5	
def	diagonal	=	length	*	root2	
lineWidth	:=	2	
square(length)	
turnRight(45)	
penUp	
forward(diagonal)	
turnLeft(90)	
penDown	
roof(diagonal/2)	

method	roof(slope)	{	
				lineColor	:=	red	
				forward(slope)	
				turnLeft(90)	
				forward(slope)	
}	

method	square(len)	{	
				repeat	4	times	{	
								forward(len)	
								turnRight(90)	
				}	
}

sample programs/house.grace

Turtle graphics
dialect	"logo"	

def	length	=	150	
def	root2	=	2^0.5	
def	diagonal	=	length	*	root2	
lineWidth	:=	2	
square(length)	
turnRight(45)	
penUp	
forward(diagonal)	
turnLeft(90)	
penDown	
roof(diagonal/2)	

method	roof(slope)	{	
				lineColor	:=	red	
				forward(slope)	
				turnLeft(90)	
				forward(slope)	
}	

method	square(len)	{	
				repeat	4	times	{	
								forward(len)	
								turnRight(90)	
				}	
}

sample programs/house.grace

objectdraw Graphics
import	"objectdraw"	as	od	

object	{	
			inherit	od.aGraphicApplication.size(400,400)	
			var	cloth					 	 	 //	item	to	be	moved	

			method	onMousePress(mousePoint){	
						cloth	:=	od.aFilledRect.at(mousePoint)size(100,100)on(canvas)	
						cloth.color	:=	od.red	
			}	

			method	onMouseDrag(mousePoint)→Done{	
						cloth.moveTo(mousePoint)	
			}	
			startGraphics					//	pop	up	window	and	start	graphics	
}

Functions and Unit tests
import	"gUnit"	as	GU	
method	toCelsius(f:Number)	{	
				if	(f	<	-459.4)	then	{	Error.raise	"{f}°F	is	below	absolute	zero"	}	
				(f	-	32)	*	(5	/	9)	
}	

class	forMethod(m)	{	
				inherit	GU.aTestCase.forMethod(m)	

				method	testZero	{	
								assert(toCelsius(32))	shouldBe	(0)	
				}	
				method	testBoiling	{	
								assert(toCelsius(212))	shouldBe	(100)	
				}

46

				method	testBoiling	{	
								assert(toCelsius(212))	shouldBe	(100)	
				}	
				method	testAlaska	{	
								assert(toCelsius(-40))	shouldBe	(-40)	
				}	
				method	testTooCold	{	
								assert{toCelsius(-500)}	shouldRaise	(Error)	
				}	
}	

def	tests	=	GU.aTestSuite.fromTestMethodsInClass(aTempTest)	
tests.runAndPrintResults	

47gUnit/GUnit project/f2c.grace

Too Complicated!
• gUnit uses inheritance, methods, naming

conventions, setup & teardown methods …
• Instead, we have a TDD dialect, and a BDD

dialect

48

My plans for Rmod
• Implement Grace inside Pharo

° Compile Grace to Pharo objects

° interoperate with Pharo objects

° challenge: implementing objects with lexical scope

51

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

method	counterPair	{  
				var	counter:Number	:=	0	 
				def	countUp	=	object	{	  
								method	inc	{	counter	:=	counter	+	1	}	 
								method	value	{	counter	}  
				}	  
				def	countDown	=	object	{  
								method	dec	{	counter	:=	counter	−	1	}  
								method	value	{	counter	}	  
				}  
				object	{	  
								method	up	{	countUp	}	 
								method	down	{	countDown	} 
				}	  
}		

Tentative Plan
• Build module compiler using SmaCC

° Roughly follow design of existing Grace→JS
compiler

• Generate Smalltalk source for ease of
debugging

° design Smalltalk representations for nested objects

• Later:

° better IDE for Grace using Pharo

° Generate bytecode rather than source

53

Your input is needed

54

Your input is needed
• The reason that I’m here is that I know ...

54

Your input is needed
• The reason that I’m here is that I know ...

that I don’t know how to do this!

54

Your input is needed
• The reason that I’m here is that I know ...

that I don’t know how to do this!

• So: if you have opinions, suggestion, better ideas

54

Your input is needed
• The reason that I’m here is that I know ...

that I don’t know how to do this!

• So: if you have opinions, suggestion, better ideas

don’t keep quiet!

54

Your input is needed
• The reason that I’m here is that I know ...

that I don’t know how to do this!

• So: if you have opinions, suggestion, better ideas

don’t keep quiet!

• Example: perhaps I should generate the Pharo
IR?

54

Your input is needed
• The reason that I’m here is that I know ...

that I don’t know how to do this!

• So: if you have opinions, suggestion, better ideas

don’t keep quiet!

• Example: perhaps I should generate the Pharo
IR?

54

Your input is needed
• The reason that I’m here is that I know ...

that I don’t know how to do this!

• So: if you have opinions, suggestion, better ideas

don’t keep quiet!

• Example: perhaps I should generate the Pharo
IR?

54

http://gracelang.org
http://www.cs.pdx.edu/~grace/ide

http://gracelang.org
http://www.cs.pdx.edu/~grace/ide

Classes in Grace

class aSquareWithSide (s: Number) -> Square {
 var side: Number := s

 method area -> Number {
 side * side
 }

 method stretchBy (n: Number) -> Done {
 side := side + n
 }

 print "Created square with side {s}"
}

No separate constructors.
Type annotations can be omitted or included

• … generate objects:

56

Classes in Grace

class aSquareWithSide (s: Number) -> Square {
 var side: Number := s

 method area -> Number {
 side * side
 }

 method stretchBy (n: Number) -> Done {
 side := side + n
 }

 print "Created square with side {s}"
}

No separate constructors.
Type annotations can be omitted or included

• … generate objects:

56

Create object with
aSquareWithSide(20)

Classes in Java

public class SquareWithSide implements Square {
 private int side;

 public SquareWithSide(int s) {
side = s;
System.out.println("Created square with side” + s);

}

 public int area() {
 return side * side;
 }

 public void stretchBy (int n) {
 side = side + n;
 }
 }

Classes in Java

public class SquareWithSide implements Square {
 private int side;

 public SquareWithSide(int s) {
side = s;
System.out.println("Created square with side” + s);

}

 public int area() {
 return side * side;
 }

 public void stretchBy (int n) {
 side = side + n;
 }
 }

Create object with
new SquareWithSide(20)

Side by Side

class aSquareWithSide (s: Number) -> Square {
 var side: Number := s

 method area -> Number {
 side * side
 }

 method stretchBy (n: Number) -> Done {
 side := side + n
 }

 print "Created square with side {s}"
}

public class SquareWithSide implements Square {
 private int side;

 public SquareWithSide(int s) {
side = s;
System.out.println("Created square  

with side” + s);
}

 public int area() {
 return side * side;
 }

 public void stretchBy (int n) {
 side = side + n;
 }
 }

