The Eden Programming Language
Andrew P. Black

Technical Report 85-09-01

Department of Computer Science, FR-35,
University of Washington,
Seattle, WA 98115
U.S. A,

Sepiember 1985
(Revised, December 1985)

The Eden Programming Language

Andrew P. Black
University of Washington

The Eden Programming Language adds significantly to the usability of the Eden
distributed system by providing direct support for two of the fundamental concepts of
Eden — invocations and capabilities. Invocations, which take the place of inter-object
messages, are packaged to look like procedure calls; EPL provides full stub generation
for the invoker and invokee, rather like a remote procedure call system. Capabilities,
which are used 1o address other objects, are treated just like any other other opaque data
type, despite the fact that they are protected by the Eden kernel; the user does not
manipulate “c-list indices”. This paper Hescribes the history that lead us to design EPL,
its goals and facilities, its implementation on top of Concurrent Euclid, and some of its

shortcomings.

1. Introduction

The Eden project is an attempt to combine the
advantages of a time-sharing system with those of
a distributed collection of personal workstations.
One of our goals is to provide the high degree of
integration typically found in a time-sharing
system, thus making it easy to share both
information and computing power. At the same
time we have aimed to retain the principal
advantages of distributed workstations: insulation
from the behaviour of other users and a high
bandwidth between the processor and the display.

These goals are typically considered to be
“gystem” requirements, and Eden was originally
conceived as an operating system project.
However, the Eden Programming Language
(EPL) has played a significant rfle in the creation
of a programming environment that satisfies
themn. We now believe that this is inevitable: the
model of computation that Eden presents to the
application programmer must be supported at the
programming language level as well as at the
operating system level. As of the autumn 1985,
over three hundred thousand lines of EPL code
have been written for Eden applications.

This work was supported in part by the National Science
Foupdation under Grant Number MCS-8004111. Comput-
ing Equipment was provided in part under a cooperative
research agreement with Digital Equipment Corporation.

Despite this realisation, Eden has remained an
operating system project. This did not happen by
accident. When we entered the arena of language
design, it was with trepidation, and against the
advise of our self-appointed review external
review committee. We were well aware that
language design can become & consuming
passion. So much effort can be spent on first
getting the language “right”, and then
implementing it, that there is no time or energy
left to build and use the system that it was
supposed to support. We therefore restricted our
ambitions: a year after our review committee had
cautioned us to avoid language design, we were
able to report to them that EPL had been
designed and implemented, and had already
proved valuable in the writing of applications [2].

This paper attempts to explain why we believe
the réle of the Eden Programming Language to
be so important. It also describes the goals of the
Eden Programming Language, the facilities that it
provides, and the way in which its translation
(compilation) is implemented. Section 2 sets the
stage by outlining the basic architectural concepts
of Eden; the reader requiring more detail should
see “The Eden System: A Technical Review”
{3]. Section 3 discusses an early prototype of
Eden that was programmed in Pascal; the
problems with this approach illustrate the need
for programming language support. Section 4
describes FEPL itself, and Section 5 the

implementation of the EPL translator. Section 6
touches on some of the language design issues
that we did not address with EPL. Section 7
concludes by discussing the attributes of our
environment that made EPL and its
preprocessor-based implementation successful.

2. Basic Eden Concepts

The Eden distributed architecture is based on
active objects. Eden objects (sometimes called
“Ejects”) are the only durable entities within the
Eden System; they subsume the concepts of
program, file and abstract data type. In order to
perform some task, an object may need to
communicate with other objects; this is
accomplished by a mechanism called invocation.
The model of computation presented by Eden is
thus very different from that of most
conventional operating systems. For example,
the Eden kernel does not implement a filing
system. Instead it provides a general mechanism
(checkpoint) whereby any object may make its
data permanent; using this mechanism, durable
sequences of bytes and durable sequences of
records can both be implemented by an
application programmer.

Each object within the Eden system contains a
number of active processes. Invocation is
synchronous with respect to the invoking process,
but other processes within the invoking object
may continue to execute. Invocation is location
independent: an object can be invoked without
the invoker needing to know its physical location.
This is important because objects can move from
machine to machine; the Eden kernel itself takes
care of locating an object when it is invoked.

Objects address each other by means of
Capabilities. Capabilities are not addresses;
instead, a unique identifier is associated with each
object when it is created. This identifier, together
with a set of access rights, comprises a Capability
for the object. Capabilities may be passed in
invocations, but only the system kernel can create
them. Possession of a capability for a server
object (with appropriate rights) is the only
qualification needed of a client before it may
invoke that server,

Since Eden objects are the only repositories of
data, they must be permanent; for example, they
must be able to survive crashes of the system.
Permanence is achieved by use of the checkpoint
mechanism, which allows selected parts of an
object’s internal state to be written onto stable

checkpomt

creation

deactivate
orcrash

deactivate

reactivation or crash

pasmve
nly

Figure 2.1: The Lifecycle of an Eden Object

storage. The data on stable storage is known as
the passive representation of the object. If the
active form of a checkpointed object ceases to
exist, either because of a crash or because of
explicit deactivation, the passive representation
will still contain all of the essential data from that
object. If the crashed object is subsequently
invoked, a new active form will be created by the
Eden kernel; the active form will re-initialise
itself by reading the passive representation. The
transitions between the various forms of an object
are shown in Figure 2.1.

It is important that checkpoint be atomic; a
checkpoint either succeeds (in which case the
data concermned has been written to stable storage)
or fails (in which case the object concerned is
notified). There is no possibility of a checkpoint
succeeding partially. However, checkpoint is the
only atomic action provided by Eden. In
particular, invocation is not an atomic action.
For example, it is quite possible for a client to
make a request of a server, for the server to
complete the requested operation, and for the
server to crash before telling the client that it had
done so. In this way Eden differs from the
ARGUS system [16] and the CLOUDS [1]
system. There is therefore no need for the Eden
Programmmg Language to provide transaction
primitives.

The Eden view was that different kinds of
transaction could be built by the applications
programmer out of checkpoint and invocation.
For example, the Eden calendar system [10] and a
replicated resource database [18] both include

special purpose transaction systems. Because of
this decision, the Eden kemnel is simplified, and
programmers can exploit the semantics of the
application to minimise, for example, the number
of phases in a transaction commit. However,
while the checkpoint primitive is universal (in the
sense that more sophisticated reliability
mechanisms can be built from i) and
conceptually simple, it is far from ideal in
practice. Some of its disadvantages are
consequences of our prototype, while others are
more fundamental. This topic is discussed
further in reference [7].

3. History and Evolution

As originally designed, the Eden System [15] was
intended for implementation on the Intel iAPX
432 processor. One of the advantages of the 432
is that the architecture supports programmer-
defined protected object and address spaces.
Eden’s initial design was thus freed from many of
the restrictions that would have accompanied a
design for a more conventional processor.
However, because of the non-availability of 432
hardware and software, our first “throw-away
prototype” of Eden (constructed in the Autumn
of 1981) was built on a single VAX processor
running the VMS Operating System. This
prototype was called *“Newark” and had the
following characteristics.

Each of the processes internal to an object was
implemented as a VAX process, and process
creation was achieved by VMS kernel call. Each
object accessed several address spaces; there was
one address space per process and, in addition, a
distinguished representation address space which
was intended to contain all of the data that should
be checkpointed to stable storage. One advantage
of this arrangement was that the checkpoint
primitive could be implemented entirely in the
kernel; it involved a simple copy of the whole of
the representation address space onto the disk.

A serious disadvantage of using VMS
processes was the cost of communication
between them. For example, if more than one
process might update a shared variable in the
representation address space, it was necessary to
protect that variable by a semaphore. The only
form of communication available in VMS was
message passing. While it was possible to
construct a semaphore out of these messages, the
end result, in the words of those involved in the
Newark experiment, was that one used a

millisecond of ﬁrocessor time to protect a
microsecond operation {17].

There was another practical disadvantage of
requiring that all of the variables that were to be
checkpointed be in the same address space. The
Newark/Pascal compiler did not provide a
flexible way of stating in which address space a
variable should be placed. Instead it imposed the
convention that the representation address space
contained all global variables (i.e. those declared
in the outermost block of the Pascal program) and
nothing else. In particular, heap variables
allocated with the Pascal new primitive were
never in the representation address space, Thus,
when programmers would normally use heap
allocation, they were forced to implement their
own storage allocators that subdivided a large
array in the global data space. They were thus
forced to write and maintain unnecessary code -
code that was hard to maintain because it was
forced to breach the type system.

Newark did not provide adequate support for
Eden’s main primitive — Invocation. Each object
typically exports a number of operations that are
characteristic of its function. For example, the
Directory object exports operations called Insert
and Lookup. The MailBox object exports
operations Deliver, Pickup and Remove.
Naturally, the parameters to each of these
operations are different.

The Newark kernel provided a single
invocation primitive. Its parameters included the
Capability for the target object (the object to be
invoked), a timeout, and the name of the
operation to be performed. These parameter were
of fixed types. However, the actual parameters of
the invoked operation had types which depended
on the operation itself, Moreover, since new of
object types were created frequently, it was
impossible to make allowance in the specification
of the kernel invocation primitive for all possible
invocation parameter lists. The heading of the
kernel invoke operation therefore defined the
invocation parameters to be of a type called
Unspec_data. 1t was the responsibility of the
application programmer to define Unspec_data
appropriately before he included the file that
defined the heading of the kernel invocation
primitive. What does ‘“appropriately” mean?
The typical definition of Unspec_data was as a
large variant record, with one variant for each
invocation that could be made from the object
being coded. Each variant contained the

parameters for the appropriate operation. The
result of this was a lot of unreadable and
unmodifiable code. Maintenance was a problem
because the definition of Unspec_data collected
together in one place information about all the
possible invocations that the object might make.
Changing one of those invocations, or adding a
new one, meant changing code segments that
were physically remote and seemingly unrelated.
And of course, there was a complete lack of type
checking. The result of this was that the
conceptually simple and elegant invocation
construct was exceeding hard, cumbersome and
dangerous to use in an actual program.

4. The Eden Programming Language: Its
Goals and Facilities

With the experience of the Newark prototype
behind us, it was clear that for the next prototype
of Eden some programming language support
would be necessary. It was not clear that it was
reasonable to expect all Eden programming to be
confined to one language. However, once we had
drawn up a list of features that we though would
simplify programming in Eden, it became clear
that implementing these features on top of many
base languages would represent an excessive
amount of work. We therefore decided to
concentrate our efforts, at least initially, on a
single language, so that we could gain experience
of distributed programming. Thus was the Eden
Programming Language bom.

In the event, we have not implemented similar
support for other languages. The most important
feature of EPL, concurrency, cannot readily be
added to an arbitrary existing language.
Programmers who need the facilities of some
other language usually write subroutines in that
language, and then call them from an EPL
program,

4.1, Design Objectives for EPL

~ Our experience with Newark/Pascal made us
realise that support for parallelism within EPL
was a prerequisite; system-level support for
concurrency was just too expensive. Another
requirement for a language that was to be used
for a system of the 1980’s was that it provided at
least those facilities that software engineers
considered essential in the 1970’s - modularity
and data abstraction.

The other features that seemed to be essential
to EPL were support for capabilities,

checkpointing, and invocation. Since capabilities
in Eden play the rile of object pointers, they
provide a system-level analogue to references.
How should these references br typed? We did
not wish to prevent programmers from using
objects in unforeseen ways; neither did we wish
to stifle evolutionary growth. For example, the
dynamic typing of Smalltalk enables a client
program which previously accessed an object of
type T, to access a object of a new type T,

instead, provided that 7, supports all the
operations of T, that the client uses. A strong

typing system of the kind found in Pascal and its
derivatives would prevent this.

Another clear requirement for the Eden
Programming Language was a sensible
invocation syntax. A simple way of writing both
parameters and results to an invocation was
clearly needed. Also, a simple way of receiving
an invocation and allocating it to one of the
processes of the invoked object was required.

One area in which Newark was very
successful was the implementation of checkpoint.
However, Newark’s simplicity was obtained at
the expense of requiring that all of the variables
that were to be checkpointed be declared
together. System level facilities like address-
space boundaries were clearly too “heavy” to be
used for the definition of checkpoint data. We
therefore required that EPL provide a flexible
way of defining which variables should be
checkpointed. One consequence of . this
requirement was that the implementation of the
checkpoint operation itself -might be more
complicated than in Newark.

4.2. EPL and Concurrent Euclid

A major decision was that we should not attempt
to design and implement a complete
programming language. It is very easy for
system builders to underestimate the task
involved in designing, specifying and
implementing a programming language. The
goal for the EPL sub-project was not to solve all
the unsolved problems of language design.
Rather, it was to provide some practical support
for the programmers of the Eden system. We
therefore decided to base EPL on an existing
language, aiming to choose one that provided at
least some of the features we wanted.

Another requirement on the language was that
an implementation should be available on VAX

computers under the UNIX! operating system, as
this combination had been chosen as the vehicle
for our second prototype. After considering a
number of possible languages, we eventually
settled on Concurrent Euclid, which had recently
been implemented by Holt and his colleagues at
the University of Toronto {11] {13]. Concurrent
Euclid (CE) can be considered to be a Pascal
superset providing modularity and parallelism,
and also some features for systems programming
such as explicit type conversion and the ability to
locate variables at absolute addresses. It is more
static than the Euclid language [14] in that there
are no module types. As a consequence, each
module in the running program corresponds to a
piece of text in the source code.

4.3. Invocation Support in EPL

Invocations, like procedure calls, should be typed
checked; it is unacceptable to leave type errors
undetected at the very place where they are most
likely to occur — the boundaries between modules
(objects). Invocations must be sent and received;
invocation support is therefore required for both
the invoker and the invokee. We will discuss
these three topic in turn.

4.3.1. Type Checking of Invocations

Treating capabilities as untyped variables seemed
to be the simplest way of achieving the flexibility
of being able to invoke an arbitrary object. EPL
capabilities would be like PL/I pointers; a given
language variable would be typed as a capability,
but the language would not distinguish between
capabilities for Mail Boxes and capabilities for
Distribution Lists. At the same time we wanted
to avoid the possibility (that exists in PL/T) of
misinterpreting the type of some datum accessed
via a capability (pointer). Without compile-time
enforcement, this implied that there would be a
run-time check on each invocation,

There are two arguments in favour of
compile-time rather than run-time type checking.
The first is one of run-time efficiency; this we
ignored because the run-time efficiency of the
prototype was not considered to be very
important, and because an invocation would in
any case be a fairly expensive operation, to which
a run-time check would add only a small
overhead. The second argument is that compile-

1 Unix is a trademark of AT&T Bell Laboratories.

time checks prevent an erroneous program from
being run at all, whereas a run-time check only
signals an error when the incorrect code is
executed — which may be months or years after
the program is installed. This argument is more
persuasive, although it applies less in a
prototyping environment (where the implementor
is at hand after the program is installed) than for a
production program. We chose run-time
checking primarily because it enabled us to
postpone the research involved in developing a
sufficiently flexible compile-time typing scheme,
and get on with the primary task of providing a
service for the rest of the Eden Project.

To avoid the danger of interpreting a value of
one type as though it was of another, we decided
that all the values sent in an invocation would be
tagged as to their type. The Eden Standard Code
for Information Interchange (ESCII) was
developed to standardise this tagging. Although
the data structure used to represent an ESCII has
evolved, the basic idea is unchanged. Each
argument to an invocation is preceded by a tag
giving its type, and if it is an array also its
number of dimensions and their sizes.

4.3.2. Sending Invocations

Our initial thought in choosing a syntax for
invocation was to add some new syntax to the
language. We considered a syntax like that of 3R
[4], which has the advantage of explicitly
distinguishing parameters from results. For
example, an invocation of the Lookup procedure
of an object 4 might appear as

capa, status := d.Lookup["Farnsworth"}

Using the 3R syntax, the compiler would deduce
the types of the formal parameters from the types
of the wvariables and values presented as
invocation arguments and results, and would use
this information te build an appropriate ESCII for
the invocation,

Another possibility was to use CE procedure
call syntax for invocations. This would require a
declaration for each invocation stating the type of
each parameter and result. Invocations of the
same name on different types of objects would be
accommodated in the same way as procedures
that exist within different modules. In other
words, we would try to unify (at least
syntactically) the concept of an operation within
a module with that of an invocation on an object.
This scheme also had the advantage that it would

not be necessary to enlarge the programming
language in any way. This second course of
action is in fact the one we took. Because of this
it was possible to implement almost all of EPL
without changing the Concurrent Euclid
compiler. Every invocation appears as, and
indeed is, an ordinary procedure call. The
procedure that is called is known as a stub
procedure and is automatically generated by a
piece of software called the *“Stubber”. The
action of the stub procedure is to take the
parameters of the various types that are supplied
with a particular invocation, to package then up
into an ESCII, and to call the synchronous
invocation primitive. When this retumns, the stub
procedure unpackages the results from another
ESCII and returns to the calling program, in the
same way that a normal procedure would return.
Figure 4.1 shows the whole of the stub procedure
for the Lookup invocation,

Unlike Pascal, Concurrent Euclid allows
procedures to take arrays of arbitrary size as
parameters. In a normal procedure call, it is of

course the caller who determines the sizes of both
argument and result array parameters. When an
invocation takes place, the stub code in the
invoked object must reconstruct the original
parameter list. This means that it must allocate
storage not only for the array arguments, but also
for the array results. It is thus necessary for the
sizes of the result array parameters to be passed
with the invocation request message. For
simplicity, we in fact check the types of all result
parameters at the same time as we check the
arguments, i.e. when the invocation request
message is received by the invokee. To make
this possible, there is space in an invocation
request ESCII for the types and sizes of the result
parameters.

Because the default invocation syntax is a
procedure call syntax, there needs to be some
way of resolving the conflict that would arise if,
for example, two different objects both chose to
export an operation called Lookup but with
different parameter lists. The module construct
of Concurrent Euclid serves this purpose very

procedure Lookup(
Target_EjectP : Capability,
LookupPathP : String,
var ActualCapaP : Capability,
var EstatusP ; EdenStatus)e=

imports({var Dispaicher,
var Esciis,
var StatusDefs,
var StrDefs,
ArrLength)
begin

var Values : Escii

var Results : Escii

var ValSize : Integer

var ResultReader : EsciiReader

var ValueWriter : EsciiWriter

var es : EsciiSiatus

var elemcount : Integer

var OpName : String := StrDefs.Str(’ Lookup')

const OpSpacelnEscii := Esciis SpaceForType +
EsciisIntegerSize + 6

ValSize := Esciis.SpaceForNothing +
OpSpacelnEscii +
Esciis.SpaceForVariable{

Esciis StringToken, LookupPathP) +
Esciis SpaceForType
Values := Esciis ESCreate(ValSize)

Esciis ESOpenWrile(Values, ValueWriter}
Esciis ESWrite(ValueWriter,

* Esciis.StringToken, OpName, es)
assert (es = Esciis ESCIS_Success)
Esciis ESWrite(ValueWriter,

Esciis. StringToken, LookupPathP, es)
assert (es = Esciis ESCIS_Success)
Esciis ESWriteType(ValueWriter,

Esciis.CapabilityToken, es)
assert (s = Esciis ESCIS_Success)
Esciis ESCloseWrite(ValueWriter)

Dispatcher Synchlnvoke()
Targei_EjectP, Values, Results, EstatusF)

If StatusDefs InvocationWasSuccessful{(EstatusP) then
Esciis ESOpenRead(Results, ResultReader)
Esciis ESRead(ResuliReader,
Esciis EdenStatusToken, EstatusP, es)
If StatusDefs InvocationWasSuccessful(EstatusF) then
Esciis ESRead(ResuliReader,
Esciis CapabilityToken, ActualCapaP, es)

end if
Esciis ESCloseRead(ResultR eader)
Esciis ESDiscard(Values}
Esciis ESDiscard(Results)
end if
end Lookup

Figure 4.1: The stub procedure for Lookup

well. When the Directory object is compiled, all
of the stub procedures needed to invoke it are
placed in a module called Directory. So, when a
client invokes Lookup on a Directory, it actually
calls the Directory Lookup procedure. This is

shown in Figure 4.2. Similarly, to look
something wup in an Environment, the
Environment.Lookup procedure is called.

Observe once again that capabilities themselves
are not typed; if CurrentDirectory is a capability
for a Directory, there is no compile-time check
that prevents the invocation

Environment Lookup{CurrentDirectory,
"TerminalHandler", ...)

from being issued. However, if the parameters of
the two Lookup invocations are different, then a
EPLWrongParameters status will be returned at
run time, and no invocation procedure will have
been called. '

If the two Lookup invocations take the same
parameters, the invocaton will go ahead; the
name of the module is not significant. Indeed,
the bodies of the two stub procedures will be
identical; we make no assumption that the
invoked object is actually of the same type as the
module. This is because various different objects
may in fact support the same operations, and we
do not wish the invoker to know which particular
concrete type he is invoking. As an example,
there is a set of invocations, including Transfer
and Close that are concerned with byte-stream

input and output. The Transfer invocation is
actually declared in a module called EIO, but it is
understood by numerous objects. Examples are
the ByteStore object, which stores a sequential
file, and the Eden Terminal Handler, which
implements virtual screens on a terminal; both of
these objects can be invoked with the
EiQ.Transfer invocation.

It is also possible tc use an object oriented
syntax for invocation. Returning to the previous
example, the Lookup invocation can be invoked
on CurrentDirectory by writing

CurrentDirectory Lookup("TerminalHandler”, ...}

The advantage of this second syntax is not just
that it avoids an extra word, but that it brings out
the object-oriented nature of the system. The
syntax CurrentDirectory.Lockup much more
clearly reflects the fact that the Lookup operation
is possessed by CurrentDirectory than does the
type-oriented notation Directory.Lookup, which
implies that a type Directory possesses the
Lookup operation.

The astute reader will notice a problem.
When the EPL compilation system processes the
invocation CurrentDirectory.Lookup, it must
generate a call to a stub procedure; but it is not
obvious whether it should call
Environment Lookup or Directory.Lookup. We
resolve this ambiguity by permitting the object
oriented invocation syntax only when the target

m

RootDirectory.Lookup(

-
p
-
-
-

UserName, LoginDirectory,

-
-
-

Status)

Directory Stub Procedure

-

procedure Lobkup()
{Pack arguments into ESCII}
Dispatcher.Synchlnvoke(...) N‘

Invocation

{unpack results}
end

Figure 4.2: Sending a Lookup invocation

Invocation procedure Lookup {
Callersrights : EdenRights,
LookupPath : String,
var ActualCapa : Capability,
var Estatus : EdenSlatus) =

{ Paossible values of Lookup's Return Codes:
EFSS_Success
EFSF_BadPathName
EFSF_NoSuchPath)

Imports (var StrDefs, Extractor, var Directory,

var StatusDefs, LookupEntry, var Kernel)
begin

var Pathname : String

var NewPath : String

var SearchName : String

var SubDirect : Boolean

var DirectoryCapa : Capability for Directory

var MyCapa : Capability for Directory

var RetCapa : Capability

var SubEstat : EdenStatus

Kernel.CapaMakeNull (ActualCapa)
PathName := LookupPath

Kernel CapaForMe (DirectoryCapa)
Kernel.CapaForMe (MyCapa)

loop
{ Peel off new SearchNama from PathName }
Extractor (PathName, SearchName, NewPatk, SubDirect)

{ Lookup the capability of SearchName in DirectoryCapa)
i not Kernel CapaEqual (MyCapa, DirectoryCapa) then
DirectoryCapa LookupEntry (
SearchName, RetCapa, SubEstat)
it not StatusDefr InvocationWasSuccessful (SubEstat) then
Estatus := EFSF. BadPathName
exit
end If
else
LookupEnry { '
EdenRights (), SearchName, RetCapa, SubEstat)
end if

it SubEstat = EFSF_NoSuchName then
Estatus := EFSF_NoSuchPath
exit

end if

Estatus :» EFSS_Success

If not SubDirect then
{ Pathname does not refer to subdirectories)
ActualCapa := RetCapa
exit

end if

{ The capability returned denotes a subdirectory to be
descended. Now go back and search that directory for
the capability of the subsequent SearchName. }

DirectoryCapa ;= ReitCapa :

PathName := NewPath

end loop
end Lookup

S

Figure 4.3: The body of the Lookup invocation procedure

capability has been declared to be for some
object type. In the context of the declaration

var CurrentDirectory: Capability for Directory
a call to Directory.Lookup will be generated.

The reader should note that Capabilities
remain untyped despite the Capability for syntax.
In the scope of the declarations

const Servers: Capability for Directory :=

Eject "system/servers”
var Env: Capability for Environment

var C: Capability
it is possible to assign Servers (or any other
capability value) to both Eav and C, and to
invoke any operation on any capability using the
unabbreviated syntax.

4.3.3. Receiving Invocations

EPL provides the programmer with assistance in
receiving invocations as well as in sending them.
For each invocation that an object is willing to
accept, the programmer declares an invocation
procedure, These look exactly like ordinary
procedures except that their declarations are

prefixed by the word invocation. The first
parameter of an invocation procedure must be of
type EdenRights and the last must be of type
EdenStatus. Moreover, all the arguments (input
parameters) must precede any of the results
(output parameters, indicated by the keyword
var). Invocations do not have in/out parameters.
The body of the Lookup invocation procedure of
the directory object is shown in Figure 4.3.

In addition to declaring the appropriate
invocation procedures, the programmer of a
server also needs to arrange that the incoming
invocations are actually received. A library
module called the Dispatcher undertakes all the
low level negotiations with the kernel that are
required for invocation message dispatch and the

enqueuing of incoming invocations. The
programmer receives invocations from the
Dispatcher by use of the routine

Dispatcher.ReceiveOperations; this takes as an
argument a set of invocation names and returns as
result a handle to a particular invocation. Having
received an invocation in this way, the
programmer can call the appropriate invocation

Invocation

Directory Lookup(...)

Directory Code
invocation procedure Lookup(...) =
. loop
begin
] Dispatcher ReceiveOperations
{code 1o search the directory (1, EnquiryOps)
and find the requested key} CallInvocationProcedure(l)
end Lookup end loop
' Call
and
and
CIP for Directory
Return procedure CalllnvocationProcedure
{1: InvocationHandle) =
begin
{Fetck values from ESCIL.

if OperationName is "Lookup™ then }

{Pack results into reply ESCII}
Dispatcher ReplyMsg(!, Results)

invocation
reply

Figure 4.4: Receiving a Lookup invocation

procedure by means of an automatically
generated piece of code called
CalllnvocationProcedure, This is shown in
Figure 4.4. If the operation name in the
invocation is not one for which he has declared
an invocation procedure, the effect of
CalllnvocationProcedure will be to return the
invocation to the invoker with an
EPLF_UndefinedOperationName status. If the
operation name in the invocation matches that of

a declared invocation procedure but the
parameters are of the wrong types, then
CalllnvocationProcedure returns the status
EPLF_WrongParameters. If name and

parameters match then the appropriate invocation
procedure is called, and from inside it the
programmer is free to take whatever actions are
appropriate. Returning from the invocation
procedure causes the invocation reply message to
be sent.

4.4. Capability Protection

Another design goal of EPL was to provide
capabilities as first-class objects. Within an EPL
program, a capability is represented by the actual
ten-byte quantity used to name objects within the
Eden kernel. It is not represented by an index
into a c-list [19]. This lets programmers access
the rights field of a capability, compare two
capabilities to see if they name the same object,
restrict the rights in a capability, and assign
capabilities in a very natural way. Both
capability variables and constants may be
declared. Capability constants are identifiers that
name a new form of expression called a
capability denotation. Capability denotations are
similar in intent to integer denotations: they are
resolved into capabilities when the object is
compiled. It is thus possible to keep within the
code of an cbject capabilities for arbitrary other

-10-~

objects. This means that we do not need to leave
capabilites for sensitive objects in the directory
system; rather the piece of software that needs
these capabilities can have them “compiled in”.

Protection of capabilities against forgery and
theft is achieved in what we believe to be a novel
way. For each object, the Eden kernel keeps a
table of capabilities owned by that object. When
an object is first created, this table contains the
object's own capability and any capability
constants that formed part of its type. (For
example, the mail system send interface type
contains a constant capability for the mailbox
directory. This type forms the code for instances
of the send interface, and so each instance also
contains that capability.) Whenever an object
attemnpts to make a kernel call, such as the call
that send an invocation message, the kernel
checks that the target capability, and any other
capabilities contained in the message, are present
in the sender’s capability table. If any of the
capabilities are not present in the table, then they
have not been obtained legitimately, and the
kernel call will fail with an appropriate status. In
the case of an invocation, the inverse operation
takes place at the destination node. Just before
the invocation message is passed to the target
object, the target's kernel adds a copy of all
capabilities in the message to the target’s
capability table. Thus, when the target attempts
to use these capabilities, they will be considered
to be legitimate. Similar checks and table
manipulations take place with an invocation
reply. The actual process is a little more
complicated than described here, since the kernel
table contains just one entry for each wid; that
entry contains the union of all the rights
legitimately obtained by the object in question.
The capability table is written to stable storage as
part of the checkpoint operation, and re-
initialised as part of a restore,

The effect of these rules is that, within its own
address space, an object is free to assign, delete,
and indeed fabricate capabilities as it sees fit.
Some fabrication is legitimate; for example, an
object may restrict the set of rights in a
capability. Other capability fabrication is illegal;
for example, constructing a capability out of an
arbitrary node number and timestamp, or
expanding the set of rights beyond that which the
object legitimately possesses. However, if an
object indulges in these illegal acts, it is fooling
no object but itself. Its kernel will prevent it

from ever using an illegally constructed
capability.

Note that in Eden capabilities are owned by
objects, not by procedures. Eden has no
equivalent of Hydra’s Local Name Space [19].
Eden is less secure than Hydra in that an object
may retain a copy of any capability passed to it
for an indefinite time. However, the view of
capabilities and rights seen by the Eden
programmer is far simpler than that presented by
Hydra.

4.5. Strings in EPL

One early addition that we made to EPL was the
provision of a comprehensive strings package.
Like Pascal, Concurrent Euclid provides only
fixed length character arrays and not true strings.
Although a strings package might seem to be a
trivial piece of software, a number of practical
problems arise when writing a strings package for
production use.

It is all too easy to provide functionality at the
expense of performance, with the result that
strings are too expensive to use routinely, and
programmers revert to character arrays. One of
our goals in designing the Eden package was to
make simple uses of strings cheap. In particular,
unnecessary copying was to be avoided. We
achieved this by using pointers to existing
character arrays, rather than copies, whenever
possible. A string is represented by a <length,
address> pair; taking a substring of an existing
string is done by simply constructing a pointer to
the middle of that string. Construction of a new
string by concatenating substrings of existing
strings involves copying the characters only once.

One problem with adding strings in a package
rather than having them built into the language is
that there are no denotations for strings.
Concurrent Euclid does provide denotations for
character arrays, which take the form

'This is a character array’

The strings package provides a conversion
function Str to turn such arrays into strings:

var s: string = StrDefs.Str(’ a character array')

In the case that the argument of St is a compile
time constant, the compiler will allocate static
storage for it; it is therefore safe for Str to return a
pointer to this storage. In the case that the
argument is a character array variable local to an
imner procedure or block, the storage that it

—11-

occupies will be deallocated at block exit;
furthermore, the value of the array variable may
be changed by assignment. In these cases St
ought to copy the characters into freshly allocated
storage. Rather than provide the programmer
with two versions of Str, with the attendant
danger of calling the wrong one, we took
advantage of the run-time storage layout of UNIX
programs on VAXes and Suns. If the address of
Str’s argument is very large, it is assumed to be
on the stack, and is copied; otherwise it is not
copied.

Of course, it is rather cumbersome to have to
call StrDefs.Str every time one needs a string
constant. The preprocessor that performs the first
phase of the EPL translation process therefore
accepts string denotations surrounded by double
quotes, and turns them into the appropriate call
on a string creation function. So in EPL one can
write

Var s: string := "a string"

(In fact, the call inserted by the preprocessor is to
a special string-creation function, ZZZS#ZZ2Z,
that never copies its argument.)

All of the above assumes that strings can be
returned by functions. Unfortunately, Concurrent
Euclid imposes the restriction that the result of a
function call must fit in one machine word, i.e.,
32 bits on our machines. We divided this into 12
bits for the length field and 20 bits for the
address, thus limiting strings to a length of 4095
bytes, and programs to 1 Mbyte of string space.
In practice, the latter limit has caused some
unpleasant surprises.

So far nothing has been said about the
deallocation of strings. This is the weakest part
of the package. In achieving our goal of
minimising copying, we have created a situation
in which it is very hard for a programmer to
know who “owns” a given string, and whether it
is safe to deallocate it. We took the attitude that
most programmers cught to assume the presence
of garbage collector that “did the right thing”;
however, the fact that we have not implemented
such a garbage collectort means that a FreeString
operation is provided for those programmers who
need it. There are also explicit rules about string

% Although Concurrent Euclid is strongly typed, except for
explicit loopholes, the strings package itself would cause
problems for most garbage collectors: they will (rightly) ob-
ject to pointers to the middle of character arrays.

ownership. For example, string arguments to
invocations are the property of the invocation
procedure, not the caller. This is convenient in,
for example, the Directory object AddEntry
invocation procedure, where the new string can
be linked into the directory data structure without
the necessity of making a copy. It is less
convenient in the LookupEntry procedure, when
the name provided as the argument to
LookupEntry must be explicitly freed.

In a similar way, string results of an
invocation procedure are deemed to be owned by
the procedure itself. Most of the time this rule is
appropriate, but it does lead to complications in a
few cases. Consider the Read invocation
procedure Read in the Bytestore type. Bytestores
represent a sequential file of bytes as a sequence
of fixed-size blocks. When a Read invocation
returns a string that is entirely within one block,
the invocation procedure does not need to make a
copy of the bytes: it merely creates a string that
references a part of one of the blocks. In this case
the string must not be freed, and the Read
procedure benefits from the knowledge that no
attempt to do so will be made. However, when
the caller of Read requests a string that crosses a
block boundary, a new string must be created by
concatenation: this string belongs to the Read
invocation procedure, and should be freed just
after it returns and the result parameters have
been marshalled into the reply ESCIL
Unfortunately, this marshalling occurs within
CalllnvocationProcedure, a piece of auto-
matically generated code that has no knowledge
of which string results should be freed. After
CallInvocationProcedure returns, the string is
garbage, in the sense that there is no variable that
names it, and thus there is no way of freeing it.

Our solution to this problem is less than
elegant. We have written a module called
StringSing that serves as a “death-row” for
strings. Using StringSing.MarkForDeath, the
invocation procedure can mark a string for future
deallocation. After the CalllnvocationProcedure
call, the marked strings belonging to the current
CE process can be deallocated by calling
StringSing Execute. This is clumsy, but does
solve the problem of string result deallocation for
that relatively small number of invocation
procedures where it is a problem. The alternative
to StringSing would have been to change the
string ownership rules so that results were
deemed to be owned by the caller, not by the

~12-

invocation procedure. Unfortunately, this would
have meant making copies of results in the
common case where the invocation retumns
information from the object’s data structures.

5. Implementation

There are five main parts to the implementation
of EPL: the EPL Preprocessor, two Concurrent
Euclid program generators, the dispatcher
module, the Concurrent Euclid compiler, and
various library modules. Each of these
components will be discussed in turn. Figure 5.1
shows how the various components of the
translation system fit together.

5.1. The EPL Preprocessor

The EPL preprocessor understands the syntax of
EPL and deals especially with invocation
procedures, capability for declarations, capability
denotations, and string denotations. It produces
two outputs: a Concurrent Euclid program
containing calls to library procedures and
automatically generated procedures, and a binary
file called interface.code. This file contains a
description of the object’s invocation interface,
that is, it lists the name of each invocation
procedure and the parameters that the procedure
takes. A utility program converts interface.code
into a human-readable form that is used for
documentation (and as an external definitions file
for the compiler).

5.2. Program Generators

Two program generators, the stubber and the
cipper, emit Concurrent Euclid source code that
is subsequently compiled. The stubber generates
stubs that are used by other objects that invoke
the object that is being compiled. The cipper
generates a CalllnvocationProcedure that is
tailored to the needs of the object in question, and
which is eventually linked with it. The
information needed to generate the stubs and
CalllnvocationProcedure is obtained from the
interface.code file. The stub procedure used to
call Lookup was shown in Figure 4.1; the cip
procedure used by the directory object is shown
in Figure 5.2.

5.3. The Dispatcher

The dispatcher is a library module that is used to
simplify invocation. The dispatcher uses the
asynchronous invocation primitive provided by
the Eden kernel to implement an entry called

~ interrupt).

-«

SyncInvoke that provides synchronous invocation
for EPL processes. It also implements the
ReceiveOperations call (and some other
Receive... calls). The stub procedures enter the
dispatcher by calling SyncInvoke; the dispatcher
in turn calls the kernel Asynclnvoke primitive and
enqueues the calling process on a condition
variable until the arrival of the invocation reply
message. In this way many invocations made by
separate EPL processes can be in progress at
once. When an invocation arrives at an object,
the object is notified by a UNIX signal (software
A daemon process inside .the
dispatcher waits for the arrival of this signal and
then receives the invocation message. The
message will either be the reply to a previously
transmitted invocation message or a new
incoming invocation request. In the first case, the
calling process will be suspended on a condition
variable. The action of the dispatcher daemon is
simply to find the right condition variable and
signal it, and to make arrangements for the
calling process to access the data in the reply
message.

- If the message is an incoming invocation
request, the dispatcher looks at the name of the
operation in that invocation. It then searches a
data structure to determine if there is a process
waiting for an invocation with that name. If there
is such a process, the dispatcher provides the
process with the invocation message and signals
the appropriate condition variable. If there is no
such process, the invocation is queued until a
process calls the appropriate Receive entry.

5.4. The Concurrent Euclid Compiler

The fourth main component of the EPL
implementation is a stightly modified version of
the University of Toronto Concurrent Euclid
compiler. The changes that we have made fall
into three classes. The most major set of changes
is independent of Eden and EPL. It is the
addition of symbol table directives compatible
with the UNIX debugger, dbx. We have also
modified dbx itself so that it deals reasonably
with CE processes.

A second category of compiler changes
represents minor extensions to and modifications
of the Concurrent Euclid language itself. I give
three examples. QOur compiler supports Ssets
whose base type has a cardinality of 32, whereas
the Toronto compiler supports sets with a base
type cardinality of not more than 16. A larger set

T

-
-
-

~an
~———
LT

-
-

4Defs.ppe Defs.e

LY
prog.epl \ prog.ppe
- Preprocessor .

- e e Y

L 1

\\ \
; !
: !
- ;
L]
L}
interface.code ;
I

1

include.e ;
£

LY
.,

CE Compiler .

1

.
s.-

CE Compiler

e---
k

Figure 5.1: The internals of the EPL translation system.

Boxes are used to represent files, and ovals to represent programs; the dashed lines show data flow. The cloud in the upper left
corper represents the EPL source program. The shaded box labelled Prog.our represents the final output, ready to become the

code for & new Eden type. Note that Defs.o and Defs.e are not used in the compilation of this object; they will be used in the
translation of another object that invokes the object whose translation is illustrated,

of constant expressions are considered manifest
by our compiler than by the Toronto compiler.
When declaring an external procedure, it is
possible with our compiler to give an external
(linkage editor) name for that procedure, whereas

the Toronto compiler assumes that the external
name is the same as the internal name. This
facility is uwseful when interfacing with the C
language code used to implement the Eden kernel
library. In the absence of an explicit external
name, one is constructed from the module name

~14-

procedure CallInvocationProcedure(var I : Kernel InvikHandle) =

bkmports{var Dispatcher, var Esciis, var SiatusDefs,
var StrDefs, malloc, dealloc, var Directory)

begin '

var Values : Escii

var Results : Excii

var ResSize : Integer

var ValueReader : EsciiReader

var ResultWriter : EsciiWriter

var OpNamae : String

var InvokersRights : EdenRights

var EPLStatus : EdenStatus

var es ; EsciiStatus

EPLStatus : = StatusDefs EPLS_Success
Dispatcher InspectValueParams(l, Values)
Dispatcher InspectCaliersRights(l, InvokersRights)
Esciis ESOpenRead(Values, ValueReader)
OpName ;= StrDefs NullString
Esciis ESRead{ValueReader,

Esciis StringToken, OpName, es)
It StrDefs Equal{OpName, "AddEntry") then

elseif StrDefs Equal{(OpName, *CheckpoiniSelf”) then

elself . . .

elself StrDefs Equal(OpName, "Lookup”} then
begin
var LookupPathP : Siring
var ActualCapaP : Capability
loop fonce)
Esciis ESRead{ValueReader,
Esciis StringToken, LookupPathP, es)
exit when es mot = Esciis ESCIS_Success
Esciis ESReadType(ValueReader,
Esciis CapabilityToken, es)
exit when es not = Esciis ESCIS_Success

& = Esciis ESCIS_Success
exlt
end loop fonce}
if es = Esciis ESCIS_Success then
Direciory Lookup(InvokersRights,
LookupPathP, ActualCapaP, EPLStatus)

ResSize := Esciis SpaceForNothing +
Esciis.SpaceForType + Esciis. EdenStatusSize +
Esciis.SpaceForType + Esciis.CapabilitySize

Results := Esciis ESCreate(ResSize)

Esciis ESOpenWrite(Results, ResuliWriter)

Esciis ESWrite(ResultWriter,

Esciis EdenStatusToken, EPLStatus, es)

assert (&y = Esciis ESCIS_Success)

Esciis ESWrite(ResultWriter,

Esciis CapabilityToken, ActualCapaP, es)
nssert (es = Esciis ESCIS_Success)

Esciis ESCloseWrie(ResuliWriter}

else

ResSize := Esciis SpaceForNothing
+ Esciis SpaceForType + Esciis. EdenStatusSize

Resulis :» Esciis ESCreate(ResSize}

Esciis ESOpenWrite{Results, ResuliWriter)

EPLStatus := StatusDefs LPLF_WrongParameters

Esciis ESWrite(ResultWriter, Esciis. EdenStatusToken,
EPLSatus, es)

assert (es = Esciis ESCIS_Success)

Esciis ESCloseWrite(ResuliWriter)

end if

end
elself . ..

else
ResSize ;= Esciis SpaceForNothing
+ Esciis.SpaceForType + Esciis EdenStatusSize
Results :w Esciis ESCreate(ResSize)
Esciis ESOpenWrite(Resuits, ResuliWriter)
EPLStatus := StatusDefs EPLF_UndefinedOperationName
Esciis ESWrite(ResultWriter, Esciis EdenStatusToken,
EPLS:atus, es)
assert (es = Esciis ESCIS_ Success)
Esciis ESCloseWrite(ResultWriter)
end if
Dispatcher ReplyMsg(l, Results, EPLStatus)
Dispatcher Deallocatelncoming(l, EPLStatus)
Esciis ESDiscard(Values)
Esciis ESDiscard(Results)
end CallInvocationProcedure

Figure 5.2: The CalllnvocationProcedure for the Directory type

and the intemnal name. This enables two
procedures with the same name declared in
different modules to be separately compiled.

The last category of changes to the compiler
are those required directly by the EPL
implementation. There is only one change in this
category that comes to mind: it concerns the error
messages emitted by the compiler. The output of
the EPL preprocessor is legal Concurrent Euclid
code. The EPL preprocessor takes pains to
preserve the original line numbering in its output.
Thus, if there is a syntax error on line 17 of the
file Prog.ppe containing the Concurrent Euclid

generated by the preprocessor, there is also a
syntax error on line 17 of the file Prog.ep! that
contained the source code written by the
programmer. The compiler, of course, produces
an error message Prog.ppe, line 17: syntax error.
The programmer would rather not know that
Prog.ppe exists. There is certainly no point in his
editing it: he needs to change Prog.epl. We
therefore modified the compiler so that it accepts
input files with the suffix ppe (as well as with the
suffix .e) and also so that errors found in a ppe
file are reported as if they had been found in the
corresponding .ep! file. The effect of these
changes is that if the compiler is run from the

emacs “compile-it’’ routine [9], the *“pext-error”
key takes the cursor to the correct line of the file
in which the error should be corrected.
Programmers never need to look at the generated
Concurrent Euclid code.

5.5. Library Modules

The final part of the EPL implementation consists
of various library modules, which are linked into
objects as required. The most important of these
is the dispatcher, which has already been
described. Other services available from the
library include the strings package, a package that
provides conventional read and write access to
streams managed through the Eden Asymmetric
Transput Protocol [5], a package providing timer
services, and a package providing routines for
writing data items into passive representations.

6. Issues Not Addressed by EPL - Some
Speculations

As has been previously stated, the goal of EPL
was to provide a serviceable programming
language with a reasonable implementation in a
short amount of time using limited manpower. In
this, we were largely successful. The EPL
implementation and the Eden kemel were
available more or less simultaneously after about
nine months of design and construction. In order
to achieve this deadline, we deliberately avoided
language design “issues”, that is, areas that
involved research. In fact, while we were
developing the design for EPL., we kept two lists:
one contained things that we understood how to
include in EPL, while the described research
issues that we would like to investigate but which
could be deferred. If a topic became an issue of
language design, we assiduously avoided it and
moved it into the research list. Here is a selection
from our research list, and some thoughts about
their fate.

One of the most obvious deficiencies of the
current invocation scheme in EPL is the fact that
the parameters of an invocation must be of a
smatl, fixed set of types. There is no difficulty in
enlarging this set; this has happened once or
twice already in the evolution of EPL, But there
is a conceptual difficulty in allowing user-defined
types. The problem is that of type equivalence;
we must answer the question “When are two
types the same?”’ in a distributed context,

Within an EPL program, types are equivalent
only if they are identical. In other words, two

- 15—

types a and b are always considered to be
distinct, even if a and b are in turn defined by
identical text. Such an equivalence rule is quite
convenient, but it is hard to see how it can be
extended to a universe of more than one program.
Falling back on structural type equivalence is one
option, and an option that could be easily
implemented by extending ESCIIs so that type
constructors and field names could be described,
in addition to primitive types. But of course, as
language designers have widely recognised,
structural equivalence is not what the
programmer wants most of the time. Structural
identity does not support information hiding, and
has little to do with logical identity. What is
needed is a system-wide way of defining types, as
opposed to the program-wide way provided by
EPL.

The problem with the EPL type equivalence
rules is that the type names used to determine
equivalence are limited in scope to a single
program. For use in inter-object invocation, we
need to find a way to enlarge that scope to cover
the whole Eden system. In other words, we need
a system-wide name space for types. The Eden
system itself provides such a name space: the
space of capabilities. One can imagine creating a
“type object” for each type. Two different
programs that wish to access the same type can
do so if and only if they reference the same type
object. Because capabilities are unique and
cannot be forged, the type objects would provide
a set of type identifiers guaranteed to be unique
across the system, If two programmers refer to a
type by the same capability, they must intend the
very same type.

Another place where the system-wide name
space of capabilities could be used is in the
naming of invocation procedures. At present,
invocations are named by strings. An object
making a Lookup invocation constructs a
message that actually contains the string
“Lookup”. The object receiving it searches for
this string. Because of the checks on parameter
types, it might be more correct to say that the
name of the invocation is lookup (string) returns
(capability, status). But in any case, a procedure
heading and a procedure body that look as if they
match will in fact match. This scheme has the
advantage of simplicity of implementation, If the
invoker and the invokee can agree on the text of a
procedure heading, everything will work out at
run-time. There is no necessity for any kind of

-16-—

system-wide database for mapping strings into
unique identifiers. We wished to avoid any need
for such a database in the initial version of EPL
because the implementation consisted of a
collection of UNIX programs running on a
mumber of separate machines, and there was no
convenient place to keep a system-wide database
in that environment. However, now that Eden is
available, we do have a system-wide filing
system accessible from all of the separate
machines. Into this filing system one could easily
put the a mapping from strings and sets of
parameters into capabilities. This would make
the implementation of CalllnvocationProcedure,
which performs a case switch on the operation
name and checks the type information in the
ESCII, very much simpler and more efficient.
(We have not implemented this change because it
would be incompatible with ail of our existing
applications, and because the speed of invocation
dispatch is not an issue in practice.)

Another area of research that we have not
investigated in Eden is object typing. Whereas
each object in the system does have a unique
piece of source code associated with it which
defines the invocations it accepts, we do not have
any formalised notion of type conformity. In
other words, there is no formal way of saying that
object A behaves in the same way as object B, or
that A is an extended version of B that exports
some additional invocations. There are various
informal ways of saying these things, of course.
One example was mentioned above: a number of
different objects support the asymmetric transport
protocol. As another example, the Eden Mail
System makes uses of an abstract type called a
MailSink to which one can deliver mail. It is
abstract because there is no piece of code that
implements MailSinks. Instead, both mailboxes
and distribution lists obey the invocation protocol
of a MailSink. As a final example, the filing
system contains a concrete type called a
ByteStore, which implements a basic sequential
file. For the purposes of the Eden compilation
system, we needed to enhance this type so that it
could store type code, which consists of a
sequence of capabilities as well as a sequence of
bytes. The enhanced type, called TypeStore,
behaves in exactly the same way as a ByteStore
with respect to all the ByteStore invocations, but
in addition, has invocations to accept and emit a
stream of capabilities.

What has begun to emerge from our use of
objects in Eden is a directed graph of type
containment, or conformity, where some types
provide all the operations of others, and perhaps
some operations of their own in addition. So far
this graph structure has not been formalised. This
has not been a problem because the number of
object types (between seventy and one hundred)
and the number of programmers (less than
twenty) have both been small. But in the long
term we would like to formalise this graph within
a distributed programming system. The reader
should note that the notion of a directed graph of
types described here is similar to the multiple
inheritance hierarchy implemented for
Smalltalk—80 by Boming and Ingalls [8]. The-
main difference is that the Smalitalk graph relates
implementations, whereas the Eden graph relates
semantics. In Smalltalk, because the operations
provided by a “Supertype™ can be overridden by
a “Subtype”, there is no necessity for a subtype
to provide all the operations of its supertype, or
that operations should have the same argument
lists. In Eden, there is no necessity for an Eden
type like TypeStore to inherit the implementation
of ByteStore, and in fact it does not do so.

There are two advantages to formalising such
a type system. One is the documentation aid it
provides to programmers about to write a new
object. The other is that the formalisation makes
it possible to perform object type checking. As
was mentioned above, there is no object type
checking at present: the capability for syntax,
whereby one may state that a given capability is
for a given type, is regarded as an assertion on
the part of the programmer. When the variable
thus declared is assigned a value, it is possible in
principle to check that object in question
understands the appropriate set of invocations
with the appropriate parameter types. If this were
done, there would be no need for the checks that
are cumrently performed at invocation- time.
However, the reader should observe that the
declaration of a variable as capability for
ByteStore does not imply that the variable should
refer only to objects of concrete type ByteStore.
In fact, many legal invocations would fail such a
check, because many objects that behave as 2
ByteStore (ie., repond appropriately to Read
invocations, etc.) have other concrete types.
What one needs to check is the abstract type of
the object.

17 -

The issue of abstract typing is discussed
further in reference [7]. Rather than attempting
to resolve it in EPL, we have started designing a
new object-based language, called Emerald {6],
that adopts abstract typing as onme of its
fundamental concepts.

7. Conclusion

EPL is a very modest programming language.
Nevertheless, it has achieved the goals we set for
it. We did not attempt to push back the frontiers
of programming language research; we tried
instead to produce a state-of-the-art language that
enhanced the programmability of Eden. In this
sense EPL has been more successful than we ever
hoped. Our first application, the Eden
Demonstration Mail System [2] was programmed
by two students who had no familiarity with the
Eden System in a period of four weeks. This was
at a time when the Eden Kemel itself was
unstable, and the students had other course work
commitments.

We believe that Eden is easy to program
because the conceptually simple idea of
invocation is simple to use and understand in the
programming language. The programming
language design strategy of avoiding anything
that might be described as an “issue” has clearly
paid dividends here; for a programmer familiar
with a Pascal-like language there are few new
concepts to learn. Our conservative implement-
ation strategy has also paid off, in that the time
taken to build a robust and reliable programming
language implementation was very small. The
implementation is modular in that the
preprocessor, stubber and cipper are all separate
programs, and each one performs a well-defined
task. The changes that we have decided to make
over the course of the evolution of EPL have
usually been confined to one of these modules.

Preprocessors do not have a very good
reputation in the world of language
implementation. One of the reasons for this is
that the programmer is not presented with a
single language but rather with two languages:
the source and the target of the preprocessor. In
particular, error messages from the compiler will
typically refer to the source generated by the
preprocessor rather than source written by the
programmer. By attention to detail (such things
as keeping the line numbers consistent between
the input and output of the preprocessor, and
making all error messages name the preprocessor

source) we have managed to achieve a good user
interface. Of course, this was possible only
because the input and output languages of the
pre-processor are very similar,

Another thing that has helped us is that from
the very beginning we decided to use a full parser
in the preprocessor, even though the number of
constructs that the preprocessor was initially
required to recognise was very small, This initial
set consisted principally of capability denotations
and invocation procedures, both of which were
prefixed by special keywords. We resisted the
temptation to simply scan for these keywords.
Instead we took the first pass of the compiler
(written in S/SL {12]) and used it to construct a
full parser for EPL., This has meant that on
subsequent occasions it was easy to add
constructs to the language. For example, string
denotations are now built into the preprocessor,
whereas originally the programmer had to apply a
library procedure to an array of characters in
order to produce a string. Another advantage of
having a full parser in the preprocessor is that it
detects context-free syntax errors, and thus a
programmer using EPL is wamned of such errors
before his program ever reaches the compiler. In
addition, the error messages are in the same form
as those he would receive from the compiler.
The strategy of using a preprocessor and some
code generators enabled us to minimise our
construction costs because they we did not need
to understand the internals of the compiler. The
execution cost of the preprocessor, stubber and
cipper are very small compared with the compiler
itself, although it must be admitted that the whole
EPL compilation system system is slow.
However, this is mostly the fault of the CE
compiler, which is implemented as four passes
communicating via UNIX temporary files. We are
currently experimenting with a compiler that uses
a separate Eden object for each pass; the objects
communicate via invocation, so we hope to
obtain real parallelism between the phases of the
compilation, as well as to avoid the overhead of
the UNIX file system.

Of course, some deficiencies of EPL cannot
reasonably be fixed by preprocessing. For
example, standard Concurrent Euclid does not
permit procedures to be passed as parameters to
other procedures. There is no obvious reason for
this restriction; CE does not permit procedure
declarations to be nested within other procedures,
and CE modules are static, so there is no need to

- 18-

maintain a static chain of activation records in
order to enable procedures to resolve global
references. This problem could not be solved by
a preprocessor, but has been fixed fairly easily by
modifying the CE compiler itself. Nevertheless,
1 feel that the decision to use a preprocessor (at
least initially) was the right one in our
prototyping environment. In a production
version of Eden, a complete compiler for EPL
would be a reasonable option.

Another place where the use of EPL has paid
great dividends is in the provision of language
level processes. Compared with UNIX processes,
these processes are very cheap. CE processes are
created at program initialisation time, and their
number is therefore fixed. Although this lack of
flexibility is somewhat annoying, it is not usually
a serious constraint because the processes are
cheap enough to start a large number when the
object is initialised and to keep them in a pool for
use as they are needed. (However, managing the
pool is a chore; the natural place for the
management code is in the run-time system. So,
we eventually added to CE a facility for the
creation of detached processes. Once again, the
modifications to the compiler and the run-time
system were rather small.

EPL processes and monitors take advantage of
the locality of an object. One of the
consequences of this is that the model of
computation within an object - based on
variables, processes and monitors — is very
different from that which applies between Eden
object, which communicate by message passing.
One can argue that this difference in models
reflects a difference in what the hardware is able
to provide, but this is an argument for different
implementations, not different semantics. In any
case, it remains true that scaling-up of a small
application into a large one is difficult. The
scaling-up process might ideally involve taking
some language level processes and monitors and
turning them into objects. But doing this would
change the syntax in non-trivial ways and would
transform the semantics completely. It would be
more pleasant if the object-oriented model of
computation that Eden presents was visible
within the Eden Programming Language.
Providing this, of course, would mean designing
our own language from scraich. A small group of
researchers is currently engaged in just such a
project [6]. Nevertheless, for the purposes of the
Eden prototype, the language level processes and

monitors provided by CE are easy to use,
certainly when compared with the VMS kernel
processes of Newark.

8. Acknowledgements

The Eden project and the EPL language sub-
project have both benefited from the insight,
experience and hard work of a large number of
people. I can mention only a few. Alan Boming
made valuable early contributions to the EPL
philosophy. Guy Almes made many insightful
suggestions. Barry McCord and Rajendra Raj
implemented and maintained the Stubber and
Cipper. Norman Hutchinson was always ready to
fix the CE compiler, and then to break it again to
retain compatibility with the C compiler.
Richard Korry and Rajendra Raj have worked
hard experimenting with 2 new version of the
EPL translation system that takes advantage of
the potential for parallelism in the Eden system.
Finally, the Eden programming community has
been free with their bouquets and brickbats
(particularly the latter), and have thus contributed
significantly to the evolutionary improvement of
the Eden Programming Language.

References

[1] Alichin, J. E. and McKendry, M. S. “Synchron-
ization and Recovery of Actions”. Proc. 2nd
Symp. Principles Distributed Computing,
August 1983, pp31-44.

[2] Almes, G. T, Black, A. P, Bunge, C. and
Wiebe, D. “Edmas: A Locally Distributed Mail
System”. Procs 7th Int’l Conf Softw.. Eng.,
March 1984, pp356-66.

[3] Almes, G. T, Black, A. P, Lazowska, E. D. and
Noe, J. D. “The Eden System: A Technical
Review”. IEEE Trans. on Software Eng. SE-11,
Nr 1 (January 1985), pp43-59.

[4) Black, A. P. “Report on the Programming
Notation 3R”. Technical Monograph PRG-17,
Oxford University Computing Laboratory, Pro-
gramming Research Group, Oxford, England,
August 1980,

[5] Black, A. P. "An Asymmetric Stream Com-
munication System”. Proc. 9th ACM Symp. on
Operating System Prin., October 1983, pp4-10.

(6]

7

i81

[°]

(10]

(11}

(12]

{13)

[14]

(15]

(16}

[17]

-19-

Black, A, P., Hutchinson, N,, Jul, E. and Levy,

H. M. “Distribution and Abstract Types in -

Emerald”. Technical Report 85-08-05, Univer-
sity of Washington, Computer Science Dept,
August 1985,

Black, A. P. “Supporting Distributed Applica-
tions: Experience with Eden”. Proc. 10th ACM
Symp. on Operating System Prin., December
1985, pp181-193.

Boming, A. H. and Ingalls, D. H. H. “Multiple
Inheritance in Smalltalk—-80”. Tech. Rep. 82-
06-02, University of Washington, Computer
Science Dept, June 1982.

Gosling, J. Emacs — screen Editor. UniPress
Software, Inc, Highland Park, NJ 08904, August
1983,

Holman, C. and Almes, G. T. “The Eden
Shared Calendar System”. Tech. Rep. 85-05-
02, University of Washington, Computer Sci-
ence Dept, May 19885,

Holt, R. C. *A Short Introduction to Concurrent
Euclid”, SIGPLAN Notices 17, Nr 5 (May
1982), pp60-79.

Holt, R. C., Cordy, J. R. and Wortman, D, B.
“An Introduction S/SL: Syntax/Semantics
Language®’. Trans. Prog. Lang and Systems 4,
Nr 2 (April 1982).

Holt, R. C. Concurrent Euclid, The Unix Sys-
tem, and Tunis. Addison-Wesley, 1983,

Lampson, B., Horning, J., London, R., Mitchell,
J. and Popek, G. “Report on the Programming
Language Euclid”. SIGPLAN Notices Notices
12, Nr 1 (February 1977).

Lazowska, E,, Levy, H., Almes, G., Fischer, M,,
Fowler, R. and Vestal, S. “The Architecture of
the Eden System”. Proc. 8th ACM Symp. on
Operating System Prin.,, December 1981,
pp148-159,

Liskov, B. and Scheiffer, R. *“Guardians and
Actions: Linguistic Support for Robust, Distri-
buted Programs”. Conf. Rec. 9th ACM Symp.
on Prin. of Prog. Lang., 1982.

Pu, C. and Jacobson, D. “An Evaluation of
Newark’’, Eden Project Document, University
of Washington, Computer Science Dept, July
1982.

[18]

(19]

Pu, C., Noe, J. and Proudfoot, A. “Regenera-
tion of Replicated Objects: A Technique for
Increased Availability”. Tech. Rep. 85-04-02,
University of Washington, Computer Science

Dept, April 1985. '

Wulf, W. A, Levin, R. and Harbison, S. P.
HYDRA/C.mmp: An Experimental Computer
System. McGraw-Hill, 1981.

