
AB42.4.5 P r o p o s a l s f o r Alqol H-a super lanquaqe of Alqol 68
A.P. B lack , V . J . Ravward-Smith

School of Computing S t u d i e s , U n i v e r s i t y of E a s t Anglia

5 1 . Int roduct ion

This paper is devoted t o the descr ip t ion of a proposed extension of

Algol 68 which w e s h a l l c a l l Algol H. The motivation f o r t he development

of t h i s language comes from [I]. Sect ions 3 t o 7 of t h i s paper correspond

t o t he s ec t i ons i n [I] with t h e same names. They descr ibe ,

construct ions i n Algol H which represent t h e abs t rac t ions of Hoare's

theory.

Professor Hoare makes a vigorous disclaimer i n t he introduct ion t o h i s

paper: he is not embarking on the design of ye t another programming language

[I]. H i s ab s t r ac t da t a s t r u c t u r e s a r e intended t o a s s i s t i n the formulation

of abs t r ac t programs, and i n t h e i r represen ta t ion as concrete code. The

t r a n s i t i o n from abs t r ac t t o concrete is an e s s e n t i a l p a r t of t h e program

design process, and there a r e good reasons why i t should no t be automated.

Hoare draws a c l e a r d i s t i n c t i o n between an algori thmic language and a

programming language, h i s no ta t ions being an example of t h e former and

Algol an example of the l a t t e r . However, Hoare admits t he re a r e advantages

i n t he programming language being a subset of t h e algori thmic language.

Many of h i s no ta t ions can be implemented with high e f f i c i ency ; t h i s is

c e r t a i n l y t r u e of unstructured da t a types and of elementary da t a s t r u c t u r e s ,

v i z . , Cartesian products, unions, a r rays and powersets.

The advanced d a t a s t r u c t u r e s , namely sequences, recurs ive s t r u c t u r e s

and sparse s t r u c t u r e s , a r e fundamentally more d i f f i c u l t t o implement by

an automatic t r a n s l a t o r . Consequently, no proposals a r e made here t o

include these s t r u c t u r e s i n Algol H (except i n a s f a r as t ransput is a

represen ta t ion of c e r t a i n kinds of sequence).

Many of t h e new construct ions proposed f o r Algol H have counterpar ts

i n t he programming language Pascal [4,81. Enumerations a r e ava i lab le

(always ordered) , and s o a re subranges, although these a r e more r e s t r i c t e d

than t h e submodes of Algol H i n t h a t a l l subranges o f a given parent type

must be d i s j o i n t . The syntax of Pascal is markedly d i f f e r e n t from t h a t of

Algol H, which is intended t o introduce these concepts t o programmers

more f ami l i a r with Algol 68. Some of t h e construct ions of Algol H have

previously been described as Algol 68 "might-have-beens" [71.

52. The Method of Def in i t ion

A s an Algol 68 superlanguage, Algol H should be described by a (two-

l eve l , Van Wijngaarden o r) W-grammar, as is used i n the Report. (Here, and

i n a l l t h a t follows, "Report" means t he Revised Report on Algol 68 [21.

References t o s p e c i f i c s ec t i ons a r e given as, e .g . [R 2 .2 .2 .c l .) However,

t h i s has c e r t a i n disadvantages,for W-grammars have been held t o be d i f f i c u l t

t o understand, p a r t i c u l a r l y by those who do not know t h e language they

descr ibe. Whilst w e f e e l t h i s d i f f i c u l t y is o f t en overestimated, it is none

t h e less r e a l . For t h i s reason, t h e cons t ruc ts of Algol H a r e described here

only by means of examples and na tu ra l language. I t is hoped t h a t t h i s w i l l

be "eas ie r f o r t h e un in i t i a t ed reader", but f o r t h e i n i t i a t e d , p a r t of t h e

W-grammar d e f i n i t i o n of Algol H can be found i n C31. I t should be noted t h a t

i t is not easy t o extend t h e grammar of Algol 68 s o t h a t i t def ines Algol H.

For example, i n Algol 68 t h e metanotion NEST, which c a r r i e s a record of a l l

t he declarations forming t h e environment, has no need t o envelop denotations,

s i n c e t h e meaning of a denotation is independent of any nes t [~ .8 .0 .11 . In

Algol H t h i s is not so; i t is poss ib le t o dec la re enumeration modes whose

denotations a r e scoped .

53. Unstructured Data Types

A l l d a t a s t r u c t u r e s i n a program must be b u i l t up from unstructured

components. Most programming languages provide some unstructured types,

usual ly r e a l s and in teger , and i n theory t he se a r e adequate f o r a l l purposes.

In p rac t i ce t h e r e a r e s t rong reasons f o r def in ing o ther unstructured types.

For example, although charac te r values can be represented a s in tegers , i t has

become usual t o provide a charac te r type i n t e x t processing programming

languages. This has two advantages. F i r s t , t h e po t en t i a l range of values

of a var iab le is made e x p l i c i t , thus making t h e program c l ea re r and subject

t o more compile-time checks, which can de t ec t such e r r o r s a s t h e addi t ion of

an in teger t o a charac te r . Second, i t is poss ib le t o devise an e f f i c i e n t

representat ion; because t h e ca rd ina l i t y of t h e character set i s usual ly much

less than t h a t of t h e set of permitted i n t ege r s , charac te rs can be represented i n

less b i t s i n t he computer memory.

The next s t ep , a f t e r including i n a language a wider choice of bas ic

modes, is t o allow t h e programmer t o def ine h i s own unstructured modes,

e i t h e r by enumeration of values o r by tak ing a subrange of some ex i s t i ng

mode. However t h i s is done, it is fundamental t h a t d i f f e r e n t da ta types

should be represented a s d i f f e r e n t modes. Since t h i s mode is known a t

compile t i m e it is poss ib le t o ensure t h a t unrelated da t a a r e not mixed.

The pro tec t ion thus provided is one of t h e p r inc ipa l bene f i t s of t h e

extensions.

3.1 Enumerations

In many programs in t ege r s a r e used t o denote a choice from a small number

of a l t e r n a t i v e s r a t h e r than numeric q u a n t i t i e s . In such cases we may expect

t he documentation of the program t o list the possible values with t h e i r

intended in terpre ta t ion . For example, one might f ind the following i n a

program concerned with bidding sequences i n bridge.

i n t trumps, bestsuit; -
c These vaWdbles refer t o integers which -

Indicate su i t values as follows:

0 - clubs

1 - diamonds

2 - hearts

3 - spades

4 - no trumps

c -
The notion of an enumeration enables quant i t ies such as s u i t s of cards,

sexes o r colours t o be represented as separate modes, qui te d i s t i n c t not only

from the integers but a lso from each other. In Algol H the following are

legal mode declarations.

mode su i t = order (clubs, diamonds, hearts, spades, notrwnps)

mode sex = scalar (male, female) -- -
mode primary colour = scalar (red, green, blue) - ---
mode dayofleek = order (Sunday, Monday, ~uesday, Wednesday, -

Thursday, Friday, Saturdal)

The use of the order-token (order) indicates tha t the mode should be con-

sidered t o be ordered; the scalar-token (scalar) denies any such ordering.

The bold-TAG-symbols (dubs , -- male, e t c .) are MODE denotations fo r the various

MODES, i n exactly the way tha t , i n Algol 68, true and false are boolean

denotations. To be pedantic, the pa ra l l e l is not exact, for is the

representation of the true-symbol not the bold-letter-t-letter-r-letter-u-

letter-e-symbol. Nevertheless, it is c lea r CR.4.2.2bl tha t the s imi lar i ty

is intentional . This d is t inc t ion does not a r i s e s ince i n Algol H e is

not a primitive mode but is defined using mode boo2 = order (true, false). --
The use of the new denotations throughout the program enhances its under-

s tandabi l i ty considerably; the assignation

tpwnps := spades

conveys more information (t o the human reader) than

which would be i ts counterpart on the assumption of trumps being an &
variable, as i n example (i) .

The s i t u a t i o n can be a l l ev i a t ed i n Algol 68 by use of i d e n t i t y

dec la ra t ions f o r appropriate in tegers :

i n t clubs = 0, diamonds = 1, hearts = 2, spades = 3, notrumps = 4 -

which may then be followed by

trumps := spades

i n t h e same context a s (11).

This use of a sc r ip t i on is no s u b s t i t u t e , however, f o r t he a b i l i t y t o

def ine new bas i c modes: t h e advantages of enumeration modes become c l ea re r

when cont ro l s t r u c t u r e s a r e introduced t o manipulate them, but immediately

w e see t h a t t he re can be b e t t e r p ro tec t ion , more e f f i c i e n t s t o r e u t i l i s a t i o n ,

and a c los ing of the gap between the da t a s t r u c t u r e s of a program and the

r e a l world ob j ec t s they represen t .

A s f a r a s p ro tec t ion is concerned, not only i s t h e programmer less

l i k e l y t o ass ign ob j ec t s of one type t o var iab les of another (because of

t h e mnemonic names), but such assignat ions a r e i n any case syntax e r r o r s ,

s i nce each type of ob jec t is represented by a d i s t i n c t mode i n t he program.

The s tandard t ransput rou t ines may, of course, be applied t o enumeration

modes - a f a c i l i t y not ava i lab le i n Pascal. The ex te rna l forms of t h e values

of such modes w i l l i n general be implementation dependent. I t is suggested

t h a t where t h e bold-TAG-symbols used i n t h e program t e x t f o r denotations a r e

represented by s t ropping, t h e charac te rs t ransput should be those forming

the corresponding TAG-symbol.

In Algol 68, declarers spec i fy modes. A declarer is e i t h e r a declarator,

which e x p l i c i t l y cons t ruc ts a mode, o r an applied-mode-indication, which

s tands f o r some declarator by way of a mode-declaration cR.4.61. Thus, t o

introduce new bas i c types, i t is necessary t o provide new declarators.

Syntac t ica l ly , t h i s is done by providing a new descendent of t h e notion

VIRACT-MOID-NEST-declarator CR.4.6.laI.

Algol 68 is q u i t e s p e c i f i c about t he equivalencing of modes. For

example, t h e modes spec i f i ed by the mode indications - a and - b i n

mode a = union (fit, real) ; -- -- -
mode b = union (real, int) -- ---

a re equivalent .

S imi la r ly , i t is intended t h a t t h e modes spec i f i ed by t h e declarators

scalar (red, blue, green) and scaZar (red, gyeen, blue) be equivalent . On --
the o ther hand, t he declarators

order (morning* afternoon, evening)

order (afternoon, evening, morning)

and order (morning, noon, night) -
a l l specify d i f ferent modes (which cannot co-exist i n the same reach, s ince

applicat ions of the denotations cannot be uniquely ident i f ied) . In [3], the

metanotion MODE is extended t o include the metanotion BASIC a s an addit ional

a l t e rna t ive CR.1.2.1.AI. BASIC envelops a l l possible enumeration modes a s

i ts descendants. The mode equivalencing syntax then needs extending so tha t

it can compare permuted scalar modes, fo r example, t o detect the equivalence

of scalar (malep female) and scalar (female, male). -

3.2 Subranges

Another common requirement is t o deal with quant i t ies which, though

i n t r i n s i c a l l y of a basic type, w i l l take only a limited range of values - a

subrange. Clearly the parent type must be ordered. The bounds of the submode

must be denotations, optionally preceded by a s ign i f the parent mode is in tegra l .

mode dayofmonth = - sub (1: 31);

mode le t ter = sub (Irafr: IIzff) -- -
The parent mode can be an enumeration mode; fo r example, i n the reach of

mode dayofieek = order (Sunday, Monday, Tuesday^ Wednesday, -
Thursday, Friday, Saturday)

the following is a va l id mode declaration.

mode workingday = sub (Monday: Friciizy) -
A subrange may a l s o be defined a s the union, intersect ion o r difference of

a pa i r of subranges, provided they both have the same parent mode. These oper-

a t ions a r e represented by u, n and \ with t h e i r usual s e t theore t ic meanings.

I t is not possible t o declare a submode of a submode since t h e submode has

no denotations. For example, sub ('fi'f:"n") spec i f i e s a sub-character mode, not -
a sub-let ter mode, because " z f f and 'Inrr a re character denotations.

In Algol H, there is a widening coercion from a submode t o a mode which

is available i n strong posit ions.

3.3 Manipulation

Hoare lists seven operations required fo r the manipulation of values of

enumeration and subrange modes.

Test of equality: The equali ty and inequali ty operators are defined for a l l

enumeration modes, and a l l subrange modes which a r e not submodes of real.

Assignation: The assignation of values t o names is exactly as i n Algol 68.

Case discrimination: Algol H has a choice-clause which is a generalisation

of the choice-clause of Algol 68. The advantages of enumeration modes

become obvious when we compare equivalent Algol 68 and Algol H. The Algol 68

case trumps +1 -
i n 20 x bid, 20 x bid, 30 x bid, 30 x bid -
, 40 + 30 x (bid-1)

esac -
is almost incomprehensible without the comment of Section 3.1, and is e r ro r

prone even with i t . In Algol H w e can s imi lar ly wr i te (because sui t is

ordered)

ease trumps

i n 20 x bid, 20 x bid, 30 x bid, 30 x bid -
, 4 0 + 3 0 x (bid-1)

esac -
but without having t o perform arithmetic on trumps. The vth constituent

un i t s of the in-choice-clause is elaborated when trumps takes the v h value

of the ordered enumeration. I f there a re l e s s uni ts than values i n the

mode, then the out-choice-part is elaborated fo r the ex t ra values.

Alternatively, the const i tuent un i t s can be prefixed with specif ic-

at ions, as i n the following.

case trumps -
i n (clubs, diamonds) : 20 x bid -
, fnotrumps): 4 0 + 3 0 x (bid-1)

out 30 x bid -
esac -

Each value of the mode may be mentioned i n a t most one specif icat ion; i f

the enquiry clause takes a value not mentioned i n any specif icat ion, then

the out-choice-part is chosen. (I f there is no out-part, a skip is

elaborated, which may yie ld an undefined value.) I f the MODE of the enquiry

clause is ordered then sub-of-MODE-declarators are permitted as specif icators;

f o r example, given the declarat ion mode le t ter = sub ("a": "z") we wri te a -- -
skeleton scanner.

case oh := readch -
in (l e t t e r) : serial cZause -
3 (sub - f "0": "9"), I f . "1 : serial clause

3 f "iiii") : serial clause
, f " $ ") : serial clause

J ("f") : serial clause
out serial clause

esac

I f , on the other hand, the MODE of the enquiry clause is not ordered, then

the form of the choice clause which does not use speci f ica t ions is not

permitted, s ince there is no impl ic i t ordering of the values of the

enumeration which can be used t o choose the appropriate un i t from the

in-choice par t .

Ordering re la t ions : The dyadic operators <, <=, >, >= are declared i n the

standard prelude between operands of the same mode and yielding boolean

resul t s . They are defined f o r a su f f i c i en t s e t of ordered modes, each

member of which has order.

Counting: The monadic operators s w c and p e d , invoking the successor and

predecessor functions, a re defined f o r a l l simple, ordered modes. These

functions map each value of a mode onto the next higher o r lower value (i f

there is one, otherwise t h e i r action is undefined).

Also,for each ordered mode fo r which there is a mode declaration i n a

given reach, i f the mode indicat ion defined by t h a t declarat ion is some

bold-TAG-symbol, then the i d e n t i f i e r s max-cum-TAG-symbol and min-cum-TAG-symbol

are declared and ascribed the maximum and minimum values of the mode. The

example should make t h i s c lear .

mode rmk = order (pr{vate> corporaZ, sergeant, -- -
lieutenant, c q t a i n , mq'or2 co lmel , general);

c The effect on the nest i s as i f , in place of -
this comment, there stood the declaration

rank maxrank = general, ntinrmk = private -

The loop clause: I t is frequently required t o elaborate the same s e r i a l

clause f o r a l l possible values of a given mode. This is indicated by the

use of a loop-clause.

loop wofbeek &y

do -
W y t a s k (day)

od -
The loop-symbol is followed by a formal-declarer which gives the mode of the

i d e n t i f i e r whose value is varied. I f the mode is ordered and has cardinal i ty

n, say, then the serial-clause between and & is elaborated n times i n

sequence as the i d e n t i f i e r takes, i n order, the values of the mode from

minmode t o maxmode. However, i f the mode is not ordered, the e f fec t is as

i f n copies of the s e r i a l clause were elaborated co l l a t e ra l ly . The loop

clause is available f o r a l l modes derived from SIMPLE, not jus t f o r in teg ra l

as i n Algol 68. However, the specia l for fiom by to construction of Algol 68

is retained fo r use by integers, s ince conceptually tha t mode has i n f i n i t e

cardinal i ty .

Transfer functions: I t is sometimes required t o perform operations f o r a

submode which were defined fo r the parent mode. This is simply accomplished

b y converting the submode value t o the corresponding value of the la rger type,

then performing the operat ion, and f ina l ly converting back again i f necessary.

This requires t ransfer functions.

The f i r s t conversion is a widening, and can be accomplished by the

coercion described i n Section 3.2. I f the context is not s trong enough (as

w i l l be the case i f the coercee is the operand of a formula) the coercion

can be forced by the use of a cas t .

mode - smallint = - sub (-9:9);

smallint si , si , sk; - int k

I t is, of course, possible t o declare a version of + between small i n t

operands, but t h i s must be done exp l i c i t ly by the programmer.

The second conversion represents a narrowing, and can be accomplished

only with the aid of a standard operator.

This operator is automatically declared i n any reach i n which a mode

declarat ion is given f o r a submode. The l e t t e r s of the TAG used fo r the

operator are given by concatenating the l e t t e r s of the bold-TAG-symbol

defined i n the mode declarat ion with letter-v-letter-a-letter-1.

I f t h i s operator is applied t o an operand whose value is outside the

range encompassed by the submode, then the r e s u l t is undefined. I t is

therefore useful t o be able t o check i f a given value is i n a subrange.

This can be done by a conformity re la t ion , which is based on the conformity

r e l a t ion fo r unions which was par t of the language defined i n 1968 [61.

The symbols represented by ::= and ctab denote a conform-to-and-becomes

re la t ion , whereby the object on the r ight hand s ide is assigned t o the

variable on the l e f t (and t r u e delivered) i f i t is i n range, otherwise no

assignation takes place (and f a l s e is delivered). The symbols represented

by :: and invoke the same t e s t but without the assignation. The use of

these r e l a t ions is i l l u s t r a t e d i n the following examples.

char c; l e t t e r a; d ig i t b; -
read (c);

Q a - ctab c -- then c an assignatwn t o a has just occurred - c

serial clause
(i)

e l i f b - ctab c -- then c an assignation t o b has just occurred - c

serial clause

else c neither a nor b have changed c -- -
serial clause

E
le t ter c t c then c c i s i n the subrange le t ter c -- -- --

serial clause

In the second example, the conformity r e l a t ion has the property tha t i ts

l e f t hand s ide is not elaborated, i . e . no space is generated on the heap.

The generator l e t ter is simply there fo r mode matching. Note tha t & can

be used even when no mode declarat ion has appeared fo r a submode, and

consequently it is not ident i f ied by a bold-TAG-symbol, so no submode-cum-val

operator is defined.

Very s i m i l a r r e s u l t s could instead be achieved by standard operators,

a lso ident i f ied by & and ctab. Such operators would be defined between a

su f f i c i en t s e t of modes as r igh t operand, and a su f f i c i en t set of submodes

of each mode a s l e f t operand. Such operators would have the disadvantage

tha t both operands would always be evaluated; i n the second example above,

space fo r a l e t t e r value would be generated on the heap, and immediately

become garbage.

54. The Cartesian Product

The Cartesian product is one of the simplest da ta s t ruc tures . I t

corresponds t o the record s t ruc tures of PL/I [9] and Pascal o r the Algol 68

structured modes. In f a c t , with one exception, Algol 68 s t ruc tures provide

a l l t he f a c i l i t i e s suggested by Hoare [I] , although the notation is di f ferent .

In pa r t i cu la r , values of a s tructured mode are constructed, i n Algol 68, from

a co l l a t e ra l ; where the required mode is not obvious from the context, a cas t

of the co l l a t e ra l is used. This corresponds t o Hoare's suggestion tha t i t

would be convenient t o leave the t ransfer function implici t i n cases where no

ambiguity would a r i se .

The exception is the with construction. In inspecting o r processing a

s tructured value, i t is often required t o make many references t o i ts com-

ponents within a s ingle clause. Hoare favours a special construction which

could be represented as

with structure closed clause -
Within the closed clause the f i e l d s of the s t ruc tu re may be referred t o by

t h e i r f i e l d se lec tors alone, instead of by the normal se lec to r of primary

construction. I t i s debatable whether the advantages of t h i s construction,

v iz . , the c l a r i f i ca t ion and abbreviation of a sect ion of program, a re

great enough t o outweigh the disadvantage of introducing another construct

i n t o the language. Algol 68 is often ca l led a complex language, and

ascript ion provides most of the power of the with clause. For these reasons,

i t is proposed tha t Algol H does not include t h i s construction.

55. The Discriminated Union

Although s imi lar t o Algol 68 union, Hoare's Discriminated Unions d i f f e r

i n cer ta in respects. Each type i n the union has an i d e n t i f i e r associated

with i t , and every value of one of the unioned types is marked with i ts

i d e n t i f i e r , t o indicate i ts derivation. Thus it is possible t o construct

a union by repeating the same type several times.

In Algol 68, i n contrast , the declarator ,

union (date, date) ---
is ill-formed. The intention tha t Algol H should be a superlanguage of

Algol 68 d ic ta t e s tha t the Algol 68 kind of union be included i n Algol H.

Since the advantages of discriminated unions a re debatable, and it

would i n any case be confusing for one language t o provide two very similar

but d i s t i n c t s t ruc tures , discriminated unions are not included i n Algol H.

56. The Array

The array is a very famil iar data s t ruc ture , and may be regarded as a

mapping from a domain of one type t o a range of a possibly d i f ferent type

(the type of the array elements).

In most programming languages, the most notable exception being Pascal,

the domain type is res t r i c t ed t o be in teg ra l . This is t r u e of Algol 68.

Algol H allows more general arrays; the mode of the domain can be any

enumeration mode, SIZETY integral, character o r a submode of any permitted

mode.

Some examples should make t h i s c learer .

[su i t I i n t trickvalue; --
[day o f ueekl - boot holiday;

Ce (1 : 80) I - char punchcard

Elements of these arrays can be selected i n the usual way.

day of ueek today := sunday;

3 - not holiday Cto&y I - then uork - else sleep fi
The f a c i l i t y of using a subrange of integers a s the domain mode does not

replace the ordinary Algol 68 row with integer indices, because the l i m i t s

of a submode can only be plus o r minus a denotation, and it is therefore not

possible t o read i n submode bounds a t run-time.

57. The Powerset

The powerset of a s e t is the s e t of a l l subsets of t h a t s e t . The

powerset as a data type takes values which a re s e t s of values selected from

some other da ta type known as the base. Ppimarycolour has been declared as

an enumeration mode with cardinal i ty 3; the powerset of primarycolour is a
3

mode which has a cardinal i ty of 2 = 8. I t s values a re a s follows.

{ 1 {redJ green, blue 1

{red] {red, green}
{green] bed , blue} --
{blue] {green, blue] -

Declarators f o r powerset modes take the form i l l u s t r a t e d by

setof primaryco lour

s o we may construct the mode declaration

mode colour = setof primarycolour --
and then declare some i d e n t i f i e r s

colour ye llm = {MJ green]

cyan = {blue, peenl ,

blue = {blue],

black = { 1

The object between and including the braces is a powerset clause. The

values within i t must a l l be of the same mode, but t h e i r order is immaterial

and a repeated value is ignored, so that {gref??'L, red, red} represents the same

value as {red, g ~ e m j which would not be the case fo r a co l l a t e ra l clause.

The empty powerset clause { 1 can only stand i n a strong position. An

al ternat ive representation of the braces a re the symbols and =.
7.1 Manipulation

For each powerset f o r which a mode declarat ion is given, a constant is

declared corresponding t o the universal s e t , where t h i s has f i n i t e cardinal i ty.

In the example, the e f f e c t is as i f the declarat ion

colour aZZcolou~ = {red, blue, green}

were elaborated a f t e r the mode declaration.

Where the cardinal i ty of the base type is small the powerset can be

e f f i c i e n t l y represented by a l locat ing one b i t i n s t o r e fo r each value of the

base type. Thus, f o r example, values of type colour can be represented i n

three b i t s . The basic operations on powersets are usually available as

s ing le machine ins t ruc t ions , which makes t h i s representation doubly a t t r ac t ive .

However, when it is known t h a t the cardinal i ty of the base type is large , o r

perhaps conceptually i n f i n i t e , the b i t pa t tern representation loses its

a t t r ac t ion , par t icular ly when most values of the powerset w i l l consist of

only a small number of elements of the base. In these cases i t w i l l be

necessary t o represent the powerset as some advanced data s t ruc tu re , which

an automatic t r ans la to r cannot be expected t o construct.

However, the u t i l i t y and eff iciency of the powerset of a small base type

is such tha t it ought t o be included i n Algol H; powersets are therefore

permitted providing the cardinal i ty of the base type does not exceed some

implementation defined maximum possessed by the standard prelude integer

setwidth.

Various operations can be defined between s e t s of a given powerset mode

and elements of i ts base mode. There is one operator defined between a s e t

s and an element x.

Membership : x i s i n s del ivers true i f the element

x is a member of s e t s

The following operators, with t h e i r usual mathematical meaning, a re defined

between two se t s :

equal it y ,
union,
in tersec t ion ,
r e l a t i v e complement,
inclusion.

Algol H also allows assigning versions of union, in tersec t ion and re la t ive

complement.

Union and becomes : s-2 u:= s2 equivalent t o sl := sl u s 2

Intersect ion and becomes : sl n:= s2 equivalent t o sl := sl n s2

Difference and becomes : sl \:= s2 equivalent t o sl := sl \ s2

I t is a lso useful t o be able t o se lec t an element from a set, and simultaneously

remove it. This is achieved by the operator outo f : X outof S removes an element

from S and assigns i ts value t o X.

58. Implementing Algol H

A major par t of the work of any parser fo r Algol 68 is t o perform mode-

checking. Because, i n general, a given mode can be "spelled" i n a large

(sometimes i n f i n i t e) number of ways, the syntax of Algol 68 includes complex

devices which check i f modes a re equivalent and i f a value of a given mode is

"acceptable" t o another mode KR.2.1.3.6, 2.1.4.11. The l a t t e r t e s t depends

on the syntac t ic posi t ion (SORT) of the construction, a s the list of applicable

coercions vary with context. A l l t h i s must be modelled within a parser , which

is no small task.

However, t h a t t h i s task can be successfully completed is evidenced by the

existence of several usable and e f f i c i e n t Algol 68 compilers. Given access t o

such a compiler and a descript ion of i ts mode representation mechanism, one

f e e l s tha t it would not be too d i f f i c u l t t o extend it t o encompass new basic

modes.

This fee l ing is reinforced by the comments of Wirth on the programming

languages Pascal and Modula. Pascal has sca la r types which correspond t o the

ordered enumeration modes of Algol H, and subrange types which provide some

of the f a c i l i t i e s of submodes. Arrays with general domains and powersets are

a lso included. Nevertheless, Wirth s t a t e s tha t one of h i s principal aims in

developing Pascal was t o produce a language which could be implemented re l iably

and e f f i c i en t ly , both a t compiler and execution time. In El01 he writes "a

most important consideration i n the design of Modula was i ts e f f i c i en t

implementability". Modula is a language based on Pascal but with an improved

syntax and the a b i l i t y t o associate access procedures with data i n the manner

of a Simula [Ill c lass ; i t includes enumerations, which may form the indices

of arrays, and is intended for use i n real-time applications on mini-computers.

Thus there is jus t i f i ca t ion fo r being confident tha t most of the new

constructions of Algol H could be e f f i c i e n t l y implemented by an extensible

Algol 68 compiler. To the best of our knowledge no such compiler exis ts ; we

have i n mind an extension device akin t o the Syntax Macros of Cheatham [I21

and Leavenworth [13]. In [31, a t r ans la to r from Algol H t o Algol 68-R [I41

is described where each Algol H construct is t rans la ted i n t o Algol 68-R i n

such a way tha t a l l mode checking is done by the Algol 68-R compiler.

Acknowledgement

The authors wish t o thank Professor R.J .W. Housden f o r helpful discussions.

The majority of t h i s work was done by A.P. Black under the supervision of D r .

Rayward-Smith i n p a r t i a l fu l f i l lment of the requirements of the B.Sc. degree

a t the University of East Anglia, Norwich.

References

C .A. R. Hoare , "Notes on Data Structuring" i n "Structured Programming"
by O.J. Dahl, E.W. Di jks t ra and C.A.R. Hoare, Academic Press (1972).

A. van Wijngaarden, e t a l . , "Revised Report on the Algorithmic Language
Algol 6 8 " Acta Inforrnatica, 5 (1975).

A.P. Black, "Algol H: Some Extensions t o the Data Handling F a c i l i t i e s
of Algol 6811, Project Report, School of Computing Studies, University
of East Anglia, Norwich (1977).

N. Wirth, "The Programming Language Pascal", Acta Inforrnatica, 1 (1971).

C.H. Lindsey and S.G. van der Meulen, "Informal Introduction t o Algol 68",
revised edi t ion , North Holland (1977).

A. van Wijngaarden, e t a l . , "Report on the Algorithmic Language Algol 68",
Numerische Mathematik, 14 (1969).

S.G. van der Meulen, "Algol 68 Might-Have-Beens", Proceedings of the
Strathclyde Algol 68 Conference, Sigplan Notices, g : 6 (1977).

K. Jensen and N. Wirth, "PASCAL: U s e r Manual and'ReportW, Lecture Notes
i n Computer Science, 18, Springer Verlag (1975).

C.P. Lecht, "The Programmers1 PL/lW, McGraw H i l l (1968).

N. Wirth, "Modula: A language f o r Modular Multiprogramming", Software-
Pract ice and Experience, 7:l (1977).

G.M. Bi r twis t le , O . J . Dahl, B. Myhrhang, K. Nygaard, "Simula Begin"
Auerback (1973).

T.E. Cheatham Jnr. , 'The Introduction of Defini t ional F a c i l i t i e s i n t o
Higher Level Programming Languages1', Proc AFIPS FJCC, 2 (1966).

B.M. Leavenworth, "Syntax Macros and Extended Translation", CACM, 2: 11
(1966).

P.M. Woodward, S.G. Bond, "Algol 68-R Users Guide", H.M.S.O. (1974).

