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ABSTRACT

It has recently become apparent that only by striving for the
utmost simplicity in programming languages can one hope to
produce programs which express their semantics clearly. Thus
it is essential to examine any new language feature to see if
its contribution to ease of expression outweighs its cost in
terms of language complexity.

This thesis examines exception handling mechanisms in
this light. Such mechanisms are included in the programming
languages PL/I, CLU and Ada, and extensive proposals have been
made by Levin. All the mechanisms are "high-level” in the
sense that they can be simulated by conventional language
features. Their designers offer only the vaguest indication
of their range of applicability, and when the motivating
examples are re-written without exception handling there is
often an improvement in clarity. This is partly because of the
reduced weight of notation, and partly because the exception
handling mechanisms obscure what is really happening.

The same techniques which produce these improvements in
programs can be applied to axiomatic definitions of data types.
This finding contradicts the claim of some other workers in
data abstraction that exceptions are essential for the
description of data types like stack.

The role of exception handling mechanisms in the
construction of fault-tolerant computer systems is also
examined. It has been suggested that exception handling and
fault-tolerance are really different facets of the same
problem. However, careful examination of these facilities
leads to the conclusion that exception handling is only
relevant to anticipated events, whereas fault-tolerance
addresses the problem of residual design errors which are of
their nature totally unexpected. The very real problems of
survival after a component violates its specification is not
addressed by exception handling.
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INTRODUCTION

Much recent research in the areas of programming language design and
programming methodology has been devoted to proposing and defining new
language features, and indeed whole new languages. This thesis
represents a departure from that trend. It opposes a language feature,

and one which has recently become fashionable: exception handling.

0.1 The Quest for Simplicity
Until the early 1970’'s language design was considered to be a process
of innovation, of creating new and varied features which would make
programming easy for a growing user population. The task has now
changed. We are coming to realize that "powerful” programming languages
can compound problems rather than contribute to their solution. The
availability of a large number of features can be a burden instead of
a convenience.

It has been convincingly argued that building large programs is
intrinsically difficult because of "our inability to do much” [21]:
our ability to master complexity is strictly limited. We can hope to
solve large and complicated programming problems only by dividing them
into manageable parts and by keeping each part as siﬁple as possible.
For this effort to be successful our most basic tool, the programming
language itself, must also be kept as simple as possible. An
unnecessarily complex language bristling with ornamental "features” is
an added burden which cannot be tolerated. There is a pressing need for
consolidation, not innovation, in programming languages. Simplicity
should be pursued not as one goal amongst 118 [95] but as the principal

objective of language design.




The need for simplicity has been eloquently argued in [45],
[79], [32] and [39]. It is not necessary to repeat these arguments
here. Instead I wish to consider their impact on the design of languages

and language features.

0.2 What is a Simple Programming Language?

A simple language is not obtained just by minimizing the number of
features it contains. It is also necessary to ensure that the included
features reflect natural concepts in the mind of the progremmer, and to
minimize the interdependence of the features. A universal Turing machine
provides a lower bound on the number of features necessary to perform
computation. Howerver, it is clear that primitives which reflect our
thought processes are needed if programs are to be comprehensible.

In designing Algol 68 an attempt was made to keep the number of
concepts included in the language small. This was accomplished by
generalizing each feature as much as possible, subsuming other features
in the process. The trouble with this approach is that the generalized
features are foreign to the way most programmers think about problems.

One example will serve to illustrate this point. The concepts of
"variable” and "constant” were well understood by programmers in Algol 60
and its successors. Pointers were not so well understood, but they were
considered’ necessary to provide an adequate data structuring capability.
However, instead of including a restricted form of pointer specialized
for this purpose, "references” were invented and generalized until they

subsumed the notions of variable and constant. Instead of




const i:complex = c;

var v:complex;

var pc:pointer to complex;

Algol 68 uses the declarative forms

comglex i= 03

" ref complex v = loc complex;

ref ref complex pc = loc ref complex;

Three* concepts have been replaced by one: unfortunately this is not a
simplification. References are difficult to reason about; making the
progranmer use them when ordinary variables are adequate complicates his
task._ It is not even possible to produce a subset of the language (say,
for teaching purposes) which does not include references.

The designers of Algol 68 were aware of the dangers of complexity.
In order to make the interaction of the various features as tractable as
possible, one of their design goals was "orthogonality”. Features were
intended to be independent, and to combine in regular ways. The mode
concept interacts with control structures very regularly: the ordinary

if ... then ... else is a "void choice clause using boolean”; an integer

valued conditional expression is an "integer choice clause using
boglean”, and so on. Orthogonality is certainly a desirable property for
the composition of semantics in a language, and Algol 68 would be even

more difficult to understand if it were not so regular. However,

* Tn fact, at least one more important concept, recursive data structures,
was avoided too.




regularity is not a substitute for simplicity: both are essential
properties of a well-designed language.

The need for simplicity means that any new feature must be
examined very critically to determine whether or not it should be
included in a language. For example, a choice construct is desirable
because it permits enumeration of cases - but guarded commands [22] are

preferable to if then else .and unlabelled case statements because they

make explicit the condition to which each statement sequence corresponds.
Procedures and abstract data types are amongst the most powerful tools
available for dealing with large problems - precisely because

abstraction is one of our most significant mental aids [21].

0.3  Exceptions and Exception Handling

The problem of programs that fail to perform their allotted tasks has
always existed. Over the last five or six years a belief has arisen
that this problem can be eliminated, or at least significantly eased, by
the introduction of language constructs for "exception haﬁdling". Such
features have been proposed by Goodenough and Levin, and are present in
the progranming languages PL/I, Bliss, CLU, Mesa and Ada.

I do not believe that exception handling mechanisms are necessary.
Primarily this is because there is no single mental process for them
to capture. Rather, failures occur because of three problems:

(i) deciding exactly what a progran should dos

(i1) writing code to do it correctlys

(iii) relying on an underlying machine which may fail.
There are techniques for dealing with>each of these difficulties.

Formal specifications and structured programming help us to cope with (i)




and (ii) respectively. By recursive application to the underlying machine

they can also reduce (iii), although hardware and software
fault-tolerance techniques may be necessary in addition.

I shall argue that attempting to bring these diverse concerns
under the common heading of "exception handling technigues” has resulted
in the all-embracing definition of exceptions as those conditions
brought to the attention of a program’s invoker [30], and the invention
of exception handling mechanisms powerful enough to subsume the role
not only of subroutines but of coroutines and jumps tob. It seems likely
that such mechanisms will reduce reliability rather than increase it.
Not only do they complicate the programming language, they do so in the
most critical places. Exception handling mechanisms have been engineered
so that their use is economic only when they will be rarely exercised -
the very circumstance i? which an error of logic is likely to remain
undetected. Their use hés been urged when there are many cases needing
different treatment, but instead of making the handling of each case
explicit at the place where it may occur, exception handling mechanisms aim
to hide from scrutiny both the existence of the difference cases and the

program’'s response.

This thesis aims to show that unusual and undesired events, if
anticipated, can be adeguately dealt with in exactly the same way as
common and desirable events: by the application of the ordinary constructs
of struc%ured programming. 0On the other hand, the occurrence of an
unanticipated event cannot be dealt with at all. That is why one of the’

programmer’'s major responsibilities is to anticipate all possible events:




a language feature which pretends to take over that responsibility is

both misguided and dangerous.

On practical grounds, too, exception handling seems to be poorly
motivated. Many strange and wonderful language features have been
proposed over the last twenty-five years. It seems likely that for even
the most barogue there is one example which shows them to be useful:
the very example which was responsible for their invention. Nevertheless,
I have failed to find an example of a programming problem amenable to
simple and natural solution by an exception handling mechanism which cannot be
so solved without one.

Apart from the lack of real need, there are other grounds for
objecting to exception handling mechanisms. Most of the mechanisms
proposed to date are badly designed. They impair readability and program
proof, introduce problems such as clearing-up, violate modularity
assunptions, and in some formulations even allow one process to interfere
with another.

Implementation is another problem. The increased cost of a compiler
which implements an exception handling mechanism may be small, and may not
be significant to the employers of the compiler writers. This is
probably true of the compilers for PL/I, the only widely available
language to incorporate exception handling. Unfortunately, the indirect
costs are much larger, and must be born by the users of such a compiler.
It is likely to be larger, slower, more prone to bugs, and less
explicit with its error messages; And some of these costs are inflicted
on the user every time a program is compiled, even if the exception

mechanism isnever used.




My rejection of exception handling mechanisms does not mean that I
am entirely satisfied with existing programming languages. Many strongly
typed languages do not provide a convénient way for a procedure to
return results of different types, and exception handling mechanisms have
been used as a way of simulating such results. I will use a type
constructor called oneof for producing discriminated unions of types; this en-
ables "exceptiqnal" results to be communicated in the same way as
ordinary ones. Human fallibility also forces me to recognize that the
totally unexpected will sometimes. occur, and that some way must be found
of minimizing the consequences of such a catastrophe. There have indeed
been proposals for doing so; they have in common the division of the
system into compartments which attempt to contain the catastrophe and its
consequences. Each nested recovery compartment represents a frame of
reference in which progressively more disastrous events are anticipated,
but progressively less comprehensive recovery is attempted. Catastrophes

are survived rather than handled.

0.4 Structure of this Thesis
Chapter 1 attempts to define the term "exception”. The definitions used
by the designers of various exception handling mechanisms are compared,
but none is found to be satisfactory.

Chapter 2 examines some early methods of dealing with exceptions.
The treatment is chronological; it includes methods applicable to Algol 60
and Fortran, the primitive exception handling of PL/I, and exceptions in
Algol 68.

Chapter 3 considers the more recent proposals for exception handling

mechanisms. They generally provide more structure than do PL/I ON




conditions, but there is great variation between different languages.
CLU, Mesa and Ada are studied in detail, as are the proposals of Levin.

Chapter 4 is entitled "Exception Handling in Action”. It contains
examples which have been used by the designers of various exception
mechanisms in an attempt to justify them. I present the original
form of the example and a revised version which achieves a similar effect
without special purpose language features.

Chapter 5 examines exceptions in specifications of data types. The
axiomatic method of type definition is briefly introduced, and used to
rigorously define the oneof type constructor used in Chapter 4. 'Stack’
and 'SymbolTable’ are defined using oneof, illustrating that exceptions
and "abstract errors” [27] unnecessarily complicate the problem of data
type definition.

Chapter 6 looks at the language features assumed by my examples in
Chapter 4. Specifically, various languages are examined to see if the
oneof constructor can be conveniently provided. The treatment of
procedures as manipulable values is motivated, and the complexity of thesg
features is compared to that of exception handling.

Chapter 7 investigates techniques for dealing with catastrophes,

i.e. the totally unexpected. The key idea is found to be contaimment, and
various containment strategies are surveyed. Operating systems and

the Newcastle Recovery Block scheme are considered, and the way in which
they differ from exception handling mechanisms is bfought out. Because the
possibility of hardware failure is ever-present, catastrophe handling

seems to be an essential part of a reliable system. Exception handling has

‘no such fundamental role.




Chapter 8 summarizes my main arguments and draws the conclusion

that exception handling mechanisms are not a desirable feature of a

modern programming language.




Chapter 1 '

WHAT ARE EXCEPTIONS?

This chapter will attempt to answer the philosophical guestion "what
is an exception” and to examine the objectives of recent proposals for
exception handling mechanisms. The details of individual mechanisms are
deferred to later chapters: here I attempt to isolate the perceived

need which they were designed to satisfy.

The starting point for most of the recent developmehts in exception
handling is: the 1975 papers of Goodenough [29] [30]. He defines
exceptions as those conditions which an operation brings to the attention
of its invoker. He claims that it is characteristic of an exception
that its significance is known only outside the operation which detects it.
Exceptions are not necessarily rarely activated: a procedure may generate
exceptions many times in the course of a single call. The first part of
Goodenough's definition is of course guite universal: it includes any
results or observable effects of the operation. His proposals for
exception handling are equally general, and have been criticised on those
grouhds (see, for example, [99],[68] and [16]). As far as I‘kndw thére
has never been a language which planned to incorporate a mechanism of such
power, and it would be unfair of me to launch the case against exception
handling by repeating the criticisms of others. It is more appropriate to

search for a less general definition.

1.1  Cristian's view of Exceptions
In [16] Cristian attempts to set out rigorous definitions of the concepts

involved in exception handling. He states that an exception occurs if the

standard precondition of an operation is false when that operation is invoked.

10
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The "standard precondition” of an opefation is defined as the weakest
precondition guaranteeing the termination of the opepation in a state
which satisfies its postcondition. A later paper concerned with the
automatic detection of exceptions [8] echoes this definition.

An operation may be invoked with its preconditions false for two
reasons. First, it is possible that the designer or implementor of the
operation documented it incorrectly. It can then happen that although
the invoker meets the published precondition, the operation cannot possibly
establish its postcondition because the real precondition is stronger than
the published one.

The second possibility is that there is a mistake in the code which
invokes the operation. It is the duty of the programmer who uses an
operation to ensure that it is invoked only fran those states which do
satisfy that operation’s precondition. If the progranmer is negligent in
that duty a programing error occurs.

It is a truism that progranming errors should be corrected, not
"handled”. If the programmer is aware of the mistake then of course he
should correct it. If, as too often happens, he is unaware of the error
then he cannot correct it, but neither can he handle its effect. Before
he can even consider writing an exception handler he must be aware that the
exception can occur, which implies that the generation of an exception
signal must be part of the specified behaviour of the operation. But, by
definition, no exception occurs when the operation is used according to

its specification!
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1.2 Exceptions in CLU

The language CLU (see Section 3.2) incorporates an exception handling
mechanism. The reference manual [61] states that an exception occurs when
a routine cannot complete the task it is designed to perform.
Superficially this definition is very like that of Cristian; provided
that the precondition of a routine is satisfied it should always be able
to complete its task. However, the examples in the manual and the informal
nature of the CLU definition make a more general interpretation possible.
It is the duty of the designer of an operation to ensure that it is
not impractical or impossible. One might imagine a client going to a
software designer and asking for the provision of a ’table’ with two
operations: 'table := Insert(name, data, table)’ and
'data := LookUp(name, table)’. As a responsible professional the software
engineer ought to tell the client that the ’'LockUp’ operation cannot be
implemented in its full generality: 'data’ can only be returned if the

'name’ has been inserted into the 'table’. 'LookUp’' must be guarded by a
precondition to this effect. The client may therefore decide that he
needs an operation 'bool := IsIn(name, table)’ sothat this precondition
can be checked. The engineer should then advise the client that in the
interests of efficiency he should prefer an operation 'LookUpIfPossible’

which returns either the ’'data’ or an indication that the name was not

in the table.
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Now let us examine again the statement from [671]. "An exception
occurs when a routine cannot complete the task it is designed to
perform.” The task of 'LookUpIfPossible’ is always possible: a
professional was employed to ensure this is so. However, it is not
what the client wanted; he wanted 'LookUp’. From AZs point of view
an exception cccurs when 'name’ is not in 'table'. From the subjective
viewpoint of the client we can indeed find situations where a routine
cannot complete its task. From the objective viewpoint of the software
engineer there is no such situation, or at least he has tried to ensure
that there is none.

There are many examples of such "subjective" exceptions: taking the
top of an empty stack, reading from an empty file and dividing by zero
inmediately come tomind. Each such operation can be realized in two ways.
The domain of the operation can include "holes”, i.e. there can be values
for which the operation is not defined. This is the way division is
usually treated: it is not defined if the divisor is zero. Alternatively,
the range can contain a "bump”, an extra value of a distinct type. It is
possible to define a (different) division operation on all pairs of
integers whose range is the union of the rational numbers and the
distinguished value 'ZERO DIVIDE' Figure 1.1 illustrates the examples.

It is worth emphasizing that there are no errors involved. The versions
with the holes in the domain are perfectly acceptable from a theoretical
point of view; they are also eminently practical providing that the
domain can be checked cheaply. This is so with division, for example.
They become impractical (but not wrong) when the domain is expensive to

check, as with ’'LookUp’.
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This, then, is one definition of exception: the "inconvenient”
result of an operation. It should be remembered that it is totally

subjective; it may nevertheless be quite useful.

1.3  Exceptions as Apology Messages

Another possible interpretation of exception was hinted at above. There
may be situations where a routine camnot complete its task because there
are insufficient resources available. These situations will arise despite
the best efforts of the software engineer: they are the inevitable
consequences of attempting to implement an infinte abstraction on a finite
machine.

The infinite set of integers, easy to define and familiar in use,
cannot be represented on a computer which can assume only a finite number
of states. The same applieé to many convenient abstractions: unbounded
tables, queues and stacks cannot be implemented on finite computers.

What should the conscientious software engineer do when his client
asks for an implementation of an unbounded table? Unlike the LookUp of a
not-yet-inserted item, there is nothing wrong with the abstraction.
Nevertheless, he must tell his client that this clean simple and desirable
abstraction is impossible to implement, and offer one of two unattractive
alternatives. The first is a different abstraction, such as a bounded
stack or a finite set of integers, which is not only not what the client
wants but is. also clumsier and more complicated to use. The secaond
alternative is a partial implementation of the desired abstraction, an
implementation which will work often enough to satisfy the client but
which will sometimes fail and emit an appropriate apology message. The

generation of an exception can be viewed as just such an apology message.
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- The earliest reference I have been able to trace which considers
exceptions in this way is [74]. This paper commences "During the
execution of a program a number of exceptional conditions can arise, not
from program defined action, but .as a result of exceeding some computer
limitation”. This is curious becauée the paper goes on to consider
exception handling in PL/I; of the eighteen exception conditions listed
only one arises from a computer limitation.

Here, then, is another definition: an exception is an admission
by the implementation of an abstraction that it cannot comply with its
specification. This definition is objective provided that 5ne has a
specification describing the required behavibur.‘ A particular
implementation may satisfy a restricted set of axioms but fail tonsat{sfy
a more demanding specifioafion.

An implementation of any programming language incorporating infinite
abstractions may benefit from a mechanism for saying what to do when the
implementation is insufficient. An exception handling mechanism designed
for and restricted to this purpose might be a useful adjunct to an infinite
language. Unfortunately, exéept for the short paragraph in [74]cited above,
exception handling méchanisms have been neither designed nor advertised
on the basis of this usage. Even Goodenough's elaborate scenarios [30]
do not include the use of exceptions for signalling implementation
insufficiencies. More recently lLevin and others at Xerox Palo Alto
Research Center have classified the use of the Mesa signalling mechanism

and have noted that one use is to report failure of an implementation.*

* Private communication.
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Nevertheless, it is in general fair to say that no mechanism has yet been
designed to deal specifically with the problem of implementing infinite
abstractions on finite machines. The exception handling mechanisms that
will be examined in this thesis do not address the problem. Because they
are part of the prograrmming language and may therefore invoke unbounded
abstractions, they are themselves unimplementable in general. For example,
an exception handling mechanism would not be useful for dealing with
overflow of the run-time stack used for procedure calls. Where could one
put the linkage to the exception handler and the routines it calls?
Moreover, while exception handling mechanisms are designed for dealing with
results that can only be interpreted outside of the operation that
detects them (see Goodenough's remark quoted above), it is characteristic
of an implementation insufficiency that its details are meaningful

only Zmnside the implementation of the abstraction. Effective recovery
from an implementation insufficiency is possible only if information about
the implementation is available. VYet it is the very purpose of the
abstraction to hide that information.

To illustrate this point, consider the abstraction "integer”. Given
the external information that the implementation of integers broke when
adding 32 760 to 10, there is nothing that the user can do. Only if he
is aware that the integers are represented as a row of sixteen binary
digits according to the two's complement convention will he be able to
determine if useful computation can be continued with -32 766. A
knowledge of the external specification (Peanc's axioms) alone is
insufficient.

The problem is essentially the same for programmer defined

abstractions. It is obviously incumbent onan implementation to apologise
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when it cannot append a value to a list because it has run out of store.
However, it is not clear that the user module can do anything useful when
the apology is received. The lists module has failed to comply with its
specification, which is the only basis on which the user module can act.
Perhaps then a mechanism for dealing with implementation insufficiencies
should allow for the generation of exceptions (i.e. apology messages) but
should not provide, within the programming language, any mechanism ?or
handling these exceptions and continuing execution. This is consistent
with conditional correctness. Providing that the program terminates
normally its results will be in accord with its specifibations; however,
should the program fail to terminate normally, either by looping
indefinitely or by generating an apology message, then nothing may be
assumed about any result it may produce.

This view of a program as an object which possibly may fail in an
unpredictable way is one that has traditionally been adopted by operating
systems. Various technigues for continuing meaningful compbtation have
been developed; this topic is given further consideration in Chapter 7.
As was indicated in the introduction, these techniques are essentially
different fran those of programmed exception handling, which deal with
anticipated failures.

E.C. Hehner* has suggested another approach to the problem of implementation
inéuffibiency. Given a particular program and a particular implementation, it is
possible to supply implementation dependent annotations which instruct the

implementation how to proceed when it cannot comply with the axioms.

* Private communication.
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For example, if a program manipulates rational numbers which are
implemented with binary floating point binary, the annotations could
tell the implementation to use an approximation when it cannot représent
the result of dividing one by three. This particular example shows that
abandoning the computation is not always the appropriate response to an
implementation insufficiency. Perhaps implementation dependent
instructions on how to continue cannot be avoided.

Nevertheless, the notion of extensive annotations is intellectually
unappealing. The problem of dealing with approximate arithmetic is
sufficiently important for numerical analysts to have developed technigues
for minimizing and estimating rounding errors. It is quite reasonable for
a programming language to provide as an abstraction numbers with a
finite accuracy and bounded range; the numerical analyst can then study
the propagation of rounding errors within the programming language. This
argument can be generalized to the claim that whenever one would require
continuation after the detection of an implementation insufficiency one
also needs a theory in which to reason about the validity of the results.
The best way of obtaining this is to alter the specification so that the
"implementation insufficiency” is now part of the expected behaviour. In
other words, the unimplementable abstraction must be given up in favour of

a more modest implementable one, even if it is less convenient.

1.4 Levin's View of Exceptions

Levin's thesis [59] deals solely with the subject of exception handling,

and proposes a new and powerful mechanism for incorporation into programming
langusges. Nevertheless, he is forced to admit that he failed to find a

definition of "exception”. He rejects the common guideline that an




exception is a rarely occurring event, justifying this stand with the

example of looking up a name in the compiler's symbol table. There are
two possible results: name absent and name present. Which of these is
more frequent. depends on context. Why should one result be considered as
an exception when the other is not? Levin’s solution to this dilemma

is to treat both results as exceptions.

Levin also rejects the identification of exceptions with errors,
although he includes errors as a proper subset of exceptions. However,
he does not define the term error:. He is also willing to classify
both input/output interrupts and other interprocess communication as
exceptions should this be convenient.

How then does Levin distinguish exception handling from other
techniques of program construction? He offers the guideline that exception
handling is to be preferred when a programmer wishes tc "play down”
the processing of a particular case in order that another case may be
emphasised. Of course, in the end this comes down to a matter of taste.
Levin considers that this lack of a firm boundary increases the
applicability of his mechanism and is therefore desirable.

It is clear even from the title of this thesis that my views differ
from those of Levin. As far as taste is concerned, mine is to prefer to
see explicitly where different cases may occur; as Levin points out,
guarded commands [22] express this adequately. (So do ordinary conditional
statements.) In my view it is not surprising that Levin failed to
formulate a satisfactory definition of exception: exceptions cannot be
defined because they do not exist as an abstract concept. I am not

claiming here that Levin's idea of separating the treatment of certain
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rare cases from that of other, more common cases is never helpful.
However, some works in this field elevate errors and exceptions to the
status of an abstract and fundamental concept. In particular, Abstract
Errors for Abstract Data Types [27] defines a whole mathematical system
Cailed "Error Algebras” for dealing with "exceptions” such as looking for
a name which is not in a symbol table. Although the theory is complicated
it does not permit recovery from exceptions. A simplified way 5? dealing
with such situations ié described in Chapter 5.

Another paper which suggests that "exception” is an abstract notion
is [67], which provides an axiomatic description of some uses of the Ada
exception handling mechanism. The authors find it necessary to state
that "Our specifications and proof rules apply to programs with exceptions
regardless of whether excepticns are used only for error situations or as
a method of programming normal program behaviour.” It is as.if they believe

that it is possible to write axioms which distinguish the two cases!

1.5 Exceptions 1in Ada
In view of the probable economic importance of the Ada programming language
it is pertinent to ask how its designers interpreted the term "exception”.
The details of the particular mechanism they adbpted are discussed in
Section 3.5; we are here concerned with the more philosophical question
"What Zs an Ada exception?”. ,
The rationale for the design of Ada is described in [55]. Section 12.1
states that exception handling "provides a facility for local termination

upon detection of errors”. Exception handling should be restricted "to

\
events that can be considered (in some sense) as errors, or at least as
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terminating conditions”. However, the term "error” is not defined, and it
is clear from the context that the last phrase means only that an exception
will lead to the termination of the current invocation.

Section 7.2, which discusses the implementation of parameter passing,
gives another clue as to the interpretation of an exception. Parameters
in Ada can be implemented either by reference or by copying: in normal
situations the semantics are identical. The case of a subprogram terminated
by an exception is classified as abnormal: the fact that out parameters
may or may not be updated is stated to be of no importance. The revised
definition of Ada [96] retains this rule (Section 5.2) and adds more
concerning optimization in the presence of functions which may generate
exceptions (Section 11.8). Specifically, operators whose result values
depend only upon their arguments may be invoked as soon as those arguments
are known, "even if this invocation may cause an exception to be
propagated”. "The operation need not be invoked at all if its value is
not needed, even if the invocation would raise an exception.”

When promulgating these rules the designers of Ada seemed to have in
mind expressions such as 'a or fun(b)'; they wished to permit the
invocation of ’'fun(b)’ to be omitted when 'a' is true even if it could
raise an exception. This is consistent with an interpretation of
exceptions as indicating an implementation insufficiency. Suppose that the
invocation of 'fun(b)’ would require more rescurces than are available and
would thus generate an exception indicating this fact. Clearly. an
implementation which avoids invoking 'fun(b)' and thus produces the correct
result instead of an apology message is to be applauded. Omitting the

invocation is not sensible if exceptions represent essential results. It
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thereFore seems that exceptions in Ada are intended aé a means of
indicating implementation insufficiencies.

Unfortunately the examples given in the Report [86] do not observe
this intention. Section 12.4 presents a stack package with procedures
'Push’ and 'Pop’ but no predicate 'IsEmpty’. Instead the 'Pop’ procedure
may raise the exception 'Underflow’ if it is applied to an empty stack.
'"Underflow’ is thus an essential part of the result of 'Pop’. On the
other hand, the 'Push’ procedure may raise the exception 'Overflow’,
which presumably indicates an implementation insufficiency. (One cannot
be éure because the semantics of the package are not specified.) These
two exceptions representing such different concepts are generated with
the same syntax and are declared on the same line.

Section 1.6 of the Ada reference manual also provides some clues about
the meaning of "exception”. It states that Ada recognizes three categories
of error. The first are errors which must be detected at compile time; it
seems clear that this category includes syntactic errors, such as real
numbers with multiple exponents and constant objects on the left-hand side

of assignments. Of course, sequences of characters which viclate the Ada

syntax in this way are not Ada programs at all. However, such "non-programs”

are aoften informally referred to as "programs wifh errors”, and it would
be churlish to object to this usage. Indeed, it is the only guide to the
meahing of "error” offered by the manual, so I will assume that an error
is that which divides programs from non-programs.

The third category of error is consistent with this interpretation.
"The language specifies certain rules that must be obeyed by Ada programs,

although Ada compilers are not required to check that such rules are not
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violated.” Programs which viclate the rules of Ada in this way are said
to be "erroneous”, and the effect of executing them is not predicted by
the reference manual.

The remaining category contains "errors that must be detected at
run time. These are called exceptions”. These phrases lead very rapidly
to a contradiction. If the interpretation of "error” derived above is
indeed correct, then exceptions can only occur in non-programs. And yet
exception handling certainly seems to be a part of the Ada language: a
whole chapter of the reference manual is devoted to it! But if exceptions
can be generated by valid Ada programs, what is an error?

The purpose of a programming language definition is to determine
unambiguously both the set of character strings which represent programs
in the language and the meaning of those programs. With its references
to "erroneous programs” and "exceptions” the Ada reference manual fails to

do these things. In the scope of the declaration
i : integer range 1..10

is 'i := 15’ an Ada assignment? No, because '15’ does not satisfy the
range constraint of 'i’', which the manual says it must. Or yes, because
the effect of this assignment is to raise the exception ’'constraint error’.

I am thus unable to answer the question which introduced this section.
It seems that the designers of Ada did not have a very clear idea of what
an exception ought to be. None of the possible interpretations are
consistent with the text and examples of the reference manual. The result
of this is not just ambiguity over whether certain texts are Ada programs;
as will be demonstrated in Section 3.5, the very semantics of legal

programs can sometimes be surprising.
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1.6  Summary

It is clear that exceptions have several unrelated uses: announcing
programming errors, apologising for implementation insufficiencies,
delivering "unusual” results and achieving interprocess communication

are the examples mentioned in this chapter. Perhaps a mechanism which
could serve all of these purposes would be useful. Very general mechanisms
have appeared in the history of programming languages; the goto statement
is an obvious example. Gotos, like exceptions, can be used to simulate
many language features. There is another similarity, too: both exceptions
and gotos are provided by the hardware (as interrupts and jumps).

It is no discredit to the pioneers of programming to have investigated
the properties of such universal mechanisms. But the goto belangs to an
parlier ége. We are no longer seeking mechanisms which do as many different
things as possible; rather we are trying first to decide what we want to do,
and then looking for ways to do exactly that.

The designers of exception mechanisms have not been very successful in
their guest for the all-embracing. A run-time exception handling mechanism
is clearly inappropriate for dealing with mistakes which occurred when the
program was written. Insufficiencies of implementation cannot of their
nature be "handled” by a mechanism which is part of the programming language.
Exception mechanisms have been devised which deal with unusual results and
interprocess communication, but such mechanisms can only be justified on
the basis of a useful commonality between these things, and then only if
they are simple to understand and implement. Exceptions may be a useful

design notion, but such utility must be demonstrated, not assumed.




Chapter 2

A HISTORICAL VIEW OF EXCEPTION HANDLING

This chapter attempts to put the recent flurry of interest in
exception handling in perspective. Inconvenient results and

undesired events are not new phenomena; it is interesting to

see how they were dealt with before the invention of special

purpose exception handling mechanisms. Algol 60 and Fortran
will be used to illustrate the techniques available.

One of the first languages to provide a specialized exception handling -
mechanism was PL/I. It was developed by the IBM Corporation in the 1960's,
although it was not standardized until 1976. The PL/I exception mechanism
was clearly conceived as a means of trapping a varied collection of
language-defined run-time errors. The deFicigncies in the PL/I mechanism
are noted and the extensions provided by the implementors of the Multics
operating system are discussed.

The other major language of the 1860's was Algol 68. Whereas PL/I
provides a large number of specialized comstructs, each intended for a
specific application, Algol 68 offers a small core of very general facilities,
with no mechanism specifically designed for exception handling. The

methods used to handle undesired events are examined.

2.1  Exceptions in Fortran and Algol 60

Algol 60 and Fortran do not include any mechanism specifically designed for
exception handling. Hill [44] considers the problem in the context of a
function of 'A’ with an integer argument 'n'. He assumes that 'A' is only

defined for 'n 2 0', and that the legality of 'n’ is checked in the body‘oF

26
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the function. If the check fails, what action should be taken? This
problem is quite fundamental: the idea that certain things are not defined
cannot be expressed in an algorithmic language. Undefinedness can only be |
interpreted as freedom to do anything the implementor sees fit. Thus,

if Hill’s question is understood in its strictest terms, any answer is
valid. Having stated that 'A’ has a limited domain, if a user is foolish
enough to invoke it outside that domain he cannot blame anyone but himself
for the consequences. Héwever, since programmers are human and mistakes

do happen, the reasonableness of the action should 'n’' be negative is a
legitimate engineering concern.

One possible action is to complete the function 'A' by decreeing that

’ ’

in the case 'n < 0' the result is 'x'. Then the function implemented is

not 'A' at all but a new function 'A'’, where 'A'(n)’' = 'A(n)’ if

'n € Dom(A)', and 'x' otherwise. Nevertheless, all correct calls of 'A’

can be replaced by calls of 'A'’ without any change in the action of a
program containing them. But what of the incorrect calls? If 'x’ is
distinct from all the valid results of 'A’ (i.e. 'x 2 Ran(A)') then the
result of 'A'' can be tested. This has the disadvantage that the programmer
must remember to perform the test; he is no mare likely to do that than to
remember to test the precondition 'nz 0'! Hill also points out that if

'A'' is called within a complex expression the result may be impossible to

test. Furthermore, if 'Ran(A)’ is the whole of the result type, no

suitable 'x' is available.

If the requirement of functionality is dropped when the value of 'n
is outside the permitted range, many more courses of action become available.

Hill lists the following possibilities:




(1) Terminate the program after printing a message, as is usually

done for standard functions like square root.

(ii) Add an extra output parameter. A Boolean result can be
used to indicate the success of the call. If several errors
are possible an extra integer result can be used to indicate
which error occurred. However, some value must still be
returned as the result of the function.

(iii) Use a Boolean function which has as its result the validity of
'n', and sets an output parameter to the value of the required
function 'A(n)' only if 'n ¢ Dom(A)’.

(iv) Add a label parameter to 'A’, and jump to that label if 'n’ is
invalid. This is allowed in Algol 60 [73] 9] but not in ANSI
Fortran [3].

(v) Add a procedure parameter to 'A', and call that procedure if 'n’
is invalid. Of course, control returns to 'A’ when the procedure
completes, and one of the other possibilities listed above must

" then be adopted. However, the choice of what to do can be

influenced by results returned by the procedure. It is also

possible, in Algol, to include in the procedure a non-local goté

and thus not to return at all.

Hill prefers method (iv), even though he is opposed to the widespread use of
goto statements: "The shock of a goto, jumping away from the scene of

action to start picking up the pieces elsewhere, seems to me to be just what
is required...” My view depends on whether it is easy to test if the
parameters are in the right domains. If they are, then (i) seems to be

most appropriate. The objection that this precludes recovery is not well
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founded, for it is easy to test the parameter before calling the function
and to program an appropriate recovery action at that point. If it is not
easy to test the precondition then the function should be generalized until
it is - using "impossible results”, or methods (ii) or (iii).

A variant of method (v) was used extensively in the AED Free-Storage
Package [81]. In this system is was possible to partition the available
free store into several zomes, which might themselves be partitioned into
sub-~zones and so on recursively. Each zone cobtained a cache of free store
from its parent, which it then distributed to its users. Sometimes a
zone might not contain enough storage to satisfy a request, a typical
"exceptional” situation. This and similar eventualities were dealt with by
calling a so-called Help Procedure, a proCeQureLsuppliedabg«the\uégr,»the
_integer result of which told the storage system how to proceed. Various
primitive routines were available so that the Help P rocedure could, as a
side effect, manipulate the zone and attempt to cure the problem.

One of the significant things about a Help Procedure is that it was
not associated with a particular call on the package but with a zone of
storage. A zone was established by calling a procedure whose parameters
defined the attributes of the zone, including the Help Procedure. Help
procedures were associated with the data abstraction of storage zone, not
with the control abstraction of requesting a piece of store. This
distinction appears again in connexion with Algol 68 transput (see Section

2.5), and in the proposals of Levin [59] (see Section 3.4).

2.2 Clearing Up
Before going on to describe the exception handling mechanism of PL/I,

it is necessary to digress a little and examine one of the problems that
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mechanism fails to solve. It often happens that a program initiates an
activity which requires completion even if the program fails. Indeed,
it is a major function of an operating system to restore itself to some
standard state after a user program has run, regardless of whether that
program worked correctly. This involves clearing up the arbitrarily
complex mess the user program left behind.

Clearing up is also necessary on a smaller scale. Any routine which
allocates storage,initiates a peripheral transfer or indicates in some
global fashion that it is active, must ensure that the storage is returned,
the transfer completed or cancelled, and the global indication reset before
it terminates. There is normally no difficulty in achieving this provided
that termination is always voluntary, i.e. due to completion of the body of
the routine or execution of a normal return. Problems arise, however, if
it is possible for a routine to be terminated abmormally. This can occur
if a call is made to a procedure at a lower level which, on detecting saome
undesirable event, unilaterally decides not to return. Even if the
calling routine is aware that this may happen, it is inconvenient, expensive
and sometimes impossible for order to be restored befbre calling every
such procedure.

Abnormal termination can only occur if the programming language allows
some form of non-local goto statement. In Fortran [3] a sub-program or
function must return to its caller (unless it executes a STOP statement,
which causes execution of the entire program to be concluded). In Algol 60
it is possible to jump to a label in any statically enclosing block; it
is also possible to pass labels as parameters through an arbitrary number

of procedure calls.
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Of Hill's proposals for dealing with Faults in functions, both passing
1abéls and procedures as parameters (iv and v) may give rise to the clear-up
problem if the overall effect is to Jump from a routine body to a scope
outside that which called the offending function. The language PL/I provides a
mechanism for trapping exceptions which all but compels the programmer to use

;such non-local jumgps.

2.3 FException Mechanisms in PL/T
PL/I was the first general purpose progranming language to include specific
facilities for handling exceptions, known in PL/I as conditions. It is
possible for programmers to define their own conditions, and there are
twenty language-defined conditions which are detected either by the hardware
of the computers for which PL/I was designed, the software of the language
implementation or the library of built-in functions. This description is based
on [68] and [4].

A programmer designates what action is to be taken on the occurrence
of an exception condition by dynamically establishing a so-called on-unit
as a handler for that condition. When a condition occurs during the
performance of some operation, the operation is interrupted and the most
recently established on-unit is invoked; if no on-unit has been established |
a default action is taken.

Exception handlers are called on-units because they are established
by the use of the ON statement. The handler has the syntactic form éF a
begiﬁrblock or a single statement (in practice usually a call statement).

Examples (after [68]) are
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ON UNDERFLOW PUT LIST('Underflow in Tabulate');
ON OVERFLOW ~ BEGIN;
CALL P;
GO TO L;
END;

The eFFth of the ON statement is constrained by the block structure
of the language (where block means begin block or procedure block). An
ON statement establishes the given handler Fof the named condition until
the current block is left; at that time the handler for the dynamically
enclosing block again becomes current. The enclosing handler can alsc be
re-established explicitly: the REVERT statement is used for this purpose.
If more than one ON statement for the same condition occurs in any block,
the previously established handler becomes inaccessible; the REVERT
statement cannot be used to reinstate an old handler established in the
current block. Thus the ON statement has some of the properties of a
declaraction {such as lasting only until the end of the block) and some of
the properties of assignment (such as being able to completely obliterate a
previous value).

The distinguishing feature of PL/I exception handling is captured in
the phrase "dynamically enclosing block”, i.e. the block which called the
current block. For a begin block this is, of course, its textually
enclosing block. However, a procedure block may be called from many
different places and may thus be provided with different handlers for its
conditions on each invocation. Moreover, those handlers cannot be determined
from a étatio scan of the program, but only from its simulated execution.
PL/I condition handlers thus behave rather like free variables in Lisp. This

is remarkable because such dynamic inheritance is not used in any other part
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~of the language. PL/I free variables follow normal Algol scope rules, and
even condition prefixes (discussed below) have static scope.

Conditions in PL/I are divided into various groups. Computaticnal
conditions occur during evaluation of an expression. or assignment. Examples
are SUBSCRIPTRANGE, which occurs if an attempt is made to access a
non-existent array element, ZERODIVIDE, and STRINGSIZE, which occcurs if an
attempt is made to assign a string to a variable of insufficient length.

Input~-output conditions are always associated with a particular file
as well as with an action. Examples of input-output conditions are
ENDFILE (an attempt to read beyond the end of a sequential file) and
UNDEFINEDFILE, which occurs when an external file satisfying the requirements
of the program cannot be found. When on-units for these conditions are

established a file must be named, i.e. one must write
ON ENDFILE (file) Action;

and not
ON ENDFILE Action;

Incidentally, the ENDFILE condition is the only way of detecting the end of
a sequential file in PL/I.

There are some other conditions mentioned in the language definition,
such as AREA, signalled when a storage area is too small to accommodate a
demand for based storage, and ERROR, which the implementation may signal
when an illegal program is detected. However, when an implementation-defined
limit is exceeded the PL/I standard guarantees only that one or more of
a list of ten conditions will be raised.

1

Each language definsd condition has a default handler, which is invoked




if the programmer does not establish his own; the default handler can also

be established explicitly be writing
ON condition SYSTEM;

The handlers for some conditions are allowed to return control to the
interrupted operation while others are not. For example, the UNDERFLOW
condition arises if the result of a floating point operation is too small

to represent. If the handler for this condition returns, evaluation is
continued with zerc as the result. The default handler for UNDERFLOW prints
a message and then returns. Conversely, the handler for FIXEDOVERFLOW is
not allowed to return.

The programmer may define his own conditions and then specify handlers
for them with ON statements. Such conditions must be explicitly raised with
the SIGNAL statement. It is not possible to associate programmer-defined
conditions with data structures in the way the ENDFILE condition is associated

with files. Maclaren [68] comments as follows on this aspect of PL/I:

Allowing programmer defined conditions is a natural way to unify the
treatment of exceptions. However a programmer defined condition is
really nothing more than a procedure variable with the following
peculiar properties:

Assignment to the variable in one block activation has no effect on
assignments in previocus block activations. The values assigned to
the variable must be procedures with no parameters. Assignments are
made by ON and REVERT statements. The only way to access the value
of the variable is hy a SIGNAL statement.

Clearly a programmer can handle his own exceptions more flexibly by
using the normal procedure variables provided in PL/I.

Various ad hoc facilities complete the PL/I exception handling
machinery. There are a few global variables which the programmer can test
within a condition handler to discover more about the cause of the exception.

For example, the CONVERSION condition occurs during string to numeric




conversion when the string does noct have the syntax of a ﬁumeral. The

PL/I pseudo-variable ONSOURCE contains the offending string; moreover, its
value may be changed in an attempt to repair the fault. However, the exact
effect of such an assignment is an area in which implementations tend to
depart from the PL/I standard (see [68]).

Condition prefixes provide a way of "disabling” certain conditions,
generally the computational conditions. If a condition occurs and it is
enabled, the appropriate on-unit is invoked. Disabling a condition is
equivalent to asserting that it will not occur. It follows that any such
ocourrence is a failure and that further execution is undefined. The point
of this rule is to enable expensive checking (such as that of array subscripts)
to be turned off: if the programmer has asserted that a condition will not
occur, the implementation is relieved of any responsibility if it does.
OVERFLOW is enabled by default because most hardware will trap it
automatically; SUBSCRIPTRANGE is disabled by default becausé it is usually
detectable only by software checks.

Condition prefixes are nothing more than compiler directives which
are affixed to individual statements or blocks and control the generation
of checks. Their scope is thus static, contrasting with that of ON

statements. For example, in

{NOOVERFLOW) : BEGIN;
ON OVERFLOW CALL overerror;

X = X + v
(OVERFLOW) & a=b*c;
CALL P(x +a)

END;



the overflow condition is disabled throughout the begin block except in

the statement 1abelléd (OVERFLOW) : occurrence of overflow during the
execution of 'a = b * ¢’ will result in the invocation of the procedure
'overerror’, as directed by the ON statement. Whether overflow is enabled
during the execution of 'P’ depends on the condition prefix attached to

the body of 'P’, which may be separately compiled. If 'P' neither disables
OVERFLOW nor establishes its own condition handler, occurrence of overflow
in'P'will also cause 'overerror' to be invoked.

A common misconception is that PL/I on-units provide the ability to
trap hardware interrupts. They do not. It is essential to the language
that conditions occur only at discrete points. At all such points the
"machine” of the PL/I language definition must be in a well-defined state,
so the condition handler can manipulate both program variables and the
hidden variables of the implementation. If an interrupt occurred while
the system was performing an "indivisible” action, such‘as altering the
state of the free store system, and arbitrary user code were to be executed
in response, the effect could not be predicted.

As one of the first languages to include a specialized exception
handling mechanism, it would be surprising if PL/I was entirely satisfactory
in this respect. Notions of what are and what are not good progranming
practices have changed since PL/I was designed. The result is that the
exception handling facilities of PL/I are at variance with current ideas of
program structuring.

Any PL/I procedure inherits from its caller a nest of handlers for
various conditions. The consequences of the occurrence of a given condition

in a procedure cannot be determined by loocking at the text of that




procedure and its actual parameters. They depend on statements executed

in other, possibly separately compiled, procedures, and may vary from

one call to the next. The only way to avoid this dependence is to include
an on-unit for every conceivable condition in every procedure: even then it
is possible that the inconceivable may occur. The current emphasis on
reliability requires that occurrence of the totally unexpected should cause
an alarm (such as an error halt); this cannot be achieved in PL/I.

The dynamic nature of on-units makes each condition behave like a
global variable, or more precisely like a global stack. The argument usually
put forward in defense of this mechanism is that the invoker of a library
procedure should be able to treat a condition arising in that procedure in
the same way as when it arises in his own code. This may indeed be desirable
provided the condition has one specific meaning, as is the case for a few
of the language defined conditions such as ENDPAGE. But for the rest, and
for progranmer defined conditions, the meaning of a condition raised by an
alien subroutine may be completely different from the meaning of a condition
of the same name raised by the rest of the program. I cannot agree that
the provision of a single handler is desirable a prior<.

Trying to establish different handlers for different occurrences of
the same condition is very cumbersome. Maclaren gives the example of a
program with several GET statements which should take different actions if
they encounter the end of the input file. Each one must be prefixed by an
'ON ENDFILE (f) ...’ statement which sets up the appropriate handler, and
probably postfixed by a 'REVERT ENDFILE (f)' statement too. This is
expensive to implement and obscures the function of the program.

These pfoblems may be avoided by establishing one condition handler
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for 'ENDFILE (f)’ which sets a Boolean variable 'end of file F’, and testing
this after each GET. Assuming that the correét handler is always invoked,
and that the programmer remembers to check the state of 'end of file F’,

all will be well; but this is a cumbersome way of implementing a predicate
that could have been provided by the input system at little cost.

Another problem with PL/I on-units is finding a sensible action for
the condition handler to take. First, there is a list of ad hoc
restrictions on what a condition-handler can do. The restrictions vary from
one condition to another; they are intended to permit the generation of
efficient code. (This is discussed in detail in [68].)

Second, one should note that, unless special precautions are taken, a
condition handler is inside its own scope. Should the same condition occur
inside the on-unit, the on-unit is invoked again recursively. "Taking
special precautions” is quite inconvenient. The following solution is

after MaclLaren.

BEGIN;
ON OVERFLOW
BEGIN; :
ON OVERFLOW GOTO recursive overflow_handler;
/* Remainder of the overflow on-unit */
END;

GOTO start;
recursive_overflow_handler:
REVERT OVERFLOW;
SIGNAL OVERFLOW;
start:

/* Main Part of Block */
END;

Such contortions are very difficult to follow.
Lastly, some method must be found to terminate the handler. One

way of doing this is by the execution of a STOP statement, which terminates
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the entire program. This could be appropriate if the condition were .
catastrophic. Another possibility is executing the END statement which
terminates the handler; this implies a return to the context which raised
the condition. While it may be reasonable to return after some conditions
(such as an ENDFILE which has been handled by setting a variable), it is
sometimes desirable to abandon the operation which raised the condition;
morecver, a return is prohibited after eight of the language-defined
conditions. In these cases, assuming that one does not want to STOP, it is
necessary to execute a GOTO statement and to transfer control to the block
activation that established the on-unit, or to a scope enclosing it.

Such a transfer of control is potentially non-local, and may therefore
cause an arbitrary number of procedure and block invocations to be abandoned.
This obviously gives rise to the clear-up problem described in Section 2.2.
The implementation will presumably clear upestablished on-units and stack
frames, but PL/I does not provide a mechanism which permits a programmer to

do his own clearing up of files or off-stack storage.

2.4  Exception Handling in Multics
The Multics system was developed at M.I.T. as a research project intended
to examine how a reliable operating system with a multitude of user
interfaces could best be constructed. It was determined at the start that
the system should be written in a high-level language and be published
[ 14]. A machine independent high level language was therefore required, and
at the time of the inception of the project, PL/I was considered to fit this
description.

Multics provides an exception handling mechanism derived from PL/I ON

conditions but including several extensions. The first extension is the
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' and

provision by the system of the procedures 'condition ', 'reversion_
'signal ’ which correspond to the PL/I ON, REVERT and SIGNAL statements,

but are more general. These procedures enable programmers in languages
other than PL/I to use the Multics exception handling mechanism. This is
possible because, as we have seen, the effect of the PL/I ON, REVERT and
SIGNAL statements is dynamic.

The major extension to PL/I condition handling was an attempt to
solve the clear-up problem. Any block which performs an action which may
need to be cleared up, such as opening a file or allocating off-stack
storage, should group the necessary 'clearing up’ actions into the handler
for a special condition called 'cleanup’. If the block completes normally
then this handler becomes disestablished on block exit in the usual way.
However, if the block is terminated by a non-local GOTO, a system routine
called the unwinder is given control. The unwinder goes down the chain of
activation records and finds each routine which is about to be aborted.
Before releasing its local variables and carrying out any other clearing up
that the system realises is necessary, the unwinder searches for a handler
for ’'cleanup’. If one is found, it is invoked. It is important to realise
that a special mechanism is used to invoke the cleanup handlers; the
unwinder cannot raise the 'cleanup’ condition in the normal way. This is
because the handler for each about-to-be-aborted invocation must be executed
exactly once; if there is no handler then no clearing up is necessary. An
ordinary signal raised at the scurce of the transfer would cause only
the most recently established handler to be executed. Thus, the use of
the ON mechanism for establishing cleanup actions, while convenient

syntactically, does not greatly influence the cleanup mechanism itself. The
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condition mechanism does ensure that cleanup handlers are automatically
reverted when the context which established them ceases to exist.
Nevertheless, the manner. in which they are invoked must be quite separate

from the normal method of invoking a handler.

Another extension provided by the Multics implementors was the use of
the condition mechanism to trap asynchronous interrupts - primarily attention
interrupts from a user's terminal. Similar facilities are provided by many
IBM implementations. Such interrupts can occur at any time and can
invalidate the assumption made by the handler that the impleﬁentation is in

a consistent state. Of the Multics extension MaclLaren writes

it almost always works, but there do appear to be a few obscure
windows that cause occasional failure. This situation is satisfactory
for interrupts from the terminal. It would probably not be acceptable
for process control interrupts.

When writing this he was obviously unaware of the frustration caused to a
user by a system which randomly ignores some of the things typed at a
terminal.

Given PL/I and the task of designing a reliable operating system, the
Multics team had options other than adopt%ng PL/I-1like condition handling.
One course of action was not to use a special exception handling mechanism

at all. Organick [75, p. 191] discusses this possibility.

Signalling via the SIGNAL statement offers the programmer an attractive
way to invoke a subroutine without actually having to specify its

name, letting its designation be determined dynamically, as determined

by the ON statement most recently executed for the same condition. ...

You may be wondering if signalling is merely a fancy programmer's
convenience for avoiding the need to set and return proper status
arguments. Isn't it the case that a condition can always be reflected
backward via possibly a chain of such status returns until it reaches
the procedure that knows what to do about it (i.e. what handler to
invoke)? Certainly, but even this approach has ‘its shortcomings,
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especially if the chain of returns is long and antecedents on this
chain are unable to add any new contextual information (i.e. intelligence)
that will clarify or qualify the (recovery) action that should be taken.

As a rule of thumb, therefore, recognized errors and other conditions
should be signalled rather than relayed as status arguments whenever
the immediate callers are not expected to be ’'smart’ enough to improve
the quality of the 'recovery’ from the given condition.

The claimed advantage of condition handling is that notification of an
exceptional event can be passed up the call chain until a procedure willing
and able to handle the event is found, without the intervening procedures
having to know anything about it. If status arguments are used then every
procedure in the call chain must be aware of their significance.

However, this advantage is largely fictional. In a hieraréhal
system, each 1éyer of procedurss represents a level of abstraction. Dealing
with an exception means either acting on it at the correct level of abstraction
or passing it up the hierarchy. But passing it up involves changing the
meaning to that appropriate at the higher level. There is thus very little
difference between setting status returns at each call and relaying an
appropriate exception. In both cases the problem must be analysed and
interpreted in the light of all the current information. Even if the
correct response is to pass the problem up a level, this cannot be
determined without examining it first.

To make this concrete, let us consider the example of a function
"invert' which either delivers the inverse of a matrix or raises the
'zerodivide' exception in the case that the matrix is singular. Suppose that
this function is called from a procedure 'Solve'’ which is attempting to
solve a set of simultanecus equations. Organick’s argument is that the
caller of 'Solve’, say 'Main’, having been informed of the singularity, can

then attempt to re-solve in a space of reduced dimensionality. But for




'Main’ to interpret the 'zerodivide’ exception as notification of

singularity is quite against the sp;rit of structured, modular progranmming.
The caller of 'Solve’' has no business knowing that 'invert’ is ever
called, far less that the 'zerodivide' exception implies a singularity.
Indeed it may not - for 'Solve’ may do many divisions for its own
purposes, any one of which may signal 'zercdivide’, because of a
progranmming error if for no better reason. It is really for 'Solve’ to
determine what to do if 'Invert’ fails, for only ’'Solve’ knows enough
about what is being inverted to take sensible action. If all it can do
is to signal to its caller "solutions may not exist”, then that is fair
enough. It is a very different piece of iﬁfonnation from "zerodivide".
Organick’s "rule of thumh” also ignores an essential property of a
hierarchal system. A given procedure must be callable from a variety of
higher level procedures, and cannot therefore-use any knowledge about those
higher levels. It follows that it is impossible to decide whether the
immediate caller is "smart” enough to improve the quality of the recovery:

it is not even possible to know who the immediate caller is.

2.5 FException Handling in Algol 68
In contrast with PL/I, Algol 68 contains no special purpose exception
handling machinery. It is interesting to see how Algol 68 deals with those
situations-in which PL/I resorts to raising a condition.

Many of the PL/I computational conditions arise because of the finite
- nature of the computer on which the language is implemented. Such
failures of representation include normal arithmetic underflow and overflow.
In these cases the Algol 68 Report [97] is specific in leaving subsequent

actions undefined. Similarly, the result of division by zero is an




undefined value. The implementer is given complete freedom to do as he

likes, and tﬁe progranmer must take care to avoid the consequences.

This situation is not altogether satisfactory, but the designers
of Algol 68 were forced to make a compromise. They were an international
group designing a language for a varied collection of machines. For
example, on ICL 1800 series computers overflow in a fixed point operation
sets a special register but does not interrupt the normal execution sequence.
- The overflow can only be detected by explicitly testing the register.
If Algol 68 were to insist that some specific action be taken on
encountering overflow, an implementation for such a machine would be
rprohibitively expensive. (When IBM designed PL/I they were in a better
position: on conditions could correspond to exactly those eventualities
which the hardware of the System/360 was able to trap.)

What Algol 68 does provide are aids to help in avoiding overflow in
the first place. There are a number of "environment enquiries”, whereby a
program can determine the maximum and minimum values of a given type, the
nunber of different precisions of arithmetic available, and so on [97,
§10.2.1]. If conditions like overflow are liable to arise in only a few
places they can be avoided by careful programming, but if they may occur
almost anywhere the language is of no real help. Arguably, of course,
PL/I is of little more help; all one can do in the latter case is to
establish a global handler which prints a message and stops.

Environment enguiries, invented by Naur, are undoubtedly one of the
most successful aspects of Algol 68; the idea has been adopted by most of
its successors, including Modified Algol 60 [19]. The relationship with

exceptions should be clear. When asked to include a function with a




restricted domain, there are two things that a language designer might
reasonably do. The first is to provide a means whersby membership of the
domain may be tested: that is the role of environment enguiries. The
second is to extend the domain and make the function total; in this case
the range must also be extended by the addition of "exceptional” results.

A different approach is used by the Algol 68 transput (i.e. input
and output) mechanism. Information in the system resides in "books”
containing text, some identification, the position of the logical end of the
text, and so on. An Algol 68 file is the means of communication between a
program and a book; a book may be linked to several files simultaneously
(via one or more channels, which correspond to types of devices).* There
are enquiries to determine whether a book opened on a file may be accessed
in particular ways, such as ’'get possible’, which is true if the file may
be used for input, and 'reidf possible’, which is true if the identification
of the book can be changed. More interestingly, it is possible to
associate "event routines” with a file [97, §10.3.1.3.cc]. There are seven
such routines, each associated with a particular transput condition:
physical and logical end of file, end of line and page, exhaustion of a
format and conversion errors. When one of these conditions occurs the
appropriate routine is called. If that routine mends the condition it
should return true; transput will then continue. Alternatively, it could
return falses; in this case the transput routine will take a default action.

Not all of the conditions are errors, and the default actions are chosen

* More conventional terminology would be to call an Algol 68 bock a file.
Algol 68 files are more mnemonically known as streams [91].
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appropriately. For example, if the routine associated with the "end of
format” condition returns false, the default action of the transput
routine is to re-use the format from the beginning. On the other hand, if
the "physical file end” condition is not mended (i.e. the event routine |
returns false), the default action is left undefined by the report. End
of line and page can be detected by "position enquiries” as well as with
~event routines, but the latter are obviously more convenient if one simply
wishes to add page numbers to a listing.

Procedures in Algol 68 are data objects which can be freely stored in
data structures. A library written by a user in ordinary Algol 68 could
employ an event mechanism modelled on that of the transput system. The
only facility used by the transput mechanism not available to an ordinary
programmer is that of "hiding” the names of the field selectors. One
cannot assign to the 'page mended’ field of a file, but must use the 'on
page end’ routine to assign a new event routine.*

One of the consequences of procedures being data-objects is that they
have the scope of the block in which they are declared. Algol 68 p}ohibits
the assignation of a value to a name which has an older scope [97, \
$§5.2.1.2.b]. The following (illegal) example is given in the Report, and
assumes that the file 'intape’ is opened in a surrounding block. The

intention is to count the number of integers on the input tape.

* Although this corresponds to modern ideas on hiding the representation
of an abstract object, Algol 868 introduced it for quite a different reason;
see [97, $§0.3.7].
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begin int n := 0

s on logical file end( intape
, (ref file file)bool:goto f
)

5 do get(intape, loc int); n plusab 1 od
; f: print(n)
end

This is illegal because the scope of the procedure -

(ref file file)bool:goto. f

is the block of the example, and it canncot be assigned to a field of
'intape’, which has an older scope (or else it would be possible to jump

into a block). The solution is to write

begin int n :=0

; file auxin := intape
3 on logical file end( auxin
, (ref file file)bool:goto )
; do  get(auxin, loc int); n plusab 1 od
5 f: print(n)
end

so that both the event procedure and the field to which it is assigned go
out of scope simultaneously. The effect is the same as PL/I's automatic
reversion of handlers on block exit, although the syntax is clumsier.

It is important to notice that the event procedures are associated
with files (like 'intape') rather than with transput operations (like 'get’).
This ensures that all occurrences of a condition on a given file will be
dealt with uniformly: what to do at the end of a line is a property of the
file abstraction. It does have the disadvantage that the setting of the

handler may be lexically remote from the operation which invokes it.

2.6  Conclustion
All the exception handling techniques discussed above fail to restrict the

flow of control. This is partly because all the languages discussed provide
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an unrestricted goto statement; more precisely, it is because a non-local
transfer of control is often the only action a handler can Peasonably take.
PL/I ON conditions bear the same relationship to machine interrupts
as do goto statements to jump instructions. Both interrupts and jumps are
very powerful facilities, but it is now widely recognized that it is a
mistake to include them in high level languages. To paraphrase a famous
remark, PL/I ON conditions are too much of an invitation to make a mess of

one's program [20].




Chapter 3

"STRUCTURED” EXCEPTION HANDLING

The realization of the deficiencies of PL/I ON conditions (see
Section 2.3) has provided the impetus for the development of
language features for exception handling which help to retain
structure and constrain the flow of control. Although such
features are not present in any widely used language, many
proposals have been made and incorporated into experimental
languages. The Ada programming language sponsored by the U.S.
Department of Defense also contains an exception handling
facility and seems likely to become widely used in the future.
This chapter reviews the exception handling proposals of various
authors and examines the facilities available in CLU, Mesa and Ada. A
taxonomy of exception handling mechanisms is first presented, and then the

various proposals are evaluated within this framework.

3.1 A Taxonomy for Exception Handling
Various authors use the same words to denote different ideas, so this study
must begin by defining its terms.

An operation is an abstract entity, a mapping from arguments to
results. A standard operation like addition or concatenation may be
implemented in firmware or machine code, and a programmer defined operation
may be implemented as a piece of high level language text. In either case
the term routine will be used to mean a piece of program text implementing
an abstract operation.

A routine text may contain Znvocations of operations; it is said to be
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the caller of the routines which implement them. An invocation is apiece

of text, and may give rise to zero, one or many activaticns of the
routine which it names. (For example, the invocation may be controlled
by a while statement.) An activation may generate an exception; this
results in the raising of the exception in some (other) routine (such as
the one which caused that activation). The Zandler is the program text
which is executed in response to the raising of an exception.

An early version [29] of Goodenough's widely cited survey paper
[30] included a useful classification of "exception association methods”, that
is, methods of linking the raising of an exception and a handler. Local
methods make a reference to a handler part of the text of the invocation; global
methods associate a handler implicitly. Passing an exception handling
routine as a parameter to an invocation is a local method of associating a
handler; PL/I ‘on conditions are a global method.

Two further classifications are used by Liskov and Snyder in [62].
Exceptions are essentially a communication mechanism between the activation
which detects an unusual event (and generates an exception to indicate this
fact) and the activation which deals with the event (by handling the
exception appropriately). Liskov and Snyder state that the "obvious
candidates” for handling an exception generated by an activation are the set
of activations in existence when the exception occurs. They exclude the
generator (because if it could deal with the event there would be no need
to raise an exception), and then classify techniques according to whether
activations other than the immediate caller of the generator are allowed
to handle the exception. They use the adjectives single-level and multi-level

to describe these two opticns. Levin [59] bases his proposals on the
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premise that these "obvious candidates” are not the right ones. 1In

common with Parnas [76] he feels that the candidates should be the members
of the "uses” hierarchy, whereas the activations in existence when an
exception is detected form the "calls” hierarchy. The two hierarchies are
in general distinct. Nevertheless, the single or multi-level classification
can be applied to the uses hierarchy too, i.e. it is conceivable that the
users of a user might be able to handle an exception.

Liskov and Snyder's second classification is according to whether an
activation continues to exist after it has generated the exception. The
generator can be considered either to call the handler itself, or to return
to its invoker in such a way that the handler is activated. In the first
case it is possible for the handler to return to the generator, causing its
resumption; in the second case this is not possible because generating an
exception is considered to terminate the generator.

rMany more classifications could be used. Possibilities are whether a
technique is designed to deal only with rarely occurring events or with
common ones, whether exceptions can be raised only by statements or also by
expressions, and whether parameters are associated with exceptions.
Nevertheless, the freamework I have outlined should be sufficient for the
reader to appreciate the differences between the mechanisms described in

the remainder of this chapter.

3.2  Exception Handling in CLU

The CLU language was developed by the Computation Structures Group at M.I.T.
between 1974 and 1978. Many excellent papers have been published which not
only describe the language but also explain why its features have a

particular form. An overview of CLU is available in [64]. The description
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below is based on [60}, B2], [61] and [/].

CLU takes the view that a routine may terminate in one of several
ways. A normal return indicates that the operation it implements has been
successfully completed. However, if such completion proves to be impossible
-the routine executes a signal statement instead. Results may be delivered by

both return and signal; the heading of a routine must specify the various

possibilities. The library routine for exponentiation has the type:

power: proctype (real, real) returns (real)
signals ( zero divide, complex result,
overflow, underflow )

'zero_divide' occurs if 'argl’ = '0’ and 'arg2' < '0'. ’complex result’
occurs if 'argt’' < '0' and 'arg?2' is non-integral. ‘'overflow' and ’underflow’
ccour if the magnitude of the result is too large or too small to represent.
Few of the library routines actually use the facility of passing arguments
with a signal, although some of the file manipulation routines pass strings
which more precisely define the error.

An exception is generated by means of a signal statement such as
'signal complex_result’. The name of the exception can be followed by a list
of parameters if appropriate. The exception must either be listed in the
routine heading or be the special exception 'failure'. The signal statement,
like the return statement, terminates the current routine activation;
execution continues in the caller, i.e. the routine containing the invocation
which activated the generator. That invocation raises the exception, and
somewhere in the‘caller there must be a handler for it.

Handlers are specified by an except statement, which associates a list

of exception handlers with a statement. The statement in gquestion can be
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a single invocation or a large block. For example, to handle the exceptions

raised by calls of 'power’ in a block, one could write

begin .
.+« body of block containing invocations of power...
end except when zero divide: h1

when overflow, underflow: h2

others: h3

end

If the 'zero_divide’ exception is raised by an invocation in the block,
handler 'h1' will be executed. If 'underflow’ or 'overflow’ occur, 'h2’
will be executed. If any other exception is raised, 'h3’' will be executed.
The handlers 'hi' will themselves usually be statement sequences, and may
contain other except statements.

If the execution of the statement enclosed by an except statement
completes without raising an exception, control passes to the statement
following the except statement without executing any of the handlers.
However, if an exception is raised during the execution of the statement,
control passes immediately to the textually closest handler for that exception.
(It is necessary to say "closest” because except statements can be nested.)
When execution of the handler completes, control passes to the statement
following the except statement containing that handler. A handler is outside
its own scope: an exception occurring in a handler must be caught either by
an except statement within the handler body or by another, enclosing,
except statement.

If a list of exception names in an except statement is followed By a
parameter list, all the named exceptions must have the same number of
arguments as there are parameters in the list, and the types must correspond.

The parameter list may be represented by an asterisk: this discards the actual
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arguments, and can be used for any exception. An others handler may appear
once or not at all; it handles any exception not listed by name in the
except statement, including 'failure’ (see next paragraph). others may be
provided with a string parameter, which will be set to the exception name;
any arguments of the exception are inaccessible.

CLU does not syntactically enforce the restriction that there must be
a handler for every exception an invocation can raise. Instead, any unhandled
exception is converted to the special exception 'failure(”unhandled exception:
name”)’'; however, if the 'failure’ exception itself is not handled it is
passed bn unchanged. Every invocation is considered to be able to raise
the 'failure’ exception even though it appears in no routine heading. This
policy was adopted because the programmer may be able to prove that a given
exception will not arise, and should therefore not be forced to provide a
handler for it.

From the above it will be seen that exception handlers in CLU are static
and can be attached only to statements, not expressions. Exceptions are
propagated up the call hierarchy by exactly one level; they cannot be caught
within the routine that generates them, but rather cause its activation to be
terminated.

The decision to allow exceptions to propagate by only a single-level was
derived from the hierarchal program design methodology which the language
supports. Each CLU routine implements an abstract operation; the caller of
a routine need know only the specification of that operation, and not how it
is implemented. The exceptions generated by that routine form part of the
specification of the operation, and it is appropriate for the caller to be
aware of them. This is why they are listed in the routine heading. However,

it is not appropriate for the caller to know about the exceptions generated
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by routines used in the implementation of the operation. Such exceptions
must be handled by the routine containing the invocation which raised them.
0f course, if that routine decides that the appropriate action is to itself
raise an exception, then it is free to do so.
The CLU except statement has one serious deF?ciency. The placement
of a handler is governed by two constraints.
(i) The handler must be suffixed to the statement whose execution is
to be terminated should the exception arise. The statement
following the handler must be an apbropriate continuation, assuming

the handler does not execute a return or signal. (CLU does not

have a goto statement.)

(ii) The handler must be appropriate for all occurrences of the named
exception. If two invocations raise the same exception but
require different handlers, then they must be caught by different
except statements, one of which must be situated so that only one

of the invocations is within its scope.

These two constraints may conflict. [62] gives as an example a statement
'S’ which invokes a routine ;Sign’ at two different points. 'sign’ may
generate the 'neg’ exception, which should be handled differently for each
invocation; however, execution should continue witﬁ the statement following
'S' in both cases. If the except statement is used to attach separate
handlers to each invocation then some other mechanism is needed to achieve the
desired flow of control. One possibility is to set and test variables, as

in the following code.




begin

. statements 1 ...

xneg := false
a := sign(x) except when neg (i:int): s1;
xneg := true
end

if not xneg
then

. statements 2 ...
yneg := false
b := sign{y) except when neg (j:int): s2;

yneg := true
end
if not yneg
then
.+ statements 3 ...
end

end

end

However, if one needs to do that there is little point in having an exception

handling mechanism: the code would be simplified if the result of 'sign’

were tested with the if statement directly. So CLU includes an exit statement
to perform local transfers of control. Using it the example can be rewritten

as follows.

begin
. statements 1 ,
a := sign(x) except when neg (i:int): s1;
exit done
end
. statements 2 ...
b := sign(y) except when neg (j:int): s2;

exit done
end
. statements 3 ...
end except when done:
end

Exits provide for local control transfers in a similar way to the situation-case
statement of Zahn [104]. An exit statement behaves like an invocation which

raises an exception. Whereas a signal statement raises an exception in the



calling routine, the exit statement raises the exception directly in the

current routine. An exception raised by an exit statement must be handled ex-
plicitly by an except statement; it is not sufficient for the except
statement to contain an others arm. Exits can, of course, be used to

prematurely. terminate any block, not just an exception handler.

3.3  Exception Handling in Mesa

The Mesa language has been developing at Xerox Palo Alto Research Center
since 1974. It is used for systems implementation by research staff. Prior
to the introduction of Mesa, these users had developed a wide range of
programming styles; as far as is possible, Mesa attempts to accommodate them
all. It contains the most extensive implemented exception handling mechanism
of which I am aware.

Information on Mesa is sometimes difficult to obtain. An overview of the
language was published [25], and the Manual is fairly readily obtainable
[72]. An evaluation of the Mesa mechanism has been made by Horning [51].
This section has also benefitted from discussion with Dr. J.G. Mitchell.

The Mesa exception mechanism is very general and powerful. Its description
occupies ten pages of the Mesa Manual, and only a summary is attempted here.
An exception in Mesa is called a signal, and has a data type rather

like that of a procedure: signals may have both parameters and results.
Signals differ from procedures in the way they are associated with a body.
The value of a procedure represents its body more or less directly. In
contrast, the value of a signal is a unigue code on which the only operation
is test for equality. The appropriate routine body is located if and when

the exception is raised.




A signal is generated by a signal statement, which has the same syntax

as a procedure call except that it is prefixed by the symbols SIGNAL,
ERROR or RETURN WITH ERROR.

Generation of a signal will eventually cause a handler to be invoked;
its selection is described below. If the handler completes without
performing a non-local transfer of control, the effect is to return to the
statement ?ollowing the signal call exactly.as with a procedure call. The
symbol ERROR provides a way of prohibiting such a return; any attempt to
return aFfer an error call is illegal (and causes another ERROR called
'ResumeError’). If a signal is declared as an ERROR then it is a syntax
error to use it in a signal call; if it is declarsed as a SIGNAL, 1t may be
used in any signal call, including an error call. Thus errors are a sort
of sub-type of signals.

Signal calls may return results, and may therefore appear in
expfessions; this is also true of error calls, although since they never
refurn at all this is purely for syntactic convenience. (A similar feature
is found in Algol 68, where a goto statement may be treated as an expression
of any type.)

A handler is associated with a signal by means of a so-called cateh
phrase. A catch phrase has as its scope & piece of program text. It may
appear after the BEGIN of a block or the D0 of a loop, in which case its
scope is the whole of that block or loop. It may also appear within the
brackets of a call, separated from the arguments by an exclamation mark;
the scope of such a catch phrase is the routine activated by that call,
but not the argument list itself. A catch phrase is said to be enabled

when control is within its scope in a dynamic sense. All this may be
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clarified by an example ( < is the assignment symbol).

Report : PROCEDURE[message : TEXT] =
BEGIN ENABLE catch phrase 1
5 : .+« declarations ...
3 IF ... THEN SIGNAL ImpossibleError
3 InputFileName < ConstructCurrentFileNamel[]
5 LineNr <« LineNr + 1 ’
END;
ConstructCurrentFileName : PROCEDURE RETURNS [FName : TEXT ] =
BEGIN «».initialization...
5 UNTIL NameElement = Nil
DO ENABLE catch phrase 3
3 FNeme <« AppendText[ FName
, FileName[NameElement] ]
3 NameElement < Next[NameElement]
ENDLOCP
END;

AppendText : PROCEDURE[Head : Text, Tail: TEXT]
RETURNS[t:TEXT] =

BEGIN .

5 t <« ConcatText[Head, Tail ! catch phrase 4]
5 ReturnText[Head]

END

The routine 'Report' enables 'catch phrase 1’ for the whole of its
body. Signals generated by the statements of that body, such as the
assignment to 'LineNr’, will be offered to 'catch phrase 1’'. This is true
even if the 'SIGNAL ImpossibleError’ statement 1s executed.

"Report’ invokes 'ConstructCurrentFileName’, which does not have a
catch phrase attached to the whole of its body. If a signal is generated
while executing the initialization it will be offered to 'catch phrase 1’
in 'Report’, as this is the dynamically enclosing context. However, the
UNTIL ... ENDLOOP statement within 'ConstructCurrentFileName’ has its own

catch phrase, and signals generated by the body of the loop will be
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offered to ’'catch phrase 3’ first.

'AppendText’ illustrates a catch phrase attached to a call. Signals
raised (but not caught) within 'ConcatText' will be offered to
'catch phrase 4°'..

A catch phrase may reject a signal, in which case it passes up to
the dynemically enclosing catch phrase. So if 'AppendText' is called fraom
within the loop of ’'ConstructCurrentFileName’ and generates a signal which
'catch phrase 4' rejects, it will be offered to 'catch phrase 3'. The
Mesa run time system guarantees that all otherwise uncaught signals will
be caught at the highest level by the dsbugger.

Tt should now be apparent that the Mesa signal statement both generates
an exception and raises it. This is also true of the error statement.
Thus in Mesa an exception may be handled by the routine which itself
generated the signal or error. The RETURN WITH ERRCR statement is used
to raise an exception in the environment of the calling routine. In the
example, if the UNTIL ... ENDLOOP construct contained such a statement, e.g.
'"RETURN WITH ERROR FileNameStructureInconsistent', the signal would first
be offered to 'catch phrase 1'. Resumption is not possible after a
RETURN WITH ERRCR statement.

The catch phrase itself is rather like a case statement; it takes the

following form.

BEGIN
sig 1 => body Aj
sig 2, sig 3 => body B;
sig 4 => body C

END
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The 'sig i’ are variables which must evaluate to signals. If

'sig 1’ is declared to be of type
. SIGNAL [param : p] RETURNS [result : r]

then 'param' and 'result’ are implicitly available within 'body A’ as

the names of the parameter and result of the signal call. If 'sig 2’ and
'sig 3' do not have identical types their parameters and results are not
available within 'body B’. Clearly the scope of the signal declaration
must encompass all the signal calls and catch phrases which refer to it.

The last (or only) clause in a catch phrase may have the form
'ANY => body’. When a signal is offered to a catch phrase its value is
compared, in order, with each signal value in the variable lists preceding
the => symbol. If a match is found control passes to the appropriate body.
ANY matches any signal code, and is primarily intended for use in the
debugger.

If none of the variables in the catch phrase matches the signal, the
signal is "rejected” and propagated to the next catch phrase in the call
hierarchy. The body of a handler that has caught a signal may also
explicitly reject it; thus partial recovery from an exception may be
effected, and then the signal passed on up the hierarchy.

The body of a handler behaves exactly like a routine called by the
generator. Specifically, it may return to the generator (provided the
signal was not generated by an error call). This is done by means of the
RESUME statement, which may alsc return values toc the generator, according

to the type of the signal.
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If resumption is inappropriate, the handler must execute some form of
non-local transfer of control. In addition to the ordinary methods of
control transfer, two special statements, RETRY and CONTINUE, may be uéed
within catch phrases. RETRY aptivates a transfer to the beginning
of the statement to which the catch phrase belongs; CONTINUE initiates a
transfer to the statement following the one to which the catch phrase
belongs. In the case of a catch phrase attached to a loop body, CONTINUE
means "go around the loop again”; the same effect can be achieved with
Mesa's LOOP statement.

Mesa also has a restricted GOTO (rather like a CLU exit), and an EXIT
statement for terminating loops. Before any of these non-local transfers
are completed each about-to-be-aborted activation is given an opportunity to
do some clearing-up (see Section 2.2). Syntactically, the clear-up code
appears as a handler for the special signal ’'unwind'. However, 'unwind’' is
not treated like an ordinary signal. The implementation of non-local control
transfers ensures that 'unwind’ is offered exactly once to each catch phrase
OF‘each activation which is about to be aborted. If a given catch phrase has
no handler for 'unwind’ the signal is not pr@pagated as an ordinary signal
would be. There are no constraints on the action which an unwind handler
can take. In particular, it may itself perform a non-local transfer of

control and initiate a second 'unwind’. No further clearing-up is then done

for either transfer, and the first transfer is abandoned in favour of the

second one.

It is a common misconception that exception handling mechanisms like

that of Mesa "solve” the clear-up problem. They do not. The "unwind”




signal in Mesa (and 'cleanup’ in Multics, see Section 2.4) cannot be

treated as ordinary signals. The inclusion of 'unwind’ amongst the
signal values in a catch phrase is syntactically convenient but
semantically irrelevant (and expensive at execution time). It would be
closer to the truth to say that Mesa exception handling causes the
clearup problem, because all non-local control transfers are associated
with signals. (This is a slight oversimplification because most

systems need some provision for clearing-up after a catastrophic failure.
This is considered in Chapter 7.)

It should be clear that Mesa's exception handling mechanism is much
more powerful than that of CLU. Both mechanisms are confined to the call
hierarchy and are engineered so as to be suitable for rarely occurring.
events. Howeve:, by allowing signals to span more than one 1evél of call,
and by not requiring a list of signals to appear in the heading of a routine,
the Mesa mechanism achieves greater power and convenience. Horning [51]
observes that there are responsibilities associated with the exercise of

this power.

It it necessary to document not only the names and meanings of the
signals that the components may use directly or indirectly, but also the
names and meanings of any parameters supplied with the signal,

whether the signal may be resumed, and if so, what repair is expected
and what result is to be returned. Unless all this information is
provided, it will be difficult for users to respond correctly to
signals. Each programmer must decide which signals to handle via

catch phrases, and which to reject (i.e. to incorporate into the
interface of his component).

... The more levels through which a signal passes before being handled,
the greater the conceptual distance is likely to be between the
signaller and the handler, the greater the care necessary to ensure
correct handling, and the greater the likelihood of some intermediate
level omitting a necessary catch phrase for 'unwind’'.
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The ability to resume after a signal is stressed is one of the great
advantages of the Mesa mechanism. This is not because the generating
routine is often resumed but because when a signal is not caught control
passes to the debugger, and all the control context which existed when the
signal was generated is then available for inspection. In discussion
Jim Mitchell has claimed that ninety-nine per cent of signals are intended
for the debugger, in that they are generated in "impossible” situations.
Although his estimate is unsubstantiated, it is clearly common to use Mesa
signals for this purpose. In such a situation the programmer is able to
examine the local variables of the routine which generated the signal and
determine the cause of the problem. It may even be possible to use the
debugger to alter those variables and resume the signal.

It should be observed, however, that access to the local variables of a
routine by another part of the program is prohibited by the principle of
modularity and the scope rules of the language (except in the degenerate case
where a signal is handled in the routine which generates it). This
distinction between program and programmer is well-made by Liskov [62]. While
observing that the CLU mechanism is designed to provide programs with the
information required to recover from undesired events, she points out that
nothing in the design precludes an implementation which reports exceptions
to the programmer, should he be available, before terminating the
activations which generated them. In this way as much state as is required
may be inspected. Moreover, there is no implied restriction that only
unhandled exceptions should be reported to the programmer. It would be
possible for the exception mechanism to be restricted to report a specified

subset of exceptions to the programmer, who could then decide whether to
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handle them himself or to let them be handled by the program.

None of the above is intended as a claim that the ability to resume
an exception does not add power to the language. That it does so is
indisputable: one may wish to argue only that the extra power is not needed, '
or is not worth its cost in terms of semantic complexities, or should be
provided by some other mechanism. My point is that in putting these
arguments the question of debugging is qﬁite irrelevant.

The Mesa language has beeﬁ in use at Xerox PARC for seven or eight
years, and considerable experience in the use and misuse of signals has been
built up. Such experience is not common, and I think it worthwhile quoting

the following communication from Jim Morris at length (excerpted from [51]).

Like any new. and powerful language feature, Mesa's signal mechanism,
especially the wnwind option, should be approached with caution.
Because it is in the language, one cannot always be certain that a
procedure call returns, even if he is not using signals himself.

Every call on an external procedure must be regarded as an exit from
your module, and you must clean things up before calling the

procedure, or include a catch phrase to clean things up in the event
that a signal occurs. It is hard to take this stricture seriously
because it ‘is really a hassle, especially considering the fact that the
use of signals is fairly rare, and their actual exercise even rarer.
Because signals are rare there is hardly any reinforcement for following
the strict signal policy; i.e. you will hardly ever hear anyone say
"I'm really glad I put that catch phrase in there; otherwise my

program would never work”. The point is that the program wzl7 work
quite well for a long time without these precautions. The bug will

not be found until long after the system is running in Peoria.

. It should be noted that Mesa is far superior toc most languages in
this area. In principle, by using enough catch phrases, one can keep
control from getting away. The non-local transfers allowed by most
Algol-like languages preclude such control. It has been suggested
that systems programming is like mountaineering: one should not always
react to surprises by jumping; it could make things worse.

Cedar Mesa is a version of the Mesa language being designed and

implemented as part of the Cedar Programming Environment. Associated with
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the Cedar design effort is a restricted form of the signal mechanism. The
restrictions are not enforced by the compiler but are adopted by convention:
enforcement may follow if it is found that the restrictions are not too
irksome. The aim is to simplify the mechanism and to make it mesh better

with the principle of encapsulation. The restrictions are:

(1) that the ANY catchall be eliminated;

(ii) 1if a signal crosses more than one abstraction boundary it is
changed to a globally known exception denoting a programming
error. This captures the fact that the signal has left the only
abstraction in which it could reascnably be caught.

(iii) There should be a "calling error” signal indicating that a module
has been provided with illegal afguments.

(iv) Neither calling errors nor programming errors should be resumed

or have parameters.

At present I have no information about the effect of these restrictions.
It will be some time before it is known whether they help to alleviate the

problems discussed by Morris.

3.4  Levin's Proposals for Exception Handling

In his Ph.D. thesis [59] Roy Levin made proposals for an extensive exception
handling mechanism. Realising the dangers of adding to any language, he
sought a construct that would be verifidble, uniform over a large class of
exceptions, adequate for real problems in both parallel and sequential
progranming, and <mplementable with reasonable efficiency. The opening
sections of his thesis elaborate these goals and ought to be compulsory

reading for anyone contemplating the invention of a new programming construct.
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However, by laying such a firm foundation Levin invites a more stringent
evaluation of his mechanism than was appropriate for those designed to
less exacting standards.

The introduction to his thesis admits that thefe is no adequate
definition of "exception”; whether or not a partiéular event should be
classified as an exception depends largely on its context. It is claimed
that the exception mechanism should be used whenever the details of the
handling of a particular case need to be suppressed, so that other (more
common) cases can be emphasised. His mechanism is capable of dealing with
anything from general interprocess communication to interrupt handling.

The chief difference between Levin's mechanism and the others I have
described is in the selection of the modules which may be given an
opportunity to handle an exception. Levin argues that all of the users of a
module should be considered. The classic example supporting this argument
is a storage allocation module used by several other modules which
maintain private caches of sfore. If the allocator canno£ satisfy a
request from one of its users it generates an exception 'Insufficient
Store'. In which module or modules should this exception be raised?
Clearly not just in the module whose request cannot be satisfied. It should
at least be potentially possible for the exception to be raised in all the
modules which have used the allocation system, because any of them ﬁay
be willing to return some of their cache. Of course, it may be that the
first module to receive the exception is able to release sufficient store,
and that there is no need to raise it in other modules. Levin allows such
selective exception raising, but insists that the initial set from which
the selection is made must include all the users of the abstraction which

generates the exception.
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Another distinguishing feature of Levin's mechanism is that an
exception may be generated on both data abstractions and control abstractions.
The usens of a control abstraction are its callers; in this case
propagation of the exceptio% along the call chain is appropriate. The
users of a data abstraction form a hierarchy independent of the call chain.
A particular invocation may raise either kind of exception. For example,
'ReadfromFile(f)’ may generate 'ProtectedFile’ if the invoker does not
have read permission, and 'Filelnconsistent’ if there is an inconsistency
in the disk structure used to represent 'f'. In the #&rst case the
exception should be raised in the invoker of 'ReadfromFile’, in the second
it should perhaps be raised with all users of 'f’.

Although I have spoken of a hierarchy, Levin is emphatic that
exceptions should propagate through exactly one level. An exception must
be raised with the Zmmediate user of the appropriate abstraction; indirect
users cannot even know that the offending module has been called, still
less how to handle its exceptions.

It may be that a single handler for an exception will be appropriate
for the entire lifetime of a datum. If that datum exists only during the
activation of a single routine (i.e. is a local data structure), then this
situation can be dealt with as in CLU by attaching a suitable handler to
the body of that routine. However, data structures are frequently created

by one module and then passed to others, so their lifetime transcends that




of their creator.* Levin therefore introduces a notation for assocciating

default handlers with data structures, and a convention that, in the absence
of an explicit default handler, a null default handler be assumed to exist.

Unfortunately he uses the same notation for defining these default handlers

as fTor dealing with the exbeptions generated on the control abstractions of

the module itself.

Before proceeding further some concrete syntax and examples may be
helpful. Levin uses the notation and terminology of Alphard [103]1; I have
translated them into a more Algol-like notation. Handlers may be attached
to a statement by appending to it a list of exception conditions and handlers
enclosed in brackets. For example, the 'ReadfromFile(f)’ example might be
written

ReadfromFile(f) [ f.FileInconsistent : handler

| ReadfromFile.ProtectedFile : handler 2 ]
The part of the condition name before the point is the name of the abstraction
on Which the exception is generated; the part after the point is the name of
the exception itself.

If the statement to which a handler is appended is a block, and if the
abstraction on which the exception may be generafed is a routine, Levin’s
interpretation is that a separate copy of the handler be attached to each
invocation of the routine within that block. This is also the interpretation
when the abstraction is a data object, provided that the block is not the

module which defines that data type. Thus the following are equivalent.

* Such structures are often said to reside on a heap, but this term has
connotations of a particular implementation.
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begin
var x : integer
x := ReadfromFile(f)
WritetoFile(g,x)
WritetoFile(lncrements, x+1)

end [ f.FileInconsistent : h1
| WritetoFile.Protected File : h2 ]

begin
var x:integer ,
X := ReadfromFile(f) [f.FileInconsistent : h1]
WritetoFile(g,x) [Write to File.ProtectedFile : hZ]
WritetoFile{Increments, x + 1)
[WritetoFile.ProtectedFile : h2]

end

In both of the above fragments, the handler 'h1' is attached to the
'FileInconsistent' exception of 'f' only for the duration of the invocation
'x 1= ReadfromFile(f)’, whichArepresents only a small part of the lifetime
of '"f'. If 'f' is local to some routine 'WriteIncrements' which contains one
of the above blocks, then a handler can be attached to 'f.FileInconsistent’

Ffor the remainder of the lifetime of 'f' as follows:

procedure Writelncrements =
begin
var f : File of integer
bhegin
var x : integer
x := ReadfromFile(f)

end [f.FileInconsistent : h1 | wedl
end WriteIncrements [f.FileInconsistent : h3]

When 'ReadfromFile(f)" is invoked both 'h1’ and 'h3' are enabled. However,
'h1' masks 'h3', so only 'h1’ is eligible to handle 'f.FileInconsistent’.
Precise definition of these terms - enabled, masked and eligible - are

beyond the scope of this thesis. The interested reader is referred to
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[ 59, Section 4.6]. These definitions are central to an understanding

of Levin's mechanism, and I confess to finding them difficult to
understand. This may be because the deFinitions'are phrased in temns of
~ implementation rather than linguistic concepts, but at least part of

the difficulty lies in the inherent complexity of the mechanism.

Levin’s mechanism becomes interesting when we allow skharing of data
abstractions. At present, sharing is thought to be an important concept in
systems programming. Allowing sharing is equivalent to introducing the
concept of reference* at the semantic level. A simple language such as 3R
[11] needs only names and values and a mapping between them to describe the
actions of parameter passing and assignment. Algol 60 can be described in
this way because of the copy rule for procedure activation. Languages such
as Fortran, Algol W, Algol 68 and Pascal introduce references more or less
explicitly. Their semantics can only be described by introducing a set of
locations and two mappings, the enviromment which takes names into locations, .
and the store which takes locations into values. In these languages
declarations associate a name with a location, and assignments associate a
location with a value. (Algol 68 either simplifies or confuses the issue,
depending on one's point of view, by unifying locations and values.) CLU
does not introduce explicit references but allows sharing by using them
implicitly. In CLU, assignment changes the enviromment, while the store
is changed only by built-in proceddfés that update arrays and records.

Levin'’s storage allocator can now be examined in more detail. Suppose

that the modules 'CachedCommunicateWithDisk' and 'Columnate’ both use the

* Also known as pointer or access value.
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services of 'FreeStore’, which allocates storage from a shared storage pool
'FSPool'; suppose further that a reference to 'FSPool' has been passed to

both of the user modules as parameter. These modules are shown below.

module CachedCommunicateWithDisk
is var CachedPages : IndexedList of DiskPage
var StorageZone : ref pool

procedure ReadPage(PageNr : integer)
is if TsinList(PageNr, Cached Pages)
then ...
else const p : ref Page =
Allocate(StorageZone, DiskPage)

p := BasicDiskRead(PageNr)

EnterinList(CachedPages, p)
[StorageZone.InsufficientStorage: skip]
fi
end of ReadPage [SteorageZone.InsufficientStorage:

ReturnSomebutkeep(CachedPages, PageNr) ]
end of CachedCommunicateWithDisk
[StorageZone.InsufficientStorage:
ReturnSome{CachedPages)]

"module Columnate
is var ThisPage : List of Line
var CentralPocl : ref pool

procedure Out(s : ref CharStream, c : char)
is if IsFull( LastlLine(ThisPage) )
then const 1 : ref Line =
Allocate(CentralPool, Line)
ThisPage := Append(ThisPage, 1)
[CentralPool.InsufficientStorage: skip]

i

end of Out
end of Columnate [CentralPool.InsufficientStorage:
Compress(ThisPage) ]

'Allocate(z,t)’ attempts to find enough storage in the zone referred to

by 'z' to create a location of type 't'. If this is impossible it generates
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'z', Levin's mechanism assumes that

the 'InsufficientStorage’ exception on
all handlers will return control to the generator of the signal, so after

the appropriate handlers have been invoked ’'Allocate’ can again attempt to
satisfy its caller. (Of course, if this second attempt fails, some other
action should be taken.)

Suppose the 'Allocate’ request on line 9 raises the 'InsufficientStorage’
exception on 'StorageZone'. The handlers on lines 16-17 and 20-21 are enabled,
but that on lines 16-17 masks that on lines 20-21. If ’'CentralPool’ and
'StorageZone' refer to the same ’'pool’, then the handler on lines 37-38 is
also enabled; the eligible handlers are thus those on lines 16-17 and 37-38.

If parallelism is allowed the situation is more complicated, because
it is possible for 'Out’ in 'Columnate’ to be active at the time the exception
is raised in 'ReadPage'. Suppose execution has reached line 33; the handler
attacHed to the invocation of 'Append' would then be enabled, and since it
is not masked, eligible. The purpose of this handler is to mask the handler
on lines 37-38 while the structure 'ThisPage’ is being modified.

Levin distinguisheé two levels of selection in the above process. The
method used to chose which handler in each module is eligible at a given
instant is of secondary importance. He uses a static, single level mechanism
because it is in accord with conventional scope rules, but states that a
different policy could be used if required. What is central to his thesis
is the composition of the set of contexts within which a handler is selected.
He emphasises that every user of a data structure should be able to handle
exceptions raised on that structure, whether or not that particular user
caused the exceptional condition.

Having decided that several handlers in different contexts may be
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eligible to deal with a condition, which should actually be invoked, and in
what order? Levin answers this question by defining several selection
policies. 'Broadcast-and-wait' indicates that all eligible handlers are
invoked (potentially) in parallel, and that execution of the generator
resumes when they have all terminated. ’'Broadcast' relaxes this restriction:
the generator initiates all the handlers but does not wait for any of them |
to complete. The generator thus executes in parallel with the handlers.

The last policy Levin defines is 'Sequential-conditional’, which associates
a predicate with the raise statement. If the predicate is true or there

are no eligible handlers, the raise statement has completed. If the

predicate is false a handler is selected and initiated, and the handler removed

from the set of eligible handlers. When the handler terminates the raise
statement is re-entered with the reduced set of handlers.

Much of the above assumes that handlers will return to the generator of
the exception. This is indeed a requirement of Levin's mechanism. The
raise statement works exactly like a routine call; it even has a post-condition
which the handlers must satisfy. This is in contrast to the CLU mechanism,
which forbids resumption, and that of Mesa, which allows both termination

and resumption. Levin justifies this in the following way:

Handlers are invoked (in most cases) to process an unusual condition
that cannot be handled entirely within the signalling module. They

have an obligation, expressed by the [postcondition]..., and the
signaller will assume, upon completion of the raise, that the obligation
has been satisfied. If handlers were able to terminate ... the execution
of the signaller [then] the abstractions of the signalling module might
not be maintained. The signalling and handling modules should be
viewed as mutually suspicious subsystems [83]; neither should be able
to influence ... the execution of the other.
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Although handlers cannot directly alter the flow of control within the
signaller, they may do so indirectly by their effects or by the results they
return. In the storage allocation example, after 'Allocate’ has invoked
the handlers for 'InsufficientStorage’', it is natural for ’'Allocate’ to
look again at the storage pool before deciding how toc proceed.

In contrast, Levin does allow a handler to influence the flow of
control within the block in which it is declared. That block may have been
interrupted byrthe invocation of the handier (if it was executing in parallel
with the generator): the handlerbis not executed in parallel with other
routines in its scope. He devises a mechanism which enablés a handler to
"post” the location at which execution of its enabling block is to resume.
Interested readers should see [59, $4.9].

The above description of Levin’s mechanism is incomplete; it attempts
to illuétrate the distinguishing features of the mechanism rather than to
define anything. The definitive description is much longer and more involved,
and therein lies a major problem. Levin's mechanism is undoubtedly very
complicated. The defence ought to be that at least Levin has given axioms
of conditional correctness for his mechanism, so his definition mugt be
explicit and rigorous even if it is complex. Unfortunately this argument
is unsound, for only the most straightforward part of his mechanism is
actually axiomatised.

Levin's proposals may be roughly sub-divided as follows:

(i) The rules for associating handlers with particular data and
control abstractions;
(i1) The action of the raise statement itself;
(iii) The action of the variousselection policies;

(iv) The synchronization requirements of the handlers.




76

The most complicated part of his mechanism is undoubtedly (i}. This
is also his most significant contribution to the subject because of the
prominence given to the association of handlers with data abstractions as
well as control abstractions. Unfortunately none of this is formalized.

The semantic significance of attaching a handler to a block is explained
only in terms of rewriting rules which copy the handler bodies into the
appropriate statements. The only guide to this process is the informal
definition in terms of activations, instances, loci of control and other
implementation concepts. The single most important idea, that of the user
of an abstraction, is never defined formally. Moreover, this use of re-
writing rules ignores a fundamental principle of the axiomatic method:

one should be able to write the assertions in the program without rearranging
the statements.

What s defined axiomatically is the semantics of the various different
forms of the raise statement, i.e. raise under the various selection policies,
and the semantics of handler invocation. The assumption is made that the
handlers are interference—free, i.e. that their potentially parallel
composition in the case of the broadcast policies will have the same semantics
as sequential composition. The synchronization requirements between the
handlers themselves, and between the handlers and their contexts, are not
formalized.

Levin is, of course, aware of these shortcomings, and points cut that
some of them arise from the weakness of the proof system. He claims that
"the problem of verifying parallel programs is a difficult one and distinct
from the exception handling issues of this thesis”. The first part of that
claim is undoubtedly true, and the problem of verifying programs using

sharing is also difficult. Nevertheless, both of these problems had been
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treated by various authors at the time that Levin was writing (see [B8] for
a survey). Although such studies were then and remain incomplete, Levin should
perhaps have attempted to use them to shed light on his mechanism.
The alternative is to decide that these ill-understood areas, particularly
parallelism, should be avoided when designing an exception mechanism. It
seems reasonable to try to gain a full understanding of both exceptions
and parallelism in isolation and only then to examine their interactions.
It is much easier to enlarge a language than to make it smaller; perhaps
the temptation to include mechanisms concerning two such volatile topics

as exception handling and parallelism should have been resisted.

3.5  Exception Handling in Ada

Ada [96] is intended as a language for real-time applications requiring a
high degree of reliability and maintainability. To promote this usage, and
to enhance reliability in particular, the designers tried as far as possible
to incorporate only well-understood constructs which had been proved in
practical applications. However, this desire sometimes conflicted with the
contractual requirements set out in the "Steelman” [95] document; in the
areas of interprocess communication and exception handling, Ada goes
significantly further than any existing commercial language.

Exception handling in -sequential Ada is similar in conception to the
proposals discussed above. There are five predefined exceptions generated
implicitly in certain situations: ’'constraint error’, 'numeric_error’,
'select_error’, 'storage error’ and 'tasking;error'. A 'constraint_error’
occurs in many situations including index out of bounds in an array access
and trying to access a non-existent variant of a record. A 'numeric_error’

may be generated when the result of a pre-defined numeric operation does not
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lie within the implemented range; an'implementation is not compelled to
generate this exception. A 'storage error’ occurs when dynamic storage
space is exhausted; ’'select error’ and 'tasking error’' relate to
interprocess communication, and will be considered later. There is also,
for each task* 't’, an exception 't'failure’ which (although pre—declared)
can only be raised explicitly. In addition to these exceptions the user
may declare his own, which can be generated by the raise statement. Such
user—declared-exceptfon names are subject to the usual scoping rules.

An Ada block** has the form

preamble

declarations
begin

statements
exception

exception handler
end

where the syntactic form of ’'preamble’ varies between the different categories
of block. The 'exception handler’ is like a Mesa catch phrase: sequences of
statements are associated with exception names or with the symbol others.

The execution of a raise statement causes the appropriate exception to be

* Ada uses the term ’task’ to mean an independent, dynamic entity that may
operate in parallel with other tasks, i.e. what is usually called a process.
However, despite the influence of a major U.S. computer manufacturer the
English word task always means the piece of work rather than the agent which
performs it. I will use process in preference to task whenever possible.

** Block will be used in the sequel to include blocks, subprogram bodies,
package bodies and task bodies.




raised within the current block; this is like Mesa rather than CLU. If

there is an exception handler within the block, and if it names the exception
or has an others clause, it is executed. The handler acts as a substitute
for the remainder of the block; if the block is a routine body the handler
may execute a return statement, which will terminate the routine.

If there is no exception clause in the block, or if it does not name
the appropriate exception, the exception is raised again at the point of
invocation of the block; in Ada terminology it is propagated. Exceptions
can be passed through on arbitrary number of levels of the call hierarchy
in this way. The headings of procedures and functions are not required (or
even permitted) to list the exceptions which they may propagéte.

Because a function may raise an exception the designers of Ada had to
decide how to deal with exceptions raised during the elaboration of the
declarations of a block. Arguably the handler in the block body should not
apply because some of the variables it manipulates may not be declared when
the exception occurs. The current Ada dé?inition [96] accepts this argument
and limits the scope of the exception handler to the statements of the block.
An exception generated within the declarations is raised with the invoker of
the block; the handler in the body of the block is ignored. (Interestingly,
[55, §12.5.2] states that this arrangement was "rejected for implementability
reasons”.)

Unfortunately the rules outlined above do not apply in all situations.
There are undesirable interactions between exceptions, packages and processes.
For example, an exception raised in the declaration part of a task body is
propagated to whoever caused the task activation, whereas an exception
raised in the statement sequence of the same task body (and not handled

locally) is not propagated at all; the task is simply terminated. The
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very fact that there are eleven separate clauses concerning unhandled
exceptions [936, §11.4.1-2] indicates that it is not always clear just when
an exception will be propagated.

The propagation rules also clash with the scope rules. Since
exception names, like identifiers, are subject to the scope rules of package
and block structure, an excepticn can be propagated beyond the scope of its
name. It can then be caught by an others Handler; it is even possible to
re-raise it.

As was mentiocned in Section 1.5, the rules about cptimization in the
presence of functions which may generate exceptions [96, §11.8] also
substantially complicate the language. They introduce semantic traps of
which the programmer must beware.

The following is a slight modification of the stack package from
Section 12.4 of .the reference manual. A function 'Top’ has been added and,
in the interests of simplicity, the generic clause has been omitted. The

specification* is now:

package StacksforElems

is type ElemStack is private
s procedure Push(s: in out elemstack; e: in elem)
5 procedure Pop(s: in out elemstack; e: out elem)
5 function Top(s: in elemstack) return elem
5 Overflow, Underflow: exception

end StacksforElems

Although this speciFication does not show it, 'underflow' can be raised

* i.,e. syntactic specification, for the benefit of a compiler. For this
reason Ada insists that the representation of ElemStack be given as part
of the "specification”. I omit it.
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by invocations of 'Pop’ and 'Top'. If one attempts to supply the missing

predicate 'IsEmpty’ it is easy to fall foul of [96, §11.8], for example:

function IsEmpty (s: in elemstack) return boolean
is e:elem
begin e := Top(s)
f return false
exception
when underflow => return true
end

Since 'e' is never used within the function body, the value of the 'Top’
operation 1is ciearly not needed.: Applying the rule that "the operation need
not be invoked at all if its value is not needed, even if the invocation
would raise an exception”, it is clear that an implementation is entitled

to elide the call to 'Top’, and to represent"lsanpty' as the constant
function 'false'. Ada exceptions may be useful when warning of a departure
from the specification, as with an implementation insufficiency. However,
it seems that their semantics are irregular and difficult to formalize, and
that their use to communicate a result required by the specification is ill
advised.

Luckham and Polak [661[67], writing before the promulgation of the above
rules, describe some of the other changes which should be made to Ada to
permit verification of programs using exceptions. I have already mentioned
the lack of a propagation declaration in subprograms; Luckham and Polak
propose the addition of a form of declaration which includes an assertion
describing the state whenever the subprogram terminates by raising that
exception. They also add an assertion to the handler which gives the
precondition for its invocation. With these additicns the precondition for

each raise of a named exception can be determined, and it is possible to
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check that the handlers achieve the postcondition of the subprogram in
which they appear.

However, various aspects of Ada exception handling are not so easily
axiomatized. Exceptions raised by function invocations cause problems
because the axiomatic method relies on importing functional expressions into
the assertion language. This can only be done if functions in the programming
language emulate their mathematical analogue; a function which raises an
exception clearly does not do so.*

The others clause in a handler also gives rise to difficulties, because
a raise statement in such a handler can propagate an unnamed exception.

The method of Luckham and Polak assumes that excepticns are only
propagated within their scope. They recommend therefore that the raiseing
of an unnamed exception should be avoided, and that a globally known
exception 'error' be raised instead.

There are three pre-defined exceptions that have not yet been considered.
'Select_error’ and 'tasking error’ relate directly to the interprocess
cormunication ﬁrimitives of Ada. They both represent programming errors,
such as trying to communicate with an inéotive process. A 'select error’
is generated when a select statement has all its guards false; a simpler
alternative would have been to reqdire the inclusion of an else part.

The exception 't’failure’ can only be generated by an explicit raise

statement, in task 't’ or in any other task from which the name 't’' is

* Provisional Ada [54] made a valiant attempt to ensure that.Funotions {as
distinct from procedures with results) were really functions. However, this
distinction has been dropped from the Revised language [96].
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visible. The report advises that a task's failure exception be generated only

as a last resort, when attempts at ordinary communication bave failed.
Because the failure exception may interrupt a process at an arbitrary
point the only sensible action that it can take is some clearing up

followed by termination; however, this is solely at the discretion of the

interrupted process. At the time of writing, the American National Standards

Institute has proposed that the task failure exception be removed from Ada
before it is accepted as a U.S. standard. Forcible termination of another
process could still be performed with the abort statement. The normal
method of achieving termination is of course by co-operation: one process
passes a message to another informing it that its services are no longer

required.

3.6  Summary

There is a great diversity in the intended scope of the exception handling
mechanisms described in this chapter. That of CLU is probably the most
constrained; it can be considered as a way of providing multiple returns.
Levin's mechanism and Mesa signals are the most elaborate, but in different
ways. The Ada designers clearly conceived of a limited mechanism, but the
interaction between it and other features of the language gives rise to

considerable complexity.




Chapter 4

EXCEPTION HANDLING IN ACTION

It is encumbent on anyone who proposes a language feature to show that it
is useful. If a programming language is to remain simple one must be
very cautious about including a new feature. It is well known that any
computable problem can be solved with only an alternative construct and
either an unbounded repetitive construct or the ability to name and call
pieces of program. Anything in excess of this minimum must justify the
complexity it adds to the language by removing even more complexity from
typical programs.

Levin [59] is one of the few authors to take this responsibility at
all seriously. He admits that an exception handling mechanism must be

capable of solving a variety of "real world” problems naturally. But the

requirement is actually stronger: there must be no natural soclution to those

problems without the mechanism, for if there is then we are guilty of en-
larging a language gratuitously.

Any use of an exception handling mechanism to achieve termination of a

routine can be simulated by making the result of the routine a union of types.

Alternatively, it may be appropriate to replace the routine by several

- routines, each applicable to only a part of the domain of the original.
An exception mechanism like that of Mesa, when used toachieve resﬁmption,
is semantically equivalent to the provision of one or more procedure
parameters to the routine which generates the exception. Levin's mechanism
can be similarly replaced, with some complication if the exception is

raised on a data abstraction rather than a control abstraction. In this
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case procedure parameters to the data structure may be needed. As I will

show, in the presence of multiple processes it may be appropriate to use
inter-process communication in place of Levin's mechanism.

Sections 4.1 and 4.2 of this chapter examine progranming problems
provided by Levin and other authors as illustrations of the utility of
their exception handling mechanisms. Section 4.3 presents some uses
of the Mesa mechanism extracted from real software. Consideration is
given in each case to ways in which the problem might be solved without
an exception handling mechanism. An attempt is made to compare the various
formulations and to decide which is simpler, more natural, easier to modify
and less prone to error. Such judgements must of their nature be
subjective, and it is of course possible that the reader may disagree with
my assessment of these examples. In part, such disagreements account
for the multiplicity of programming languages. But the existence of these
differences of opinion i5>in‘it§el?: an argument in favour of simpler
languages: it is much easier to have two language designers agree on the
structure and features of a minimal language than on a large, eclectic
one with many interactions between its constructs. This principle of
language design may be sunmarised as "if in doubt, leave it out”.

Given two means of expressing a particular concept, and agreement
that one is superior to the other on methodological grounds, it still
may be prudent to choose the inferior construct if it permits a vastly
more efficient implementation. Although a small increase in execution
time may be an acceptable price to pay for methodological advantage, I
must be sure that my proposals for avoiding exception handling do not
introduce major inefficiencies. Section 4.4 examines some actual and
hypothetical implementations.

It is not possible for me to include an examination of every example




which purports to Justify exception handling. I have chosen the examples

which seem to put the strongest case. In the case of Mesa I have included
some examples which have not been previously published. One objection
which may be raised against the material presented here is that all the
examples are small. This is partly because of the inherent limitations of
the medium of presentation. A full examination of a large piece of software
would make excessive demands of the reader, as well as lengthen a chapter
which may already be too long. More importantly, most of the reader’s
efforts would not be directed at the use made of the exception mechanism,
but rather at understanding the overall structure of the system. Once cne's
attention is directed at a single exception-generating routine and its caller,
 the situation in a large example is fundamentally the same as in a small one.
1059 benefit that may accrue from the use of an exception mechanism in
a large system is better design. It is common to use syntactic procedure
interfaces to sketch out the module structure of a system, but it is
unfortunately not yet common to define the semantics of these procedures
during the design stage. If the procedure interfaces are written in a
language like CLU, which requires that all the exceptions a procedure may
raise must be mentioned in the procedure heading, then the system designer
may be encouraged to think of all the cases with which the procedure must deal.
It is only fair to point out that the same benefits can be obtained by
a disciplined use of some other means of communicating exceptional results,
such as union results or procedure arguments, It should also be cbserved
that languages like Mesa and Ada which do not require exceptions to be listed
in the procedure heading encourage the opposite mode of thinking. The less
common cases are likely to be excluded from the design under the belief that

they can be added later using exceptions. The result of doing this is likely

to be a system structure that is, from its very inception, inappropriate for



87

many of the events that will oceur within it.

- I have also excluded some examples because the case they make for
excéption handling is very weak. For example, Wasserman [99] discusses
a'rohtinéucalled 'seafch’ which determines whether a name is in a table.

He presents it in three forms:

(i) as a function with a boolean result;
(ii) as a procedure which raises two exceptions, 'Found's and 'Notfound’;
(iii) as a probedure which always raises 'found', but which returns

a (character!) result indicating whether the name was really found.

Form (i) results in very transparent code which is not improved by the
introduction of exception handling. Wasserman does at least give comparative
examples; unfortunately, the comparison is spoiled by failing to use the
search routines to solve a stated problem. (Incidentally, form (iii) was
an attempt to simulate Zahn's situation—oase statement [104]. I am unsure
which construction benefits by the comparison.)

In attempting to provide comparative examples I am faced with a number
of difficulties. The most obviocus ischoosing a specification and a
programming style which are neutral with regard to exceptions.

Those who advocate exception handling mechanisms sometimes specify
problems by asking for a routine which provides a "normal” service 'A’
and "exceptional” services 'B’' and 'C’'. They then find that such problems
are elegantly solved by their exception mechanism! By posing their problems
in such terms, they disqualify any solution which is symmetric with respect :
to 'A’, 'B' and 'C’', even though such a solution may be just as appropriate

in the surrounding context.
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When discussions about the merits of the goto statement were popular,
advocates would ask: "How do I get from here tothere without a goto?”
As soon as one attempts to answer such a guestion the argument is lost, for
one is arguing about flow of control rather than how to solve a programming
problem. Such arguments have lead to the introduction of exit, break and
leave statements which do indeed get you from here to there without a goto -
but roses smell as sweet by any name. The only way to deal with such
guestions is to abstract the reguirements away from the implementation and
then to construct a program (wiéhout any jumps) that satisfies them. I
have to do a similar thing with problems illustrating exception handling.
Chosing a programming style is again a subjective problem. The options

are best illustrated by examining a real example.

4.1 The CLU Sum_Stream Example
This example is taken from the CLU Reference Manual [61, §12.31. The.

requirement is to produce a

procedure 'sum stream’ which reads a seguence of signed decimal
integers from a character stream and returns the sum of those integers.
The stream is viewed as containing a sequence of fields separated by
spaces; each fileld must consist of a non-empty sequence of digits, .
optionally preceded by a single minus sign.

The CLU manual then specifies that the heading of the procedure is

sum_stream = proc(s:stream) returns(int)
signals( overflow, badformat(string)
, unrepresentable integer(string)

)

and states the conditions under which the various exceptions are raised.




Another way of looking at this problem is to consider 'sum _stream' as

a procedure which returns one of four different kinds of result under
different circumstances. Specifically, let the result be of type 'SumResult’,

where

type SumResult = oneof( overflow : singleton

H int
unrepresentable_integers : string
bad format : string

— r e

The declaration 'type O = 9229£(T1; Tosenes Tn)’ defines '0' to be the
discriminated union of the types denoted by ’Tq', ’T2’,... and ’Tn'. It

is mot required that all these types are different; if 'Ti' and 'Tj'

happen té denote the same type, the oneof does not collapse in the way a
set-theoretic union would do. That is why I have chosen the symbol oneof
rather than union. It <& required, however, that the 'Ti’ are syntactically
distinct names; to facilitate this some of the 'Ti’ may be renamed by
writing 'ni:Ti'. This requirement arises because thers are '3n’ functions

contained in type '0’, which must have distinct names.

From_Ti : (Ti) =0
To T. : (0) -~ T,

— 1 i
Is_Ti : (0) - boolean

The 'FrDWLTi' functions are the injection operators, i.e. those used to
construct values of the cneof type '0'. Thus a 'SumResult’ can be
" constructed by writing 'From bad format(”-12s4")' or 'From int(256)'. The

projection functions ’TO_Ti' are obviously partial; ’To_Ti(x)' is only




defined if 'x' was constructed from type 'Ti', which is determined by

the predicate 'Ia_Ti(x)'. (These functions are formally defined in Chapter 5.)
The name ’'singleton’ denotes a type which contains only one value.
This value has no explicit denctation; instead operations on a
'singleton’ are applied to an empty parameter list. Thusa 'SurResult’
value can be constructed by the application 'From overflow()'.
Having explained the notation that will be used for types, we can
return to the specification of 'sum stream’. In my formulation ’'sum stream’

has the heading
sum_stream = proc(s:stream) returns SumResult

Should the sum of the numbers in the stream (or an intermediate sum)
exceed the implemented range of integers 'sum stream’ will indicate that an
overflow has occurred. If one of the numbers in the input stream exceeds
the implemented range of integers then 'sum stream’ will indicate that an
'unrepresentable_integer' was found. If the stream contains a string which
does not denote an integer ’'sum stream’ will indicate that its input was
in a 'bad format'. These indications will be provided either by exception
signals or by the oneof result as appropriate.

The CLU version uses the services of two library routines, 'getc’ and

s2i'. The first has type

proctype{stream) returns(char)
signals( end of file, not_possible(string) )

and returns the next character from the stream unless the stream is empty,
in which case 'end of file’ is raised. The signal 'not_possible’ is

generated if the operation cannot be performed on the stream, as would be




the case if it were an output stream or did not consist of characters.

The CLU manual assumes that 'getc' is always possible on the given stream.
The procedure 's2i’ converts character strings to integers; its type is
proctype (string) returns(int)

signals( invalid character(char)
» unrepresentable_integer
, bad format
)

The signal 'unrepresentable integer' is generated if the string represents

an integer outside the implemented range; 'invalid character’ is signalled

if the string contains a character which is neither a digit nor a minus sign,
and 'bad format' is signalled if a minus sign follows a digit, if there is
more than one minus sign, or if there are no digits.

My version will assume the existence of some similar routines. 's2i’
will have type

proc (string) returns

oneof( int
; invalid character : char

s bad format : singleton

s unrepresentable integer : singleton

)

For the sake of variety, I will not use a procedure ‘getc' which returns a

oneof result, but will instead use a predicate 'Endof’ and a procedure

"Nextc'. Their types are
Endof : proc (stream) returns boolean
Nextc : proc (stream) returns char

'"Nextc' is only partially defined: if not 'Endof(S)’' then 'Nextc(S)’

returns the next character from 'S'. Like the CLU authors, I will assume

that 'Nextc' is applicable to the given stream: a predicate 'IsNextcPossible’
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would permit

this assumption to be checked.

sum _stream = proc(s:stream) returns(int)

sums
nums

signals( overflow
, unrepresentable integer(string)
, bad format(stringl);
int := O T
string;

while true do

end;

o,

skip over spaces between values;
sum is valid, num is meaningless

N o\

cichar := stream$getc(s);
while c = ' ' do

c := stream$getc(s);
end;

read a value; num accumulates new number,
sum becomes previous sum
numn = '';

o
°
[}
%

while ¢ # ' ' do
num := string$append{num,c);
c := stream$getc(s);

end;

except when end of file: end;
% restore sum to validity
sum := sum + s2i(num);

except

end;

when end of file: return(sum);
when unrepresentable integer:
signal unrepresentable integer(num);
when bad format, invalid character(*):
signal bad format(num);
when overflow: signal overflow;

end sum_stream;

Figure 4.01: The sum stream procedure.

The CLU implementation of ’'sum stream’ is shown in Figure 4.01.

outer loop contains two inner loops, the first to skip spaces and the

The

second to accumulate digits. If the end of the stream 's' is encountered

in the second inner loop the raising of the 'end of file' exception causes

a jump out of the loop to the null handler at line 21.

Control then passes
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to line 23: the ocuter loop is only terminated when 'getc’ is invoked again
at line 12. This raises the 'end of file' exception a second time and

causes the execution of the return statement in the handler on line 26.

proc sum stream = (s:stream) returns SumResult
var sum : int = O
repeat
4 {skip over spaces between values; sum is valid}
var ¢ : char
repeat :
if Endof(s) return From int(sum) fi
8 c := Nextc(s)
when c # ' ' exit
again
{ read a value; num accumulates new number,
12 sum becomes previous sum }
var num : string = '’
repeat
num := string.append(num,c)
16 when Endof(s) exit
c := Nextc(s)
when ¢ = * ' exit
again
20 {restore sum to validity}
if Is_int( s2i(num) )
then
const newsum : oneof(int; overflow:singleton)
24 = sum + To_int(s2i(num))
if Is_int(newsum)
then sum := To_int(newsum)
else return From overflow()
28 ' fi
glif Is unrepresentable_integer( s2i(num) )
then return From unrepresentable_integer(num)
else return From bad format(num)
32 i
again
end of sum stream

Figure 4.02: sum stream without exceptions.

The discussion in the CLU manual states that most of the handlers

have been placed at the end of the outer loop to avoid cluttering the code.
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One of the consequences of this is that 'num’, which is otherwise used only
between lines 16 and 23, must have a much larger scope so that it is
available for the handlers. This is the reason for the comment at line 9.

My formulation of ’'sum stream’ without exceptions appears as Figure 4.02.
It follows the CLU example line by line as far as is possible. I have used
the return statement in four different places to exit from what would
otherwise be an infinite loop; these four cases correspond to the four different
exception handlers in the CLU version. I also wished to avoid the use of a
while ... do construction for loops in which the test does not naturally
come at the beginning: I have used a loop delimited by repeat ... again

within which when 'b' exit clauses may appear.

All the exceptions generated by the CLU version of ’sum_stream” originate
as exceptions raised by lower-level routines. 'Sum stream’ passes them on
to its caller: although some of the names may be the same, the meaning of
the exceptions is different at the different levels. For example, the
'bad_format' exception generated by 'sum stream’ has a broader meaning than
the 'bad format’ exception signalled by 's2i’ (it also has a result value).
The 'overflow’' exception is generated by the '+’ operator; for consistency
I have assumed in my version that '+' returns a result of the type
'oneof (int 3 overflow:singleton)’.

The type 'SurResult = oneof(overflow : ...)' and the type of 'newsum’,
that is ’oneof(overflow : singleton; int)’' both have operators
'From overflow()'. Allowing distinct types to use the same operator name
is known as overloading and occurs with many built in types. For example,
'+ is usually overloaded with definitions betwsen reals and between
integers, and may also have other definitions such as between vectors or

matrices. The potential ambiguity thus introduced is resolved either
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implicitly by examining the types of the arguments and result, or
explicitly by qualification, as in 'SumResult.From overflow()'. (CLU
uses $ instead of the point.) How much overloading is allowed, and in
which situations gualification is required, varies from one language to
another; no difficulty should be found in resolving the examples.

Comparing the two versions of sum stream, the main difference is that
in mine an explicit test must be made for each exception. I consider this
to be an advantage because it forces the progranmer to think about all the
possible cases.

To illustrate this, suppose that the specifier or programmer had
forgotten to consider the case where the last number in the stream is not
followed by a space. In the CLU version this would lead to the omission
of the 'end of file' handler at line 21. If this program were then applied
to an input stream without trailing spaces, the effect would be to exclude
the last number in the stream from the total. This would happen because the
'end of file’ exception raised by 'getc’ on line 19 would be caught by the
handler at line 26; this handler performs an immediate return without adding

'num’. If the same oversight were made when

in the digits collected in
constructing my version, the effect would be to omit line 16. If this program
were applied to the same input stream, 'Nextc' at 1ine17 would be called
when no characters remained in the stream. This would cause an inmediate
abort. In this sense my methodology increases robustness*.

The robustness arises because of the explicit association of "handler”
code with the routine which discovers the problem. Indeed, the existence
of a call of 'Nextc' not guarded by a test of 'Endof' ought to alert the

programmer to check the problem specification. However, the fact that

partial functions were used rather than routines which return oneof results

* This sense of the word is that adopted by Dijkstra [23],p. 56 , Hehner
[42]1,p. 278 and Bron and Fokkinga [12al.
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is irrelevant. The end result is the same if, instead of 'Nextc’ and

'Endof’, the library bad supplied a routine

getc : proc(stream) returns oneof( char
s end of file:singleton
3 not possible:singleton

)

The loop which accumulates characters would then have appeared as

repeat
num := string.append(num, To char(c))
c 1= getc(s) B
when Is end of file(c) exit
when To char(c) = "' exit
again

and omission of the 'Is _end of file’ test would have lead to an illegal

invocation of the 'To char’ function, which would also cause an abort.

This argument does not apply in the case of CLU signals. CLU expressly
permits a call that raises an exception not to be followed by a handler;

in such a situation, the handler from the surrounding lexical scope is used.

It may be that the reader is worried by the introduction of a loop
construction with exits. This is the inevitable consequence of trying to

imitate a program which uses exceptions to achieve premature termination of

loops. If the program is written in a top down manner without reference to
the CLU version no exists or returns are necessary because no loops are
used. This alternative formulation is shown in Figure 4.03. It uses
Dijkstra’s guarded command notation [22] and call and refinement [42]; both
of these techniques produce programs which occupy a greater number of lines,
but one should not be mislead into thinking that this implies greater
complexity. In my view Figure 4.03 is easier to understand than Figure 4.02.
However, the object of this thesis is to argue the merits of exception
handling, not of loops. The remaining examples in this chapter will be

written (without exception handling) in a way that follows as closely as
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proc sum stream = (s:stream) returns r:sumresult
var sum:int = 0
var c:char
var Num: string

Add Numbers in stream to sum

where Add Numbers in stream to sum is
if Endof(s) => r := FronLint(sdﬁT
1 jEndoF(s) =>

c := Nextc(s)

1? c="" = Add Numbers in stream to sum
T c# ' ' =>Read number and add it to sum
fi

k23

where Read number and add it to sum is

Num := ! '——
Append Non_space chars to Num
if Is int(s2i(Num)) =>

Add Num and Numbers in stream to sum
0 Is unrepresentable integer(s2i(Num)) =>

r From unrepresentable_integer(Num)
0 Is bad Format(521(Num))

or Is 1nva11d character(s2i(Num)) =>
= From bad format (Num)

fi
where Append Non_space chars to Num is
num := string.append(Num,c)
if Endof(s) => skip
0 ﬂEth?(s) =>

c := Nextc(s)

_i_fc = ' = skip

0 c# ' ' =>Append non space chars to Num
fi

fi
where Add Num and numbers in stream to sum is
const NewSum:oneof(int; overflow:singleton) = sum + s2i(Num)
1F Is int(NewSum) =>
sum := To int(Newsum)
Add Numbers in Stream to Sum
0 Is overflow(NewSum) =>
r := From overflow()

i

end of sum stream

Figure 4.03: Sum stream without exits or exceptions.
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possible the original solution (with exception handling); return and exit

statements will be used where necessary to contrive the similarity. I feel
that the proponents of exception handling will be inclined to favour such a
style; in any case it facilitates the comparison of the two versions. It
should be clear from the above that this method of presentation neither
means that exits are necessary if exception handling is removed, nor that

I support their use.

4.2 Levin's Examples

In Section 7 of his thesis [59] Levin presents five examples to demonstrate
the "practical applicability” of his mechanism. He claims both that his
solutions are naturael and that the problems cannot be successfully handled
by other mechanisms. In this section I discuss each of his examples in
turn. In the case of arithmetic exceptions I examine the CLU formulation as

well as Levin’s.

4.2.1 The Symbol Table PTobZeh
For his first example Levin presents the symbol table data type. Looking up
a name in a symbol table is representative of a common class of operations
which may return different kinds of results.

Levin defines a 'symbol table' to be a set of pairs '<name, value>’
where the first elements of the pairs are distinct. The cardinality of the
set is at most 'n’, i.e. the symbol table is of bounded size. If+- the pair
'<s,v>' has previously been inserted into 'st’, the result of 'lookup{st, s)’
is 'v', otherwise it is a notification that 's' is absent. If an attempt is
made to insert.a new name into a table which is already full then provision -

for some "exceptional” action must be available.




Levin's specification is in a style close to that of Alphard [103];

it is reproduced as Figure 4.04. Considering first the 'lookup’ function,

it will be seen that it may generate two exceptions, 'absent’ and 'present’,
and that the latter has a parameter of type V', The preconditions of

these exceptions tell us that each invocation of ’'lookup’ will generate
exactly one of them. No pre- or postconditions are given for 'loockup’
itself. Levin states that an omitted precondition is identically 'true’, and
that the omission of a postcondition means that "all parameters remain

unchanged”. Thus 'loockup’ is a total function in the mathematical sense.

form symbol table(n:integer, T:form<=, :=>, V:formx=, :=>) =
beginform
specifications
requires n z 1;
let symbol-table = assoc: {<s:T,v:iV>};
Tnvariant
cardinality(assoc) < n
and a,b e assoc => (a.s = b.s => a.v = b.v);
initially symbol-table = {};
functions
lookup(st:symbol-table, str:T)
raises
absent on lookup policy broadcast
pre = aest => a.s#str;
present (v:V) on lockup policy broadcast
pre = dasst st a.s=str and a.v=v
endraises T

insert(st:symbol-table, str:T, val:V)
raises
full on insert policy broadcast
pre = cardinality(st)=n and (aest => a.s#str)
endraises
post normal

"

if Jaest st a.s=str

then st = st - {a} U {<str,val>}
else st = st' U {<str,val>}
post full = st=st’;

Figure 4.04: Levin's symbol table specification.
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I have tried to interpret this specification according to the
verification methodology set out in [59].

The reader will recall that after an exception is raised and handled,
control returns to the procedure which generated the exception.
Section 6.2 of [59] states that "a module that defines a particular exceptional
condition on its abstraction alsc defines two predicates that hold before and
after the condition has been handled”. I would therefore expect the
specification of 'lookup’ to provide postconditions for 'absent' and 'present’
as well as preconditions. In the absence of explicit postconditions I can
only assume them to state that "all paremeters remain unchanged”. But
which set of parameters, those of the exception or those of 'lookup’?
If the former, then the postcondition of 'absent' is vacuously 'true’
(because it has no parameters) and so the postcondition of ’lockup' must
alsgc be "true'. This contradicts the previcus assumption. So I must assume
the latter interpretation, that the implicit postcondition for an exception
states that all of the parameters of the operation remain unchanged. This
means, for example, that the handler for 'absent' is debarred from changing
the symbol table: in particular it cannot insert the name which was found
to be absent. I do not believe that Levin intended to define such a
restrictive mechanism but see no other way of interpreting his specification
and verification methodology.

Similar problems arise with 'insert’. Levin tells us that the last
four lines represent the postcondition for ’'insert’. The notation is
intended to separate the part of the postcondition which applies in the
"normal” case from the part which applies when 'full’ has been raised. The

actual postcondition is stated to be

(-raised(full) and post normal) or (raised(full) and post full)
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where 'raised(c)’ if and only if 'c’ was generated by 'insert’. There
seems to be no advantage in separating the terms in this way because
'raised(full)’ is not available in the program. Nevertheless, it seems

clear that the handler for 'full’ is prohibited from altering ’ét'.

representation
unique
names:vector(T,1,n),
values:vector(V,1,n),
last:integer ‘
init last := O;
rep(last,names,values) =
T {<names[i],values[i]> | i e [1,last]};
invariant
last ¢ [0,n] and ((i,j e [1,1last] and 1 # j)
=> names[i] # names[j])

implementation
body lookup =
first J:upto(1,last} suchthat names[j]=str
then raise present(values[j])
else raise absent;
body insert
out normal = Fie[1,last] st
T (names[i]=str and values[i]=val and
viel1,last’] Jke[1,last] st
(names[j]’ =names[k] and 1 # j =>
values[j]' =values[k])) ‘
out full = last’=n and Vie[1,last’] names[i] # str
begin
first j:upto(a,last) suchthat names{j]=str
then values{j] := val
else if last<n

then last := last+1; names[last]:=str;
values[last] := val

else raise full

fi

end
endform

Figure 4.05: Levin'’s symbol table implementation.
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The implementation of Levin’s symbol table is reproduced as Figure 4.05.
The out assertions are the concrete versions of the appropriate
postconditions. All the statements which generate exceptions are the last
actions of the procedures in which they occur; Levin's resumption mechanism

is used to simulate a termination mechanism.

shared t:symbol-table(47, string, integer)
unigue r,s:string, v,w:integer

1l:begin
< set s >
lookup(t,s) [present(x): vi=x | absent: v:=0]
< use v >

< sget rand w >
insert(t,r,w) [full: - leave 1]

end

¢

Figure 4.06: Sample use of Levin’s symbol table.

Figure 4.06 shows a sample use of the symbol table. Its action is

described in [59]:

The invocation of ’'lockup' sets 'v' to the value associated with 's’,

- if any, or zero if 's' does not appear in 't’. The invocation of
'insert’ expects to enter the pair '<r,w>’ into 't’, but will leave
the block labelled ’'1’ if the table is full.

In seeking to provide a similar example which does not use an exception
mechanism one is faced with a number of choices. 'Lookup' is naturally
represented by a function with a result of type 'oneof(V; absent:singleton)’.
Using a union for the result of ’'lookup’ enables the symbol table abstraction

to treat both results on an equal footing and leaves it to the user of the
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abstraction to decide which result, if either, is "exceptional”. It was to
gain the same advantage that Leyin introduced two exceptions rather than
Jjust one.

Such symmetry is not required when inserting a new name into a possibly
full table. One technically sound (but inefficient) way OF‘dealing with
this sventuality is to ﬁake 'insert’ a partial operation and to provide a
predicate ’Is_insertabie[st,n)' which is true if and only if
'insert(st,n,v)' is permitted.

Another method of dealing with a full table is to invcke a prdoedure
parameter. Such a pareameter could be provided either when’the table is
first created or on each call of 'insert’. if the first course is adopted
it might be wise to provide an operation on symbol tables which changed the
handler procedure. This is very similar to what was done in the AED Free
Store package (see Section 2.1). My formulation of 'insert' uses a procedure
parameter to deal with full tables. This has an implementation advantage
over the use of partial operations: it is easier to check that a total
operation is provided with the correct number of parameters than it is to
check that a partial operation is invoked only from valid states. It also
has the didactic advantagé of introducing a new technigue - that of
notification procedures - into our list of alternatives to exception handling
mechanisms. This technique requires only a minimal transformation of

Levin's code.




104

type symbol-table{n:integer; T:type with
; Vitype with =, := )

nu
. i

is
specifications

requires n = 1

let SymbolTable = assoc {<s:T, v:V>};

invariant cardinality(assoc) < n

and a, b:e assoc => (a.s=b.s => a.v=b.v);
initially symbol-table = {};
operations
function lookup(st:symbol-table; str:T)
returns r:oneof(V; absent:singleton)
post = if dJaest st a.s=str

then r = From V(a.v)
else r = From absent()
procedure insert(var st:symbol-table; str:T; val:v; h:proc())

let tablefull = (cardinality(st)=n) and (agst => a.s#str)

pre = tablefull => pre h

post = if tablefull

then post h
else if 4 aest st a.s = str
then st = st - {a} u {<str, val>}
else st = st’ u {<str,val>}

mwon

Figure 4.07: Revised symbol table specification.

The revised specification is shown in Figure 4.07. The ’'lookup’
function has a single postcondition and the default precondition of ’true’.
Procedure ’'insert’ has an extra parametsr 'h’, a parameterless procedure.
The precondition of ’insert’ is that the precondition of 'h' should be
satisfied whenever the table is full. The let declaration simply defines'tablefull’
as an abbreviation. The postcondition of *insert’ depends on that of 'h'; I
feel that this is a more realistic formulation than Levin's which debarred

the handler for 'full' from altering 'st’.
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representation

unique

names : vector(T,1,n),

values : vector(V,1,n),

last : integer

init last := O;

rep(last,names,values) = {<names[i],values[i]> | ie[1,last]};
invariant
' &8st [0,n] and ((i,J € [1,1ast] and 1 # J)

=> names[i] # names[j])

implementation
body lookup =
first jrupto(1,last) suchthat names[j]l=str

then r := To V(values[j])
else r := To _absent();
body insert

out = (Fie[1,last] st
(names[i]l=str and values[i]=val and
v jel1,last’] 3 k&[1,last] st
(names[j]'=names[k] and i#j =>
values[j]’ =values[k]))
) or post h
begin
first j:upto(1,last) suchthat names[j]=str
then values[j]l:= val
else if last<n

then last := last+1; names[last]:=str;
values[last] := val

else h()

fi

end
endform

Figure 4.08: Symbol table without exceptions

My symbol table implementation is presented in Figure 4.08. Two of
Levin's raise statements have become assignments to a result variable; the
third has become a procedure call. The out assertion has been modified

in a similar way to the abstract specification.
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shared t:symbol-table(47, string, integer)
unigue r,s:string

s V,w:integer

, u:oneof(integer; absent:singleton)

l:begin
<sgt s>
u := lookup(t,s)
if Is integer(u) then v :
else v

To integer(u)
0

i
<use v>

<set r and w> |
insert(t, r, w, proc:leave 1)

end

Figure 4.09: Using the revised symbol table.

Comparing Figures 4.06 and 4.09, it does not seem to me that the use
of an exception mechanism produces a 'lookup' function whose use is easier
to understand. Moreover, Levin’s example violates his own restriction that
handlers must be procedure calls; if the two assignments to 'V' are turned
into procedufe calls his example is considerably more difficult to understand.
This is perhaps unfair, beo@use the handlers are abnormally simple; if they
were more complicated I would have wanted to use procedure calls in the
limbs of my if statement.

Nevertheless, these considerations lead us to ask why Levin's handlers

are so simple. Assigning 'v' to zero and continuing with the computation is
sensible in two kinds of situation. The first occurs when zero is not wvalid
as a value to be inserted in the table. This implies that

the table abstractioh should have been instantiated

with some other 'V', say 'Nautral'. Thus 'v' is really of a union type: it
is either a 'V' or it is zero. The program fragment represented by

'<use v>' will presumably test 'v' to see if it is zero before deciding
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how to proceed.

There is nothing new or surprising about this use of zero as an
"impossible” value: it has a history going back to the days of assembly
language and Fortran. However, the advantages of languages like Pascal,

CLU and Alphard is that one can construct types containing just the values
one needs and thus obtain clearer code and more checking at compile time.
Using union types preserves these benefits at the cost of having to make
explicit checks and type conversions. Adding "impossible values” to existing
types allows those conversions to be avoided, but negates many of the

benefits of strong typing. I return to this question in Chapter 6.

The second kind of situation in which it is sensible
for 'v' to be assigned to zero occurs when zero is some sort
of default value, and the computation which follows can be
performed with equal validity on both zero and non-zero values.
This is an unlikely possibility when a compiler's symbol table
is involved, but imagine for a moment that Levin’s exceptiaon
mechanism has been used to implement a sparse array. Failure
of a lookup function to find the requested element raises an
exception; at the next level of abstraction the handler for
this exception substitutes the appropriate default value (in
this case zero).

In this second situation, the result of the operation which
accesses an element of the sparse array is clearly of type
integer, and not of any union type. I cannot therefore object
to Levin's 'v := 0’ handler on methodological grounds. However,

an implementation of 'lookup’ which returned a union result
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would be in this case too just as readable as one which
raised an exception. The relative efficiency of the two

mechanisms is considered in Section 4.4.

4.2.2  The Inconsistent String Problem

Levin's second example is based upon his first but is intended to demonstrate
a different kind of use for his exception mechanism. He shows how

exception handling can be used to repair a data structure which has become
inconsistent because of a failure of "memory” (i.e. a malfunction of the
computer store).

He assumes that the strings stored in the symbol table are values of a
user-defined data type and that their representation céntains some redundant
information. If this redundancy reveals an inconsistency the string module
generates an exception. This exception is raised in the module using the
string, which in this case is the symbol table module. In order that the
symbol table may perform some recovery action Levin alters it to maintain
a duplicate list of strings in the vector 'dnames’.

Figure 4.10 is part of Levin’s string module; the function which tests
equality is emphasised. It generates the exception 'bad-string’ if one of

its argument strings has a negative length. If the handler for 'bad-string’
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does not correct the condition, it sets the erstwhile inconsistent string

to the null string and generates a second exception, 'reset-string’.

module string(n:integer)
begin
private length:integer, chars:vector(character,?,n)
init length := 0
condition reset-string policy broadcast
condition bad-string(var s:string)
policy broadcast-and-wait

function =(s1,s2:string) returns b:boolean
raises reset-string on s1,s2
raises bad-string on s1,82

begin
if s1.length<0
then
raise s1.bad-string(s1)
if s1.length<0
Then s1.length := 0; raise sl.reset-string;
' return
fi
i
1T s2.length<0
then
raise s2.bad-string(s2)
if s2.length<0
Then s2.length := 0; raise s2.reset-string;
return
fi
fi

if sl.length = sZ.length
then

first i:upto(1,s1.length)
suchthat s1.chars[i] # s2.chars[i]
then b := false '
else b := true
else := false
fi
end
end ~

Figure 4.10: Levin’s string module with exception detection.
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condition lost-entry policy broadcast-and-wait

function lookup(st,s)
raises lost-entry on st
raises ahsent on lookup
raises present(v) on lookup
begin

for i:upto(1,last)

da

if =(names[i],s) [names[i].bad-string(str):str := dnames[i]]
then raise present(values[i]); return
F -
od [ names[i].reset-string: fixtable(st,i) -+ return ]
raise absent
end

routine fixtable(st:symbol-table, i:integer)
begin

names[i]:= names[last]

dnames[i]:= dnames[last]

values[i]:= values[last]

last := last-1

raise st.lost-entry
end

Figure 4.11: Re-implementation of lookup.

This string module is used by the revised 'lookup’ operation shown in
Figure 4.11. If 'bad-string’ is raised on a name in the symbol table the
value of the appropriate string in the duplicate vector 'dnames’ is copied
into it. If the copy is also bad then 'string’ will raise 'reset-string’.
This will be handled by the routine 'fixtable', which uses local
information to remove the corrupted entry from both 'names’ and 'dnames’.

It then generates the exception ’'lost-entry’ so that the users of the symbol
table know that it is not reliable.

Despite its heading 'loockup’ is not a function: it is liable to alter its

symbol-table. parameter. Moreover, if an irrepairably damaged entry should be
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found in the table neither 'absent’ nor ’'present' will be generated even
though the name 's’ supplied as a parameter to 'lookup’ is present in
"names’. Similarly, not only is the string equal operation not a function
(because it may alter its parameters), it is not even symmetric. Levin's
exposition doss not bring out these difficulties because it does not provide
a specification.

I cannot believe that this example illustrates an excepticn handling
problem that might arise in a real-world system. It is unrealistic for at

least three reasons.

First, remember the assumption that the negative string length arises
from "memory failure”. On a conventional machine, any unreliability in the
store will be at least as likely to corrupt the duplicate strings and the
code of the program (and thus the exception handlers) as it is to cause a
negative string length in the name table. Levin's example begins to be
realistic only with a programming language and architecture that allow one
to specify that the code, duplicate strings and name table reside in

different physical stores.

Second, why does the representation of strings reserve a bit faor the
sign of the length, when it must always be positive? Is it solely for

error detection? If so, it would be better to use it as a parity bit.
Third, the separation of the detection and correction of string errors
into two different levels of abstraction is a design error. And it is
this very error which gives rise to the need for exception propagation
between levels. If the string module is going to operate with an unreliable
store, and if a duplicate list of names is going to be maintained, it
should clearly be the string module which maintains it. This increases the
likelihood of error detection as any corruption in either of the strings
can be detected. Levin's formulation detects a change in the sign bit only.
On the other hand, since errors in the duplicate strings are presumably just
as likely as errors in the original strings, the available error correction

is minimal. With one hundred per cent redundancy it is possible to do a
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lot better than this,

Despite the artificial nature of the problem it is instructive to
see how it might be solved without exception handling. Since the 'bad-string’
and 'reset-string’ exceptions relate to an individual string, it is natural
to replace them by notifioation procedures private to each string. Such
procedures might be provided as parameters to the 'MewString' routine, or
they might more conveniently be "frozen” into a ’NewStringWithStandardReCovery'
routine. In either case routines to retrieve and change the notification
procedures must be provided. Paft of a 'string' module is shown in
Figure 4.12. The routines 'BadStringRt' and 'SetBadStringRt' are provided
to access the badstring notification procedures within the 'string’ module it
can be accessed as a component of the representation, but this is assumed
to be hidden from users of ’string'. If the string equality routine finds -«
a negative length it first assigns the corrupted string variable to the
result of applying the 'Badstr’ procedure. If the length is still negative
it is zeroed and the 'Reset’ procedure of the string is applied. This
parallels exactly the action of Levin's equality routine.

When the routine is used, instead of enabling exception handlers one
must set the appropriate recovery procedures. This is illustrated in
Figure 4.13. Before the strings are compared for equality, 'lookup' changes
the bad string routine of the appropriate element of 'names'; after the
comparison it is reset. This resetting could be accomplished more
conveniently if each string contained a stack of recovery procedures.
If this change is made then my equality and lookup routines are essentially
identical to the implementation Levin gives for his mechanism. This would:
seem to boost Levin's claim that his exception handling mechanism is a high

level feature which reduces the amount of code the programmer must write.




Figure 4.12: String module with notification procedures.

module string
defines =, BadStringRt, SetBadStringRt, NewString.
, ResetRt, SetResetRt, NewString, ...
representation is
record( chars:array 1:n of character

; Badstri:proc() refurns string
3 Reset:proc()
3 length:integer

)

function BadStringRt(s:string) returns p:proc() returns string

is p := s.Badstr
end of BadStringRt

proc SetBadStringRt( var s:string; p:proc() returns string )

is s.Badstr := p
end of SetBadStringRt

function ResetRt(s:string) returns p:proc()
is p := s.Reset
end of ResetRt

proc SetResetRt(s:string; p:proc() )
is s.Reset := p
end of SetResetRt

roc =(var sl:string; var s2:string) returns b:bool is
if sT.length < 0 ~ '_—
Then s1 := (s1.Badstr) ()
if s1.length < O
then s1.length := 0
(s1.Reset) ()
return

fi

i

if s2.length < O

Then s2 := (s2.Badstr)()
if s2.length < O
Then s2.length := 0
T (s2.Reset) ()

return

fi

fi

if s1.length = s2.length

Then first i:upto(1,s1.length)
suchthat s1.chars[i] # s2.chars[i]
then b := false

else b := true
else 1= false
fi
end of =
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proc Lookup(t:symboltable; s:string) returns
r:oneof (Value; Notfound:singleton)

for i:upto(1,last)
do
proc FixTable() is
names[i] := names[t.last]
dnames[i] := dnames[t.last]
values[i] := values[t.last]
last := last-1
t.LostEntry()
end of FixTable

proc UseDuplicate() returns s:string is
5 := t.dnames[1i]
SetResetRt(s, FixTable)

end of UseDuplicate

const 0ldBadStringRt : proc() returns string
= BadStringRt( names[i] )

SetBadStringRt (t.names[i], UseDuplicate)

if =(t.names[i], s)

Then SetBadStringRt(t.names[i], 0ldBadStringRt)
r := From Value(t.values[i])

return

fi ‘

SetBadStringRt (t.names[1], 0ldBadStringRt)

od
r := From Notfound()
end of Lookup

Figure 4.13: Lookup using inconsistent string module with notification

procedures.

There are two defences against this argument. The first is that there
is very little extra code present in my version. Two fields and their
access routines have been added to the string module, and three routine
oalis to 'lookup’. Given that the example was constructed specifically to
demonstrate the advantages of Levin's mechanism I was surprised that the
same effect can be achieved with very little extra effort. Do similar
examples occur often enough to justify the complexity of Levin’s mechanism?

The second defence is that the use of an exception handling mechanism,
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by hiding what is really happening, actually #inders our understanding.
This is a bold claim which I will justify through my experiences in
constructing Figures 4.12 and 4.13.

Having written the code fragments shown, I naturally looked for ways
of simplifying them. The repeated setting and re-setting of the notification
procedures i1s displeasing and could be avoided. The same bad string routine
is applicable anywhere in the symbol table module after a name has been
inserted: the routine could be set just once and never changed. However,
if I did that I would lose the exact parallel with Levin’s routine which
does indeed set up the exception handler just for the duration of the
equality test.

It is also clear from the figures that the original 'Reset’ routine
of "names[i]’' is never used. Before 's1.Reset’ is called, 'dnames[i]' has

's1'. Similarly, the 'Badstr' routine of 'dnames[i]’ is

been assigned to
never applied: 'dnames’' is only accessed as a consequence of applying the
bad string routine of ’'names’. Further, the preconditions established by
'Lookup'’ before calling these routines are identical: in both cases the
string has a negative length. It is thus possible to simplify the representa-
tion of string and to provide more levels of recovery by using just one
notification procedure.

Part of a string module which takes advantage of this simplification
is shown in Figure 4.14. The local routine 'IsOK(s)' returns 'true' if
the length of its parameter is positive or zero. If it is negative, the

' is applied. The result of this routine is either the

recovery routine of 's
singleton ’'Unrecoverable’ or a new string value. If the former, 'IsOK’

returns 'false'; if the latter, the new string is assigned to 's'. Because
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type string ...
representation is

record( chars:array 1:n of char
; Recoveryiproc() returns
oneof (string; Unrecoverable:singleton)
3 length:integer
)

proc =(var s1:string; var s2:string) returns b:bool is
proc c 1s0K(var s:string) returns b:bool is
var r : oneof(string; Unrecoverable:singleton)
if s.length < 0

then r := s.Recovery()
if Is_string(r)
then s := To_string(r)
b := IsOK(s)
else b := false
fi
else b := true
fi
end oF IsOK

if IsOK(s1) and IsOK(s2)
then if s1.length = s2.length
then first i:upto(1, si.length)
suchthat s1.chars[i] # s2.chars[il]

then b := false
else b := true
fi
else b := false
fi
end of

Figure 4.14: String module with single notification procedure.
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the new string itself contains a Pecovery procedure, the recovery

procedure of 's’ is overwritten by this assignment. When 'Is0K’ invokes
itéelf recursively to test if ’'s' is now consistent, a further inconsistency
will cause the new recovefy procedure to be invoked.

In this way users of the revised string equality routine can provide
as many levels of recovery as they wish, from zero upwards, rather than
being constrained to supply exactly two. As far as I can see this solution
cannot be programmed with Levin’s mechanism; only one handler could be
provided for a 'recovery' exception generated by =1, (Of course, it would
be possible for that handler to apply the value of a routine variable, but
Levin's excepfion mechanism was presumably designed to make such variables
unnecessary.) ‘

This, gain in simplicity was not due to a flash o% insight. It was due
to the discipline of having to write out exactly what was happening in
lLevin’s example. I obtained a simpler version because I did not use an
exception handling mechanism rather than in spite of not using one. And
this is true even though the example was inverted specifically to

demonstrate the utility of Levin’s mechanism.

4.2.3 Arithmetic Exceptions

Arithmetic overflow and underflow must bear much of the responsibility

for creating the subject of exception handling. It is interesting to see

how these exceptions are handled both with Levin's mechanism and in CLU.
Levin presents part of the specification of a form Fof floating point

arithmetic. The exception handling is ihdirept because the handlers return

to the operation with a result. For example, the 'overflow’ exception
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generated by 'add’ has a var parameter: in the call
z := add(x,y) [overflow(v): v := maxfp]

the assignment of 'v' in the handler causes 'z to become 'maxfp’.
The specification given for real in the CLU Reference Manual [61]
defines a type which is easier to use in simple cases. The types of two

of the operations are

add: proctype(real, real) returns(real)
signals(overflow, underflow)

div: proctype(real, real) returns(real)
signals(zero_divide, overflow, underflow)

Axioms are given to define the results of these operations when the exceptions
do not occur. The excepticns are generated in the situations one might
expect; an exact definition is unnecessary for our purposes.

Typical calls of these routines might be

z := add(x,y) except when overflow: z := Real Max
end
z 1= div(x,y) except when underflow:
if sign(x) = sign(y)
then z := Real Min
glse z := -Real Min
end -

end-

How can such a data-typé be represented without the use of exceptions?
Note that 'add’' will return either an approximation to the sum of its
arguments or an indication that the sum is outside the range of real.

Similar observations hold for 'div’ and the other operators. A natural




representation for this seems to be a oneof result: the headings of the

'add' and 'div’ operations would then become

proc add(a:real; b:real) returns c:
oneof(reals underflow:singleton; overflow:singleton)

proc div{a:real; b:real) returns c:

oneof( real; zero_divide:singleton
; underflow:singleton; overflow:singleton )

I will omit the full specification because the characterization of

approximate arithmetic is not my goal. Instead I will illustrate how these

operators might be used:

var o:oneof(real; underflow:singleton; overflow:singleton)

0 := add(x,y)

if Is_pverFlow(o) then z := Real_Max else z := Tq_real(o)
1

if Is underflow(div(x,y)).

then If sign(x) = sign(y) then z := Real Min
else z := -Real Min
fi
else z := to real(div(x,y))

fi

These examples are very close parallels to those written in CLU.

In the first, if ’add(x,y)’ results in an overflow, 'z' is assigned to the

value of 'Real Max'. If it results in an underflow the CLU code will

generate the exception 'failure("unhandled exception: underflow”)’ (assuming

that there is no handler for 'underflow' on an enclosing block). In my
version the function 'To Real' will fail and one can expect the message

"5 is of type underflow, not real”. I assume that this is what the
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progranmer intended: he may know that two very large positive numbers are
being added and that underflow cannot occur, and that 'Real Max' (rather
than, say, '-Real Max') is a suitable result in the case of overflow.
Similar context considerations could make the second example realistic.
My version assumes that the implementation will optimize the two identical
function calls 'divix,y)'s; this avoids the introduction of a temporary
variable and is a trivial optimizaticn because 'div’ is a pure function.
The most common use of these operations would be where no exceptions
are expected and no sensible continuation is possible should cne occur.
The occurrence of an exception would indicate a programming error in some

other module. Suitable diagnostics are obtained in CLU by simply writing
z = add(x,y)

which would generate the failure exception should underflow or overflow
occur. This will provide the appropriate alarm provided that no enclosing
block has a handler for underflow and that no higher level module handles
the 'failure' exception.

With my functions one would have to write
z := To_real(add(x,y))

which would apply the 'To_real’ function outside of its domain if underflow
or overflow occurs. This will provide an implementation dependent alarm
which cannot be intercepted at a higher level.

Of course, I do not expect every addition to be written with such a
cumbersome syntax. There are several ways of abbreviating it. One is to

introduce implicit coercions, i.e. to allow 'add(x,y)’ to be written in




contexts where a 'real’ is expected and for the 'To_real’ projection to be

provided implicitly. Another is to provide two sets of arithmetic operators:

partial functions such as
P_add: (real; real) returns real

and total functions such as 'add’ with the oneof result. The total functions
would be used when the programmer was prepared to deal with the exceptions,
and the partial ones when he was not.

I‘Favour the second sclution because I consider implioif coeroions to be
dangerous, but the choice is one for the language designer to make after
considering how it will'afFect other aspects of the language. A third
possibility is available in CLU because infix operators are considered to be
syntactic sugar for invocations. For example, if 'expr1' is of type 'T’,
the syntactic form ’exprt + expr2’ is defined to be shorthand for
'T$add (expr1, expr2)’. There are no semantic constraints: the shorthand
form is legal exactly when the corresponding invocation is legal. The
expansion could equally well have been chosen to be 'To_T(T$add(x,y))’
and the desired syntactic brevity could then be obtained without altering
the semantics of the underlying language.

Another way in which an exception handling mechanism helps the
programmer achieve brevity is by permitting a handler to be attached to a
whole sequence of statements' rather than just one. Levin's mechanism is
easier to use in this way'because it is parameterized and always returns
control to the routine raising the exception. For example, suppose that
zero is an acceptable result whenever 'div’ detects underflow within a

pumerical routine. With Levin’s mechanism one can write



begin

««« body of routine using div ...

end [underflow on div(v}: v := 0] .

In CLU this is not possible both because there is no parameter to set to
zero and because the division routine is terminated before the handler is
invoked.

The solution to this problem in CLU (and using my oneof notation) is
to declare a local division function with the required specification.

In CLU one would write

begin
Localdiv = proc(a:real, b:real) returns real
return (div(a,b))
except when underflow: return 0.0 end
end Localdiv

«»» body of routine using Localdiv ...
end .

Using my notation the routine would be similar except for the

definition of 'Localdlv’, which would be

proc Localdiv(a:real, bireal) returns r:real is
if Is underflow(div(a,b))

Then T := 0.0
else r := To_real(div(a,b))
f1i

end of Localdiv . .

Both of these code fragments contain a few more lines than those which

use Levin's notation. What this modest extra expenditure has bought us is
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greater security. We can be sure that only those divisions which are
performed by 'Localdiv' will return zero when an underflow is detected; there
is no possibility of inadvertently handling other exceptions. In my

opinion this is a worthwhile exchange if one is attempting to write reliable
software. If brevity is the most ifportant consideration one might be

better using APL.

4.2.4 The Storage Allocation Problem
Storage allocation was mentioned in Chapter 3 as an example where exception
propagation should not be along the call chain. Levin presents a module
'pool’ which provides 'allocate' and 'release’ functions. I will abstract
a little from his example (because it makes unrealistic assumptions about .
the management of the pool) but preserve its essential features. |

I will first assume that only one process is active. The 'pool’
module will make use of a lower level module 'FreeStore’ which deals with
untyped blocks of store. The function 'MaxBlockSize(f)' returns the size of
the largest contiguous block of store available in the FreeStore 'f'. The
procedure 'NewBlock(f,n)' returns a reference to a new storage area of size
'n < MaxBlockSize(f)', and the procedure 'ReturnBlock(f, p, n)' makes the
block referenced by 'p' available for reuse. Some type conversion functions
will also be introduced. With these modifications Levin's 'pool’ module

appears in Figure 4.15.
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module pool
condition pool-low policy sequential-conditional
condition pool-empty policy broadcast

proc Allocate(p:pool; t:type) returns d:ref t
raises pool-low on p
raises pool-empty on Allocate

const f:FreeStore = p.FS

function adequate returns b:bool is
b := Size(t) < MaxBlockSize(f)

end of adequate

if not adequate()
then raise pool-low until adequate()
if not adequate
Then  raise pool-empty
return

fi
fi
d := Forcetotype(t, NewBlock(Size(t)))
end of Allocate
proc Release(p:pool; d:ref any) is
ReturnBlock(d, Size(Type(d)))

end of Release
end of pool

Figure 4.15: Pool module for a single process, after Levin.

I will ignore details of how the pool is created originally. 'Allocate’
accepts a 'pooi’ and a type as parameters, obtains sufficient storage from
the 'FreeStore' associated with that pool to represent an object of the
required type, and returns a reference to it. If adequate storage is not
available to do this the excebtion 'pool-low’ is generated. It is raised
in turn with each of the users of the pool until either adequate resources
become available or there are no more handlers. If the handlers do not
succeed in releasing enough store the exception 'pool-empty' is generated.

The 'Release’ operation is straightforward.




Note that the 'pool-empty' exception is raised only with the caller of

'Allocate’, and not with all the users of the pool. This is because the
pre-condition of the exception, 'Size(t) > MaxBlockSize(f)', is meaningful
only to that caller.

A use of the 'pool’ module is illustrated in Figure 4.16. The normal
handler for 'pool-low' invokes 'squeeze' to try and compact 'm'. However,
this handler is masked while 'AddtoStructure’ and 'AnotateStructure’ are

applied to 'm’.

module Usepool
var p:ref pool
var m:structure
condition impossible policy broadcast

proc Update(info:data) raises impossible is
var d1:ref obj1
var d2:ref obj2
Eroc local-clearup is
release(p, d1)
raise impossible
end local-cleanup
d1 := Allocate(p, obj 1) [pool-empty: raise impossible - return]
d2 := Allocate(p,obj2) [pool- empty local-cleanup ~ return]
va. st fields of d1 and d2 using info ...
begin
AddtoStructure(m, d1)
AnotateStructure(m, d2)
end [pool-low: ]
end Update

proc Sgueeze is
| performs compaction of m, calling release(p, d)
|| to return any d removed from m
end of Squeeze
end of Usepool [pool-low: Squeeze()]

Figure 4.16: Levin's use of the pool.
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Equivalent program fragments which do not use exceptions are easy to
formulate. The pool-empty exception is replaced by a oneof result to
'Allocate’, and the ’'pool-low’ exception by a notification procedure.
Whenever 'Usepool’ assigns 'p' to a reference to the pool it also adds
'Squeeze’ to the pool’'s list of notification procedures. The compaction
could be inhibited while 'm’ is being updated either by temporarily removing
'Squeeze’ from the list or by setting a variable which 'Squeeze’ tests.

For the sake of variety I have chosen the second alternative. Code composed

according to these considerations is presented in Figures 4.17 and 4.18.

module pool
representation is
record( FS:FileSystem; poollowrts:List proc() )

proc Allocate(p:pool; t:type) returns
d:oneof (Descriptor:ref t; Empty:singleton)
is const f:FreeStore = p.FS
Ffunction adequate returns b:bool is
b := size(t) > MaxBlockSize(f)
end of adequate

if not adequate()
then for r in p.poollowrts until adequate do r()
I not adequate()
then d:= From Empty()
return

fi
fi T
d := From Descriptor( Forcetotype(t, NewBlock(Size(t))) )
end o? Allocate

proc AddPoollLowRt(p:pool; riproc()) is
Append(p.poollowrts, r)
end of AddPoollowRt

proc RemovePoollowRt(p:pool; r: oc()) is
Removeframlist(p.poollowrts,
end of RemovePoollLowRt
end of pool

Figure 4.17: The pool module without exceptions.




module Usepool

var p:ref pool

var m:structure

proc Update(infor:data) returns-
r:oneof(Possible:singleton; Impossible:

singleton)

Allocate(p, obj1)

Allocate(p, obj2)

is var dl:ref obj1
var d2:ref obj2
const qdT:onecf( Empty:singleton
3 Descriptor:ref obj1 ) =
if Is Empty(qd1)
then r 1= From Impossible(); return
else d1 := To_Descriptor(qd1)
f1i
const qd2:oneof( Empty:singleton
5 Descriptor:ref obj2 ) =
if Is Empty(qd2)
then r := From Impossible(); release(p,d1); return
else d2 := To Descriptor(qd2)
I
02 St fields of d1 and d2 using info «..
begin
m.Updating := true
AddtoStructure(m,d1)
AnotateStructure (m,d2)
m.Updating := false
end
end update

proc squeeze is
if m. Updating
then skip

else

fi
end of squeeze
end of Usepool

|| performs compaction of m, calling
|| release(p, d) to return any d removed

Figure 4.18: Using the pool module without exceptions.

So far this example has been similar to the inconsistent strings

problem. Howesver, it is often necessary to perform resource allocation

in what Levin calls "a fully parallel environment”.

He presents thg

problem in such a context. I have not done so initially because I first

wanted to develop comparative exa