A compact representation for file versions:
a preliminary report

Andrew P. Black
Digital Equipment Corporation

Abstract

This paper presents a new system for the compact
representation of multiple versions of a file. The presentation is
in terms of vectors and matrices, which results in conceptual
simplicity. Algebraic transformations enable the retrieval
process to be optimized for any given version or set of versions,
in contrast to always optimizing for the most recent or least
recent version. Moreover, any version can be added or deleted
without affecting any other. File differencing and dictionary
compaction are unified, and data compression can be included.

A compact representation for the (sparse) matrices is presented,
and the main algorithms are described in terms of this
representation.

I. Introduction

Many forms of information processing involve dealing with
successive versions of a file: production of a document or a
program are obvious examples. Many file systems recognize
this fact and provide direct support for versions: Digital’s
VAX/VMS ~ operating system is a typical example. In those
file systems that do not provide versioning (notably, UNIX®),
application level software has been developed to maintain
multiple versions in a single (file system level) file: AT&T'’s
Source Code Control System (SCCS)[7] and Tichy’s Revision
Control System (RCS) [10] are examples. Such software serves
two purposes: control and compaction.

From the software engineering viewpoint, version control
is the major problem. It is important to be able to select a
consistent set of file versions to compile a program or
document. Some of the more successful systems for the control
of multiple versions do no compaction at all; the interested
reader is referred to references [4] and [8].

The work reported here was supported in part by the National Science
Foundation under grant DCR-8420945, and by a Digital Equipment
Corporation External Research Grant. The work was initiated at the
University of Washington.

Author’s current addresses: Andrew P. Black, Digital Equipment Cor-
poration, Cambridge Research Laboratory, One Kendal Square, Bldg
700, Cambridge, MA 02139; Charles H. Burris, Jr., Seattle Pacific
University, Seattle, WA 98119.

™ VAX/VMS is a trademark of Digital Equipment Corporation

® Unix is a registered trademark of AT&T Bell Laboratories

CH2695-5/89/0000/0321$01.00 © 1989 IEEE

Charles H. Burris, Jr.
Seattle Pacific University

This paper is concerned solely with version compaction,
the problem of efficiently representing multiple (scores, perhaps
hundreds) versions of a file efficiently. By “efficiently” we
mean both in terms of storage space and time taken to store and
retrieve versions. One approach to this problem is data
compression, using techniques such as Huffman Coding [1] or
the Ziv-Lempel algorithm [11]. These techniques exploit the
non-random nature of data within a file to reduce its bulk by as
much as seventy-five percent [5]. In contrast, the techniques to
be described in this paper attempt to capitalize on the
similarities between different versions of the same file. It is
perfectly feasible to apply data compression techniques to the

data that results from version compaction.

II. Current Compaction Schemes

The development of selection matrices has been influenced by
three existing version compaction systems — SCCS, RCS, and
AVL dags.

SCCS [7] stores all the versions in a single composite file
called the s-file. Segments from various versions are bracketed
by editing directives that state which versions of the file should
contain that segment. The reconstruction process involves one
complete pass through the s-file, looking at every editing
directive and applying those which pertain to the version being
reconstructed. The time to retrieve any version is dependent
upon the total number of editing directives for all versions; as
the number of versions increases it takes longer to reconstruct
each version. Once text has been deleted, it is excluded from
all future versions. Therefore, if a section of a file is deleted in
one version and re-inserted in the next, that section will be
stored twice in the file: once in the delete command, and again
in the insert command. This happens even if the text is re-
inserted in exactly the place from which it was deleted.

RCS [9, 10] stores the most recent version in plain text and
uses a series of reverse deltas to generate each of the other
versions. A delta is composed of editing directives which
transform a “source file” into a “target file”; RCS stores the
delta necessary to transform the i version into the i—1%
version. These deltas (and the plain text) are all stored in a
single file, but the deltas are separate rather than interleaved as
in SCCS.

If the current version is the n®, in order to retrieve the m®
version all the intermediate versions n—1,n-2, --- ,m+1
must be created. The time required to generate any version

therefore depends upon how many intermediate versions must
be created. (In the actual implementation of RCS, the full text
of the intermediate versions is represented as a “piece table”, a
table of pointers into the RCS file [10]. Application of a delta
transforms piece table PT, into PT,.,. This avoids the
excessive handling of large strings, but does not change the
concepts.)

AVL dags represent a completely different approach. They
were introduced by Myers [6] as a way of efficiently
representing multiple versions of data structures in applicative
languages. If an array is represented as a binary tree, and a new
array is generated that differs from the old in just one element,
then it is not necessary to store both trees in their entirety. One
needs only two root nodes, and two distinct paths to the element
that differs; the rest of the structure can be shared. Clearly,
duplication of nodes is minimized if the trees are balanced,
hence the choice of AVL trees. Fraser and Myers [2] later
adapted the same idea to the storing of versions of a file.

Since text is stored in each node, a change to a leaf node in
an AVL Dag of height 2 will result in & sections of text being
duplicated. Since over half of the text is stored in the leaves of
a binary tree, this will occur, on average, in over half the
changes. The expected number of duplicated nodes for a

random change is approximately A—1.

IT1. Requirements

From a study of SCCS, and RCS , we can derive the following
desiderata:

(1) Use a separate delta for each version.
(2) Construct each version directly using only one delta.

These requirements for deltas can be summed up by stating
that any version must be reconstructable independently of the
other deltas. This is the central idea of the selection matrix
approach. Out of this we immediately get the following:

(1) Store each delta in a separate file. This is much faster than
reading one large file and searching for the desired delta.

(2) Place all text in a separate file and call this the basis.
Recall that SCCS interleaved text and deltas and so
separation was impossible. RCS began to separate the
deltas from the text, but brought along any new text to be
inserted as part of the delta. Both these approaches result
in duplicated text since text in woven into the editing
directives. By placing all text in one file, duplication of
text need not occur.

(3) As a result of 1 and 2, it becomes clear that the editing
directives of the deltas have been reduced to a sequence of
selection operations.

For example, if the basis consists of the characters
a,b,c,d, e, then the selection operations:
(select 3 characters, starting with character 1)
(select 4 characters, starting with character 2)

will combine the two sequences abc and bcde into the version
abcbede .

This example points out another advantage of representing
all versions as selections from a single basis. The block of text
bc is repeated in the version abcbede, yet it is stored only once

322

in the basis.
The combination of basis and selection operations provides
the following advantages:

— Separate Deltas
Direct Deltas
— A block of deleted and reinserted text is stored only once.

— A block of repeated text is stored only once.

These ideas are formalized in the following section. The
selection operations are represented as a sparse matrix; this
provides a well-understood formal framework from which

useful insights and results can be borrowed.

IV. Selection Matrices

We will frame our discussion in terms of “atoms”; atoms may
be words, lines, or even single characters, depending on the
application.

A basis b, ¢, + -+ is a row vector of unique atoms, and is
used to contain the text of our files. For example, define

b = ["the " mman " "bit " "dog n]'

A selection matrix S, T, -+ is a matrix of Os and 1s such
that each column contains a single 1. For example,

10010
00001
00100
01000

is a 4 x 5 selection matrix. With the usual notation,

Sis anm xn selection matrix=Vje[l --- n] 3! ist.S; = 1.

The product of a basis and a selection matrix is defined in
the usual way, with X denoting repetition and + concatenation.
For example, the first element of bS is obtained by multiplying
b by Se;:

i)

1
[Ilthe " "”lan " llbit " Hdog I'] 8
0

= “the ",

Multiplying b times the columns of S yields
bS = [“the " "dog " "bit " “the " "man "].

It is convenient to define an operator TEXT that takes a
row vector of atoms and produces a string:

TEXT(c¢) = +/¢
=ctet G,
Thus,
TEXT(bS) = "the dog bit the man "

We now have the most rudimentary tools for version
compaction. Consider a sequence of all of the unique strings
(atoms) from the set of versions, p,, Ha, - - to be compacted.
This is a basis b, of size m. For each version L there exists a
selection matrix § , such that

TEXT (bS) =

Now, imagine that a new version v is added. If v contains
no new text, i.e., every atom in v is already in b, then there is a
corresponding selection matrix S, and all is well. More
realistically, however, we should assume that v contains i new

atoms a,, *** ,a. We now need a new basis: b* of length
m+i will do, where
b; ifje[l..m]
+
b = A ifj e[m+l . m+i].

The basis b* is called an extension of b.

What change, if any, must be made to an existing selection
matrix when the basis is extended? The “domino rule” for
matrix multiplication requires that the matrix must also be
extended, so that it has as many rows as there are elements in
the new basis. However, this is a trivial task. If
TEXT(bS,) =W, then the extended selection matrix S,
satisfying TEXT (b*S[) = W can be obtained from S, simply
by adding i zero rows to the bottom, one for each new atom in
the extended basis.

V. Permutation Matrices

So far we have discussed one type of modification to a basis -
extension. It is natural to ask what other sorts of modification
might be made to a basis while still retaining the ability to
construct a selection matrix that will generate the original file.

Clearly, it is not possible to replace one basis by another
arbitrarily: the new basis must include all of the atoms in the
old basis that are selected by any selection matrix. However,
one transformation of the basis that is always possible is
permutation of the atoms. Permutation matrices, which are
square matrices with a single 1 in each row and each column,
provide a conceptually simple way to reorder both the atoms in
a basis and the rows of selection matrices.

Consider a basis b with /m atoms, an m x n selection matrix
S, an m xm permutation matrix P, and an m xm identity
matrix /. Then from standard matrix theory

bS = bIS = bPP7IS = b'S”

where b” = bP represents a reordering of the atoms in b, and
ST = P7IS is the rearranged selection matrix. Since the
inverse of a permutation matrix is its transpose,
§* =P-ls = PTS,

To see how this works, consider the following example.

W = "the dog bit the man "
v = "the man loved the dog "

b = [“the " "man " "bit " "dog " "loved "]

323

10010] 16010
00001 01000
S,=/00100|andS,= [00000
01000 00001
00000 00100

Suppose it is desired to switch the second and fourth atoms
in b. Choose permutation matrix
10000
00010
00100
01000
_0 0001

which is the result of switching the second and fourth columns
of a 5 x 5 identity matrix. Then

b” = bP = ["the " "dog " ubit " "man " "loved u] R

10010
01000
00100(,
00001
00000

r=PTs, =

10010
00001
00000
01000
00100

Thus

p = TEXT (bS,) = TEXT (b"S})
and

v = TEXT (bS,) = TEXT(b"S])
as required.

To see why basis reordering can be a useful operation,
consider a large basis, kept in secondary store, supporting many
versions. Suppose version v uses only a small fraction of the
atoms in the basis and is reconstructed quite frequently.
Reorder the basis to put the atoms of v near the beginning.
Then reconstruction of v would proceed as follows: First get
the selection matrix for v and determine the highest row
number which contains a 1. Retrieve only that many atoms
from the basis and piece these together as per the selection
matrix to form the version v.

Since a significant task in reconstruction is getting the
atoms from secondary store, this could be a dramatic
improvement.

VI. Submatrix Notation

The storage space for the selection matrix of v can be reduced,
which may further speed up the reconstruction process. The

recognition that any selection matrix can be viewed as a set of
identity submatrices suggests an alternative notation. For
example, recall S of the previous section. This matrix
contains three indentity submatrices as shown below, where I;
is an identity matrix of size i.

10010 I, 0
01000 Is 00
S, =100100]|= 00
00001 0000/
00000 00000

Now, represent each one of these identity submatrices by a
triple which contains the location of the upper left corner and
the size. Then

Sp=[(113)(141) 45D)]

where each submatrix (r, ¢, [) is an identity matrix located at
row r, column c, and of diagonal length /. An advantage of
this representation is that it relates directly to both the selection
operations needed in the reconstruction, and to the matrix
notation. Also, if the basis is extended as a new version is
added, the representation of existing selection matrices does not
need to be changed.

A further reduction in the size of the representation can be
achieved by recalling that each column of a selection matrix
contains one non-zero value. If the identity sub-matrices are
kept in order, then the column number is not needed. However,
in order to keep the notation clear, the column numbers will be
included in this paper.

The necessary algorithms for a simple version compaction
system can now be expressed in terms of the row vector
representation for the basis and the identity submatrix
representation for selection matrices. The five high level
commands of most interest are listed in Table 1.

Table 1: Version Compaction System Commands

Command
store

Description

Store a version in the version
compaction system.

Retrieve a copy of a

previously stored version.
Reorder the basis and

rearrange the rows of the
existing selection matrices.
Remove some versions from the
set stored by the version
compaction system

Reduce the size of the basis by
removing inactive atoms (atoms
not required by any version).
This command is used to recover
storage after a series of delete
operations.

retrieve

reorder

delete

purge

324

From Table 1 we can extract the following list of
elementary operations:

(1) Construction of a selection matrix S from a version p and
a basis b, including a possible basis extension b*. (store)

(2) Basis x Selection Matrix — the product bS— . This
includes Basis X Permutation Matrix (bP — b") since a
permutation matrix is a special case of a selection matrix.
(retrieve, reorder)

(3) Transpose of a Permutation matrix, P — PT. (reorder)

(4) Permutation Matrix Transpose x Selection Matrix — the
product PTS — 87, (reorder)

(5) Discrimination between active and inactive basis atoms,
Bycive and bjpive, given a basis b and a subset V, of the
selection matrices supported by b. (purge)

(6) Partition — constructing a permutation matrix P that
partitions b into active atoms followed by inactive atoms:
bP = [bacsive Dinacrive]. (Purge)

(7) Optimization of the basis ordering (b") and the creation of
the associated permutation matrix P such that bP —b".
(reorder)

Algorithms for the first six of these elementary operations
are described below. The seventh operation, optimization, is
the subject of section 7.

Data Structure — Basis

Description
Represent an atom as a string of characters. The atoms are
stored in one large character array when in primary storage,
and can be located given either the row number or the value
of the atom. The end of an atom is identified by looking at
the next entry in the row index table. See Figure 1.

By using the hash function, both of these operations (get
the row number given the value, and get the value given the
row number) can be performed in O (1) time.

0 4 8§ 12 16
r the man bit dog loved

A

hash(’bit *)->index-> >

hash
table

Tow
index

Figure 1: Data Structure for the Basis

The hash table and row index are built as the character
strings are read from a file. If there are n atoms, then this
operation takes O (n) time and space.

Algorithm 1 — Construction

Description
Generate a Selection Matrix from a version and a basis.

Input
vec — a list of atoms representing the version p.
basis — a list of unique atoms, possibly empty.
Output
a selection matrix
the (possibly extended) basis

Process
Locate each atom of vec in basis and append its location to
an initially empty list. (This list forms the row numbers of
the selection matrix). If the atom is not present in basis,
extend basis .

Next, form a list of pairs by adding a length of 1 to each
row number. Combine those pairs which are both adjacent
in the list and whose row numbers represent adjacent atoms
in the basis.
Last, turn the (row, length) pairs into triples if desired (see
section VI).

If n is the number of atoms in vec then Algorithm 1 is
O (n) in time and space.
(end of algorithm 1)

Algorithm 2 — Basis X Selection Matrix

Description
Form the product of a row-vector and a Selection Matrix or
of a row-vector and a Permutation Matrix
Input
basis — a non-empty list of unique atoms
mat — a selection matrix or permutation matrix

Output
W — a list of atoms equal to the product bS

Process
For each triple (r, ¢, I) in mat , the corresponding / atoms
vec, - - ,vec,,_; are appended to the growing list of atoms
K.

This algorithm performs in O (n) time and space where n is
the number of atoms in L.

(end of aigorithm 2)

Algorithm 3 — Transpose
Description
Transpose a Permutation Matrix
Input
mat — a list of triples forming a permutation matrix.
Output
The transpose (and therefore the inverse) of mat

Process
Two steps are required here: first switch the row and

325

column values of each triple in mat, and second sort the
resulting triples by their new column numbers.

Due to the fact that the new column numbers are unique,
this algorithm performs in O (m) time and space where m
is the number of rows in mat.

(end of algorithm 3)

Algorithm 4 — Permutation Matrix Transpose x

Selection Matrix

Description
Compute the product of a permutation matrix transpose and
a selection matrix, thus reordering the selection matrix. It
is actually unnecessary to transpose the permutation matrix
as a separate initial step; one can simply treat the row and
column numbers in the triples that represent the
permutation matrix as column and row numbers.

Input
p_mat — a permutation matrix
s_mat — a selection matrix

Output
The reordered selection matrix (p_mat” x s_mat).
Process
The first step is to construct a vector V (indexed from 1 to
the number of rows in s_mat) so that the i™ entry in V
contains the new location of row i of s_mat. For example,
if row 3 of s_mat is to be moved to row 7, then V[3] =7.
V is constructed as follows: for each triple (r,c,!) in
p_mat, assignV[r] « ¢, V[r+l] « c+l, ... for a total of
I successive locations in V. (If given p_matT instead,
assign V[c] « r,etc.).

The next step is to reorder s_mat using the information in
V. Each triple (r.c,l) of s mat is converted to
(VIrl, c,1). If the length ! of the triple is greater than 1,
then the reordering may cause that triple to split into
several smaller triples. This happens when successive rows
in a triple do not correspond to successive new rows in the
vector. For example, consider the triple (3,5, 1). Since
V[3]=7, this triple becomes (7,5,1). Now consider
(3,5,3). If V[4]=8 and V[5}]=9 then we can simply
generate a new triple (7,5, 3). However, suppose that
V[4] = 4; it is then necessary to split (3, 5, 3) into (3, 5, 1)
and (4, 6,2). The same process must now be applied to
“4,6,2).

After all triples of s_mat have been assigned new row
numbers, combine any adjacent triples to form the
reordered selection matrix.

This algorithm performs in O (n) time and space where n is
the number of columns in s_mat.

(end of algorithm 4)

Algorithm § — Discrimination

Description
Generate a list of active and inactive atoms from a list of
selection matrices.

Input
s_mat_list — a list of selection matrices.

Output
active — a boolean vector indicating locations (in the basis)
of active (true) and inactive (false) atoms.

Process
Initialize active to false for each atom in the basis .
For each triple (r,c,!) of each selection matrix in
s_mat _list set locations r,r +1, ...,7 +1 —1 of active to
true.

If m is the total number of columns in the selection
matrices of s_mat_list, and n is the number of atoms in the
basis, then this algorithm performs in O (m) time and
O (n) space.

(end of algorithm 5)

Algorithm 6 — Partition

Description
Construct a permutation matrix which will reorder the
atoms of the basis to partition active atoms from inactive

atoms.
Input
active — an array of boolean values such that
active[i] = true if and only if basis; is an active atom.
Output

p_mat — a permutation matrix which can be used to reorder
the basis (and the associated selection matrices) to place all
active atoms at the beginning of the basis. Inactive atoms
can then be dropped from the basis if so desired.

Process
Traverse the boolean array active from beginning to end.
For each string of true values, append the pair
(starting location , length) to an initially empty selection
matrix p_mat_active. For each string of false values,
append the pair (starting location, length) to an initially
empty p_mat_inactive .

Finally, append the pairs in p_mat_inactive to the end of
p_mat_active and return this as p_mat . Recall that column
numbers are optional.

This algorithm performs in O (r) time and space where n is
the number of atoms in the basis .

(end of algorithm 6)

VII. Optimal Basis Ordering

A key feature of the selection matrix approach to version
compaction is the capability of reordering the atoms in the basis
and the rows of those selection matrices that depend upon it.
Reordering the basis obviously leaves the size of the basis itself
unaffected, but it can reduce the number of triples in a selection
matrix, thus reducing both the storage space required for that
version and the time required for its reconstruction.

In order to study the relationship between the order of the
atoms in the basis and the size of its selection matrices,
consider a basis consisting of the atoms a, b, c and d and a
version v = a bcd. Table 2 lists several possible orders of the
basis atoms and the resulting selection matrices. The term
“Expanded Selection Matrix” refers to the result of expressing
each 1 in the array as a submatrix of size one. Thus the number

of triples is equal to the number of columns.

As the atoms in the basis are arranged to agree more
closely with their order in the version, adjacent triples can be
combined. Each time a pair of atoms in the basis matches a
pair in the version, two adjacent triples in the selection matrix
can be combined into one. By examining the row numbers of
the triples (the first value in each triple) and looking for runs (a
sequence of integers), triples to be combined can be identified.

In the first example, one pair of triples can be combined,
and so the expanded selection matrix of four triples is reduced
to three. The last example in Table 2 shows four triples whose
row numbers form a run. Thus the expanded matrix of four
triples is reduced to one triple.

The process of minimization can be viewed graphically.
Given a version 1), construct the complete, weighted digraph G
whose nodes represent atoms and whose edge weights are
assigned as follows:

If x and y are any two nodes (atoms), then the
weight of the directed edge from x to y is the
number of adjacent pairs x, y in the version 7.

The order of atoms in the basis corresponds to a path ¥ in
the complete weighted digraph G (see Figure 2). This path
must contain each atom exactly once. The sum of the edge
weights on this path represents the amount that the expanded
selection matrix can be reduced. Find the path with maximum
edge weight total and it represents the optimal basis order.
Clearly, in Figure 2, the optimal basis order is {a b c d] with
edge weight total = 3.

To see how this graphic approach works with multiple
versions, recall the example of the previous section:

Table 2: Effect of Basis Order upon Selection Matrix
for Versiona bcd .

Basis Expanded Sel Mat Combined Sel Mat
[bacd]l (211)(121)(331)(441) (211)(121) 332)
[dabcl (211)(321) @31)(141) (213) (141)
[abcd] (111)(221)(331) (441) (114)

®——0

@0

Figure 2. Complete Weighted Digraph G
for Versiona bcd.
(Zero weight edges not shown)

W = "the dog bit the man "
Vv = "the man loved the dog "
b = ["the " "man " "bit " "dog " "loved "]
Sy=[111)(421)(331)(142)]

S,=[112)(531)(141)@451)).

The current basis ordering results in a total of eight triples
for both versions. In order to see if this can be reduced, draw
the complete weighted digraph G for versions . and v and find
the path with maximum edge weight. Please see Figure 3.

The difference between the total number of triples in the
expanded selection matrices for 1 and v and the total number of
triples in the compressed forms for pL'and v is equal to the total
edge weight of that path in the graph of Figure 3 which
represents the order of the atoms in basis b.

The problem of reordering the basis to reduce the number
of triples in the versions 1 and v can now be studied as a graph
maximization problem. Example 1 in Table 3 represents the
order chosen for the basis b originally. The second example is
the order used to illustrate permutation matrices in Section 5. If
the basis is now reordered to correspond to either example 3 or

L@
=
N

Figure 3: Complete Weighted Digraph G
for Versions p and v.

Table 3: Edge Weight Totals for the Graph of Figure 3.

Ex. Paths Weight
1 [“the " "man " "bit " "dog " "loved "] 2

2 [“the " "dog " "bit " "man " "loved "] 4

3 [“dog " "bit " "the " "man " "loved ") 5

4 [“man " "loved " "the " "dog * "bit "] 5

4 of Table 3, the total number of triples in the compressed
versions can be reduced from ten to five.

To construct the permutation matrix necessary to reorder b
as in example three of Table 3, make a table of the current and
reordered locations for each atom (see Table 4).

Table 4: Current and Reordered Basis Atom Locations

Current Reordered Permutation
Atom __ Location Location Matrix
the 1 3 ey — Pes
man 2 4 I 2> I
bit 3 2 Ly —> Psy
dog 4 1 Iey > Py
loved 5 5 Lig > Pes

Now, beginning with a 5 x 5 identity matrix I with columns
I = [Iq |It2 |103 |1c4 |1t5]
=[111) (221) 331) (441) (551)],

rearrange the columns according to the rearranged locations of
the atoms to form the permutation matrix P.

P =[leg 1 L3 | Ieg Loy | Lis]
=[@411)(321) (131) 241) (551)]

In matrix form, P and PT are

00100 00010
00010 00100
P=101000[PT=1|10000
10000 01000
00001 00001

Note that the reordered location column of Table 4 corresponds
exactly to PT.

Then
bP = bY = [Ildog " “bit " "th

"au

e " “man " "loved "]

and the reordered selection matrix for version L becomes

00010] [too10] [o1000
00100| [pooo1 00100
SL=PTS,={10000(x[00100[=[10010
01000 [p10o00] 00001
00001| [poooo] [00o000
SL=[B11)A21)231)(B41)@A51)]
= [(311)(124)]
Similarly,
S, =[311)@21)(531)(341)(151)]

(313)341)(151)]

and thus the total number of triples has been reduced by five as
predicted.

327

The preceeding analysis has focused entirely upon reducing
the fotal number of triples in the selection matrices. This
achieves minimum storage requirements for the selection
matrix approach with unique atoms, while also reducing the
amount of processing necessary in reconstruction.

However, the speed of reconstruction may be more
important than storage space. In that case, it is necessary to
know the probability of reconstruction for each version. Then
the expected number of selection operations can be computed
by (first), multiplying the number of triples in each version by
its probability of reconstruction, and (second), totaling these
products. Since this corresponds directly to reconstruction
time, it should be minimized.

Recall the previous example and suppose the probabilities
of reconstruction for the versions are p(u) = 04 and
p(v) = 0.6. Alsolet N(x, y, v) = the number of occurances of
the pair xy in version v. Then, construct the complete weighted
digraph G for versions p and v (see Figure 4) with edge weights
defined as follows:

If x and y are any two nodes in G then
wx,y) = Ny, WxpM) + Nx,y,V)xp(v)

Now, identify the path or paths which have maximum edge
weight total. This total will represent the amount by which the
expected number of triples (for the expanded selection
matrices) can be reduced (see Table 5).

Figure 4: Complete Weighted Digraph G

for Versions L and v
with probabilities of reconstruction.

Table 5: Edge Weight Totals for the Graph of Figure 4

Ex. Path Weight
1 [“the " “man " "bit " "dog " "loved "] 1.6
2 [“the " "dog " "bit " "man " "loved "] 20
3 ["dog " "bit " "the " "man " “loved "] 24
4 ["man " "loved " "the " "dog " "bit "] 2.6

328

Constructing the permutation matrix P and its I:ranspose
PT as before, and computmg the matrix products S| = =pPT Sy
and S%, = PTS, gives

=[313)341)(151)]
and
S, =[B11)(Q24)]
Now, the expected number of triples for the expanded matrices
is
pUIX5 + p(V)x5 =350

and the expected number of triples for the compacted versions
of the reordered matrices is

P)X3 + p(V)x2 = 0.4x3 + 0.6x2 = 24

which represents a reduction of 2.6 as was predicted by the path
selected from Table 5.

From the preceding discussion it is clear that the optimum
ordering of the basis depends upon two things:

(1) A set of user assigned probabilities.

(2) The identification of an atom ordering for the basis which
maximizes the edge weight total of the associated digraph.

The first requirement is actually a strength of this method
since if enhances user control of the performance of the version
compaction system. The second requirement is comparable to
solving the traveling salesperson problem, and could take a
substantial amount of time to reach an otimum solution. Other
methods which give “good” (but not optimum) results perform

in much less time. For more details, see reference [3].

VII. Future Work

To be a contribution to the state of the art, a new versioning
system must be faster, or more compact, or more elegant than
existing techniques; we may hope that it will be all three.

Naturally, we believe that the selection matrix approach is
more elegant, since it has a simple and well understood
mathematical basis, as well as a framework that can
accommodate both dictionary-like schemes for data
compression and file-differencing appraches to versioning.
However, any claim to elegance is by its very nature subjective,
so our current work is aimed at investigating the speed and
space efficiency of our approach.

The algorithms of Section VI have been prototyped in
Franz Lisp, and the sizes of the compacted version sets
compared with those produced by RCS and SCCS. For these
tests, an atom was defined to be a line from the source file; this
seemed to offer the most meaningfull comparisons, since both
SCCS and RCS use lines as the unit of differencing.

Not counting the version control information maintained by
SCCS and RCS (e.g., log messages and access control lists), the
file sizes obtained for the selection matrix approach were for
the most part within two percent of the sizes used by SCCS and
RCS. The one exception to this was when a section of deleted
text was reinserted; both SCCS and RCS duplicate this section,
whereas our approach keeps it in the basis just once. In this
case the version set based on selection matrices was one third

smaller than the RCS file.

Comparing the running time of our Lisp prototype with the
time taken by the production-quality C code in SCCS is futile.
In addition, our current prototype uses simplistic algorithms,
e.g., it locates atoms in the basis by sequential search. In
general, the same sort of technique that speeds up the
implementaion of RCS, such as hash-coding of lines in order to
find matches, can also be applied to selection matrices, except
that in our case comparision is with the basis vector rather than
with another version.

Neither is the comparison of asymptotic worst case times
very helpful, since in practice it is the constant factor in the
average case that is of interest. Thus, we cannot yet offer any
definitive verdict on the relative speed of our method compared
to RCS and SCCS, and this is an area that we are continuing to
investigate. Nevertheless, we are optimistic that our approach
will be time efficient, for a number of reasons:

(1) The time taken to reconstruct a given version does not
depend on the age of the version or on the number of
versions stored.

(2) The ability to reorder the basis to minimize the expected
number of selection operations, together with the optimal
reordering results of Section VII, provide the ability to
minimize the number of submatrices for a particular
version or for a group of versions.

(3) The restriction introduced in Section IV, where we definied
a basis as a row vector of unique atoms, can be relaxed.
Although it is true that the size of the basis will be
increased by allowing repetitions, the sizes of some
selection matrices and thus the time required to reconstruct
the version may be reduced.

Another parameter that affects both time and space
requirements is the definition of an atom. Our initial tests
defined an atom to be a line, to correspond to SCCS and RCS.
An alternative is to define an atom to be a word, as was done
for the examples in this paper. This might be beneficial for
program texts, where reserved words and identifiers occur
many times, but whole lines are duplicated infrequently. It also
corresponds more closely to a dictionary approach to data
compression. However, we have not yet fully investigated this
approach; it is possible that the growth in the size of the
selection matrices more than counterbalances the reduction in
the size of the basis.

References

[11 Aronson, J. P. Data Compression — A Comparison of
Methods. Institute for Computer Science and Technol-
ogy, National Bureau of Standards, Washington, DC,
June 1977. Gov. ordering no. NBS SP 500-12.

[2] Fraser, C. W. and Myers, E. W. “An Applicative Editor
for Revision Control”. Univ. of Arizona Tech. Rep. 84-
20, October 1984.

{3] E.L.Lawler, J. K. Lenstra, A. H. G. RinnooyKan and D.
B. Shmoys, eds., The Traveling Salesman Problem: A
guided Tour of Combinatorial Optimization. John Wiley
and Sons, New York, 1985.

329

[4]

[5]

(6]

7

(81

[91

[10]

(11]

Marzullo, K. and Wiebe, D. “Jasmine: A Software Sys-
tem Modelling Facility”. Proc. ACM Software Eng.
Notes/SIGPLAN Software Eng. Symp. on Practical Pro-
gramming Development Environments, Palo-Alto, CA,
December 1986, pp.121-130. (SIGPLAN Notices
Notices 22, (1)).

Miller, V. S. and Wegman, M. N. “Variations on a
Theme by Ziv and Lempel”, in Combinatorial Algo-
rithms on Words, A. Apostolico and Z. Galil (editor).
Springer Verlag, 1985, pp.131-140.

Myers, E. W. “Efficient Applicative Data Types”. Conf.
Rec. 11th ACM Symp. on Prin. of Prog. Lang., January
1984, pp.66-75.

Rochkind, M. J. “The Source Code Control System”.
IEEE Trans. on Software Eng. SE-1, 4 (December 1975),
pp-364-370.

Schnﬁdi, E. “Controlling Large Software Developement
in a Distributed Environment”. CSL-82-7, Xerox PARC,
December 1982. (Ph.D. Thesis UCB).

Tichy, W. “Design, Implementation and Evaluation of a
Revision Control System”. 6th Intl. Conf. on Sofiw.
Eng., September 1982, pp.58-67. ‘

Tichy, W. F. “RCS — A System for Version Control”.
Software—Practice & Experience 1S, 7 (July 1985),
Pp.637-654.

Ziv, J. and Lempel, A. “Compression of individual
sequences via variable-rate coding”. IEEE TRANS
Inform. Theory IT-24, 5 (September 1978), pp.530-536.

