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Abstract—Location independent invocation is a mechanism that allows
operations to be invoked on application-level objects, even though those
objects may move from node to node in a distributed system. It is
independent of any particular application, operating system, or program-
ming language, and is applicable to many applications that are con-
structed from collections of named entities, provided that each of these
entities is itself contained within a single address space. Our implementa-
tion is layered on top of an existing RPC system, and is designed to
operate in a network that links th ds or tens of th
the wide area.

This paper sketches our work on building a highly distributed office
application based on mobile objects, elaborates on the technique used to
find the target of an invocation, and describes how our technique is
implemented. We also discuss our experiences building a prototype
system and initial application, and include some early performance data.
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Index Terms—Distributed applications, forwarding address, location
independence, object finding in large-scale systems, object mobility,
remote invocation, remote procedure call (RPC).

I. INTRODUCTION

HE motivation behind remote procedure call (RPC) [20]

is to make distributed applications easier to construct.
Procedure call is a well-known and well-understood mecha-
nism for the transfer of control and data within a single address
space. Remote procedure call represents an extension of this
mechanism to provide for transfers between address spaces. It
is generally a goal of an RPC implementation to make the
semantics of a remote call as close as possible to those of an
equivalent local call [S]. This enables programmers to write
distributed applications without having to be aware of network
protocols or external data representations. Thus, anything that
narrows the conceptual distance between local and remote
calls is considered to be desirable.

Nevertheless, there remain some intrinsic differences be-
tween the semantics of remote and local calls. For example,
since a remote procedure executes in a different address space
from the caller, passing parameters by reference is difficult,
and the caller and callee may fail independently.

Of these intrinsic differences, the most fundamental is that a
remote call must somehow indicate to which other address
space it is directed. The caller discharges this responsibility by
binding to the appropriate address space before the first call
can proceed. The action of binding results in a data structure
(also called a binding) that identifies the callee and must be
passed as an implicit or explicit argument to every remote
procedure call.
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Choosing the correct server can be difficult. Various
techniques have evolved to lift this burden from the program-
mer of the calling code—in other words, to automate to some
extent the choice of the callee. Two commonly used methods
are default binding and clerks.

e Default binding (sometimes called automatic binding)
occurs when the RPC system chooses the server without an
explicit request from the client. The choice may be made
nondeterministically, or in a way that depends on factors that
are normally hidden from the caller (such as network
distance). Default binding may be appropriate if only a single
server of the requested type is available, or if all of the
available servers are semantically equivalent. However, these
are necessary but not sufficient conditions: if, for example,
two semantically equivalent servers have widely differing
costs, the user is unlikely to be satisfied with a default
selection.

® Clerks are application-dependent subroutine packages that
use information about the call semantics to choose the callee.
For example, in an environment in which a file name
indirectly identifies the file server that stores a file, a file
system clerk might be used to direct an open call to the
appropriate server. The clerk interface is pleasant to use, and
directly supports the abstraction in which the client is
interested, namely, a file service. Unfortunately, it is specific
to filing; a new clerk must be written for each new application.

Location independent invocation (LII) is a general way of
eliminating the binding step; it completely removes RPC
bindings from the view of the application programmer. This
technique is applicable to a wide variety of applications; it
requires only that the application operate on a set of named
entities, and that the whole of each entity be located in a single
address space.

LII should be thought of as a service at a level of abstraction
above RPC. Our particular implementation is layered on RPC,
but this is by no means essential. LII has previously been
implemented at the operating system level (the Eden system
[1], [6] incorporates a similar concept) and as part of a
programming language (Emerald [15]). LII can also be
implemented at the application level; the file system clerk
mentioned above may be regarded as an example. The
contribution of this paper is to present LII as a conceptual
service that is independent of any particular application,
operating system, or programming language, and to show how
it can be implemented without language or system support in
any environment that provides reliable interprocess commun-
ication. The particular implementation described here uses
several techniques to efficiently and reliably find mobile
objects in a widely-distributed system. As in Emerald, we
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normally use temporal forwarding addresses that are updated
cheaply as a side-effect of object migration and of invocation.
However, our method is unique in its use of stable storage and
a global name service to ensure that active objects are highly
available despite crashes and without resorting to exhaustive
search.

The remainder of this paper is organized as follows. In
Section II we study the ‘‘indications’’ for object mobility and
location independent invocation, i.e., the circumstances under
which the abstraction that we are proposing is beneficial.
Section III describes the context of our work: an application
domain in which we believe LII will be useful and the core
services that support it. In Section IV we describe our object-
finding algorithm, and in Section V we present our implemen-
tation. Section VI deals with the relationship of LII to earlier
work on object finding and location independence. Section VII
summarizes our experience designing and implementing the
system and a sample application; it includes performance
measurements of our prototype system.

. WHeN 1s LII UseruL?

Before examining the situations in which LII is useful, it is
necessary to introduce some terminology. An address space
that is willing to accept RPC calls is conventionally known as a
server, and one that makes calls is known as a client. Note that
these terms are meaningful only with respect to a particular
call; a given address space may function as both a client and a
server simultaneously. The set of calls that are acceptable to a
server characterizes its interface, and is therefore known as the
service type. A particular server that implements that type is
known as a service instance. In conventional RPC systems
such as Birrell and Nelson’s [5], the service type is chosen
when a program is written, whereas the server instance is
chosen by the run-time bind operation.

If the RPC interface provides a computational service, e.g.,
fast Fourier transform, all the service instances may be
semantically equivalent. In this case the necessity of choosing
a service instance may be an opportunity rather than a
problem: the binding process may provide a way of sharing
load amongst the various servers, or of selecting a server that
provides the required precision.

However, if the RPC interface provides access to applica-
tion data, then the services available from different servers
may be distinct, even though they share the same service type.
Consider, for example, a service type that defines the interface
to a directory of a company’s employees. Different instances
of this service might provide information about the employees
of Digital, General Motors, or IBM: clearly, it is important to
select the correct service instance. Having done so, one might
then find that there are several server instances that implement
the whole of the Digital employee directory; the choice
amongst them may influence performance, but not correct-
ness. In general, the application domain (directory services)
will be concerned with some number of application dependent
objects (specific directories of employees); there will be a
mapping from application entity to service instance that
enables a client to choose the correct instance.

In the case that this mapping is constant, or changes very
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occasionally, it is easy to arrange that every client of the
interface has a copy of a function that computes the map. A
trivial implementation of such a function would encode the
location of the application object in its name.

Once the mapping changes more than very occasionally, it
becomes difficult to implement the function that computes it.
A distributed global name service such as the DNA Naming
Service [11] can be used; such a service trades off consistency
in favor of availability. Updates can take a significant amount
of time to propagate through the name service, and during this
time the function implementing the mapping is wrong. The
severity of this problem increases with the frequency of
updates.

When the mapping changes frequently in a large system,
computing it becomes a distributed task, as well as a
significant burden to the application programmer. Location
independent invocation as described in this paper relieves the
programmer of this task by automating it. LII is appropriate
when the application entities move frequently enough to make
the implementation of a static mapping function impractical.

Why should the application objects move? Although a
comprehensive evaluation of the costs and benefits of object
mobility is beyond the scope of this paper, we would like to
characterize in the rest of this section the circumstances under
which it is useful. A fuller discussion of the advantages of
object mobility can be found in [15].

The advantages of mobile objects include those of process
migration: the ability to share load between processors,
reduced communication cost, increased availability, reconfi-
gurability, and the possibility of utilizing the special capabili-
ties of a particular machine. In addition, mobile objects
provide a convenient way for application data to be moved to
the point where it is needed without the complexity of making
a copy and keeping it consistent with the original despite
failures and possible network partitions.

This is not to say that mobile objects solve every problem.
In particular, if a single resource is used concurrently in
widely separated places, making it mobile will not help to
improve locality, and may instead cause thrashing. Replication
may offer an appropriate solution in this case; our restriction
(mentioned in the introduction) that the whole of an invoked
object be located in one address space means that a distributed
replicated entity cannot be treated as a single object for the
purposes of LII. It is possible to implement a replicated
resource by using multiple objects and various consistency
protocols, but the caller must then be aware of this extra level
of indirection [21], [23].

Nevertheless, we believe that there is a class of applications
for which mobile objects are a suitable technology. This class
includes applications in which clients at various sites interact
intensively with some objects, and in which sequential sharing
between clients is much more common than concurrent
sharing. These characteristics are typical of applications in
which real-world objects move; in addition to office applica-
tions (itself a broad field) we mention medical data, which
often moves with the patient, and manufacturing information,
which is frequently recorded on a docket that moves with the
lot of goods. (See [26] for a proposal to use mobile objects in
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manufacturing.) In addition, our system provides support for
applications that allow incremental growth and that scale to
large numbers of clients and large geographic areas.

Moving an object is typically more expensive than accessing
it remotely since the object migration mechanism must ensure
that it is possible to find the object at its new home, and to
recover it safely in the event of a failure. Nevertheless, the
quality of a local interaction is often sufficiently better than
that of a remote one to justify this cost. Consider a physician
examining a digitized X-ray photograph; very high bandwidth
communication between the object holding the image and the
physician’s display will be required, and co-locating these two
entities may be the only feasible way of providing it.
Moreover, if it is possible to predict that the physician will
wish to examine the X ray, the appropriate object can be
moved to his office before the first attempt is made to access it.
(This might be achieved, for example, by scanning the
physician’s appointments’ calendar a day in advance.) The
time taken to perform a migration may then be almost
immaterial.

III. THE HERMES SYSTEM

To investigate the use of mobile objects we chose to
automate a corporation-wide, real-life office application. The
application deals with expense voucher forms circulating
within Digital Equipment Corporation. A form is filled-in by
an employee and signed by different managers, who approve
or reject the expense reimbursement represented by the form.
If appropriate, a petty cash disbursement is made, and then the
form is archived for tax and audit purposes. The people acting
on the form may all be located in one building, spread across
the country, or situated in different continents. As in the broad
class of applications discussed earlier, the interval between
update sessions may vary from minutes to days, but the
interactive response is important to the person acting on the
form. Other important functions of the system include
translation of organizational titles to employee names, and
authentication; these topics are beyond the scope of this paper.
In this section we detail those characteristics of the system that
are relevant to the discussion of finding objects and making
invocations location independent.

Our application must be able to span thousands of machines:
Digital’s internal network is world-wide and currently inter-
connects over 36 000 nodes. Although the processing of most
forms will be geographically localized, some may require the
attention of two people on opposite sides of the globe. These
requirements make it infeasible to store all the forms in a
single centralized database, or even in a number of geographi-
cally dispersed databases. Instead, we represent the data and
code of each form as an object that can move around the
network as the application demands.

Objects are named entities that perform operations on each
other by invoking well-defined interfaces. An object consists
of some state and a set of operations that manipulate it; the
operations are invoked by one or more threads of control.
Using system services, an object can control its own persist-
ence, recovery and placement, and can invoke operations on
remote objects without concern for their location. Likewise,
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the application programmer, although in control of the
placement of objects, need not be concerned with the
mechanisms used to move objects and to handle remote
invocations.

Thus, the view of the world presented to application
programmers is a distributed ocean in which application-
dependent objects of their own design can be floated. The
Hermes system provides the infrastructure necessary to
implement such objects; it is composed of Hermes nodes,
which hold active objects in virtual memory, and of stable
backing storage that holds objects when they are not currently
active or when a node crashes.

Each Hermes node consists of a number of components (see
Fig. 1): a Hermes supervisor, a collection of application
objects, and an inter-object communication mechanism. The
supervisor provides services for object creation, finding, and
relocation: the inter-object communication mechanism con-
sists of the LII layer and the underlying RPC system. An
application is implemented by a collection of cooperating
objects. All of the components share a threads package that
provides for concurrency and cooperation.

In current prototype, each Hermes node is equipped with all
the code and structures necessary to support all the different
types of objects defined by all the applications in the Hermes
system. Any instance of an object of any type can migrate to,
or be created at, any Hermes node. In a production system this
is an unreasonable assumption, and it will be necessary either
to provide for the dynamic loading of object code, or to restrict
the location of objects to those nodes that already have the
appropriate code.

The storage service that is used to make objects persistent is
implemented by a distributed collection of sforesites. We
assume that each storesite has local access to stable storage,
and that there are fewer storesites than Hermes nodes. An
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TABLE 1
OBJECT FINDING ALGORITHM

Invoking node

2. A tad (1) for o must exist.

Replace ¢ by 1, if the latter is newer, and

4.1 If a pew tad is obtained, goto step 2.
4.2 Otherwise, return Unavailable.

1. If the object (o) is local, invoke the requested operation (p) on it and return whatever it returns.

Perform RPC to t.node (Remote node below) to request p,
3. If the RPC returns, it indicates the last tad (") used to find o.
3.1 If o was found, return to caller whatever result or exception the remote p has returned.

3.2 If o could not be reached (because its node or storesite were not available), return Unavailable
3.3 If the search for o involved too many nodes (HopCountExceeded), goto step 2 to start a new chain.

4. If the RPC fails, call Get Tad From Storesite (below), and

ts and ¢.

ing along p’s arg

Remote node

5. If the RPC retumns, it will include a tad.
If the tad is newer, use this tad to replace mine.

6.2 Otherwise, return Unavailable and my tad.

1. If the object (0) is local, invoke the requested operation (p) on it and return whatever it returns and my tad.

2. If caller’s tad is newer than mine, call Get Tad From Storesite (below), else goto step 3.
2.1 If anewer tad is obtained, replace my tad by it and goto step 3.
2.2 Otherwise, return Unavailable and caller’s tad.

3. If the call has been propagated already to too many nodes, return HopCountExceeded and my tad.
4. Perform RPC to the node indicated in my tad, passing my tad and p’s arguments.

In any case, return whatever results the RPC returned.

6.  If the RPC fails, call Get Tad From Storesite (below), and
6.1 If a newer tad (¢") is obtained, replace my tad by t’, and goto step 4.

Get Tad From Storesite

2. If the call returns, then if it contains
2.1 atad: returnit.

3.1 Ifthe call rewums, then

3.1.2 otherwise, return failure.
3.2 otherwise, return failure.

1. Call the storesite (s) that I believe is currently supporting o.

2.2 areply “Another storesite (s”) is currently supporting 0”: goto step 1, calling s” instead.
2.3 areply “I know nothing about o™ call the name service to leam o’s current storesite and goto step 3.1.

3. If the call fails, call the name service to leam o’s current storesite, and

3.1.1 If a newer storesite (s™) is retumed, goto step 1 (calling s’ instead).

object can write its entire state to a storesite periodically (a
checkpoint), and can log changes to its state between check-
points; the storesite is then said to support that objects. After a
crash, an object can be recovered up to the last logged change.
To prevent the inadvertent ‘‘recovery’’ of objects that are still
functioning but on inaccessible nodes, the storesite also
records the current location of every object that it supports. It
will not permit an object to be recovered until it is sure that the
object in question has really crashed. The LII mechanism also
uses the location information held in stable storage to find
objects in certain circumstances; this is discussed in Section
Iv.

The Hermes system assumes the existence of two generic
distributed services: a name service and an authentication
service. The former is needed for a Hermes supervisor to find
other supervisors and storesites, and to map the external
names of certain well-known objects to their object identifiers.
As will be seen later, the name service is also used
occasionally to help find an object that has moved. The

authentication service is needed for Hermes supervisors to
authenticate each other, as well as for objects to authenticate
each other.

Hermes nodes are implemented as ordinary processes
distributed across the network. The components of a Hermes
node all share the same address space, making local invocation
simple and fast. Users interact with Hermes using a window-

based interface; each user has his or her own interface process, -

which communicates with some convenient Hermes node
using RPC. Hermes uses ordinary operating system services
and the RPC system developed at Digital’s Systems Research
Center. We chose to implement Hermes in Modula-2 + [24]
because it provides threads and because the RPC system is
integrated with the multithreading facilities.

IV. FinpING OBJECTS IN HERMES

This section commences with an overview of the finding
algorithm; a more detailed description of the finding process
appears in the following three subsections. Table I summa-
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rizes the algorithms of the parties that participate in object
finding.

Overview

Every object is assigned at creation and keeps forever a
globally unique identifier (guid). Each object also has a
current location (the Hermes node that contains the volatile
copy of the object) and a current storesite (which contains the
object’s log and checkpoint records); both of these attributes
may change. In addition, each object has an age, which is
initially zero and is incremented whenever the object attempts
to move to another node. If object o is at node # after its a™
move, then the pair (n, a) is a temporal address descriptor
(tad) for 0. A tad is a true statement about an object’s location
at some time in its history. Given two tads (n,, a,) and {n,,
@), it is easy to determine which is newer, and thus likely to
be better: (n,, a,) is newer if and only if @, > a,. Inside a
Hermes node, references to objects are essentially guids.
Whenever a reference is passed from one Hermes node to
another, or written to stable storage, the newest available tad
is passed in addition to the guid. Each Hermes supervisor
contains a stash of tads; there is a tad for every object local to
the supervisor’s node, a fad for every object reference
contained in a local object, and, in addition, some collection of
tads for other objects that are not currently referenced, but
which have been referenced in the past and might be
referenced in the future.

Our location scheme employs a succession of increasingly
expensive but increasingly available techniques to find an
object. Invocation and location are combined, both to save
messages and to prevent an object from moving after it has
been found but before it has been invoked. First, an attempt is
made to invoke the operation on the object locally; this will fail
if the object is not local. In this case the operation is attempted
again, but this time remotely at the node named in the fad. If
the fad is up to date, the invocation will succeed at this point;
if it is not, the remote node will normally have a better tad,
and will either return this tad to the caller, or forward the
invocation to the node that it names. This process is repeated
until is succeeds or there is no newer tad. In effect, we are
using the information in the tads as forwarding addresses; this
is inexpensive, since a newer fad is normally obtained as a
side effect of a failed invocation. Moreover, when an
invocation succeeds, it is cheap to pass the current fad back to
the caller with the results (or exceptions), so that subsequent
invocations can be directed to the correct place immediately.

If we run out of good forwarding addresses the algorithm
resorts to finding the objects in stable storage, consulting the
storesite that currently supports that object. The storesite
keeps current information as to which Hermes node the object
occupies. If necessary, the global name service is consulted to
ascertain the appropriate storesite for the sought object. One
might ask: why not use the name service to store the object’s
current location in the first place? This would certainly
simplify the finding algorithm. However, the high availability
of a name server is obtained at the cost of consistency: the
information it provides is possibly out of date. Thus it would
still be necessary to follow forwarding addresses, and to
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determine which of two addresses is the newer. Moreover, the
information obtained from a fad when an invocation fails is
essentially free, whereas a name server enquiry must cost at
least a network round trip, and usually more. Furthermore, the
cost of updates in the name service is presumed to be high
since name services are usually engineered for a high ratio of
enquiries to updates. We except to have to tune our finding
algorithm depending on the actual costs of lookups and updates
in the name server and at the storesite.

Using Temporal Address Descriptors

When an object o is created at a Hermes node n, the
supervisor creates a descriptor that includes the object’s fresh
guid and the tad (n, 0), as well as other essential information.
This tad is obviously current. If o later migrates to m, its
descriptor on n is updated to include the new tad (m, 1).
Assuming that objects do not migrate too often, this rad
represents a forwarding address that is likely to remain correct
for some time.

When another object ¢ in 7 wants to invoke an operation on
0, the LII mechanism uses the information in o’s descriptor to
find 0 and perform the operation. If o is still local, the
invocation becomes a local procedure call. Otherwise, a
binding to the appropriate interface in m is acquired, and the
RPC system is used to make the invocation.

If o is no longer at m, then m will normally have a newer
tad for 0. What should m do? There are two alternatives:
1) return a failure indication along with its stashed fad, or
2) propagate the invocation to the location indicated in its tad.
The advantage of the first approach is its simplicity and
efficiency: an invocation directed to a node either succeeds or
returns immediately, without tying-up a thread of control until
the chain of forwarding addresses completes. Of course, in
this approach the invoker has to try each of the forwarding
addresses in turn. The second approach not only ties up a
thread, but is more susceptible to disruption by crashes.
However, it has the advantage that by delaying the return until
the invocation has completed (successfully or otherwise), node
m can obtain the new fad for o.

In Hermes we chose a hybrid of the two approaches. If the
invoked node does not have the object, the invocation is
propagated to the location indicated in the fad; this continues
up to some small number of hops. This number is a tunable
parameter; setting it to zero reduced the hybrid approach to the
first one. Based on Fowler’s work on object finding [13], [14],
which analyzes the use of forwarding addresses under a wide
variety of circumstances, we believe that chains of forwarding
addresses will usually be short. Hence, the location algorithm
will frequently succeed at this stage, with the side effect of
updating all the fads for o along the forwarding chain.
Otherwise, a failure with a newer fad is returned to the
originator of the search, 7 in this example, which starts afresh
with the new forwarding pointer.

A tad is also obtained when an object is used in an
invocation. Whenever an object reference is passed as an
argument to or as a result of a remote invocation, or even as a
field buried in a structured argument or result, the LII
mechanism piggybacks the newest fad that is locally available
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onto the object’s guid. This is done automatically by a
customized RPC marshaling routine.

It is obvious that a fad received in either way might not be
current when it arrives, even if it were current when it was
sent: the object might migrate while a tad is traversing the
network. If a Hermes supervisor that receives a tad for object
0 has no other tad for o, it might as well add that fad to its
stash. Otherwise, it should keep the newer of the zad it holds
and the fad just received.

Since a tad for an object becomes outdated only when that
object moves, it is appropriate to measure the currency of a
tad by its age field. It would be possible to measure tad
currency with real time stamps, but this would require
synchronized clocks. Notice that tads are not hints: every tad
is a true statement about the location of the corresponding
object at some time in the past or present. Consequently, a
Hermes supervisor can safely replace an old zad by a newer
one. The result of this method is that, ignoring crashes, a
Hermes supervisor’s location information ‘‘is getting better,
all the time”* [19].

Provided that no node is unavailable and that no information
is lost in a crash, every object in the system can be found by
following forwarding pointers. However, real systems are
subject to both of these problems. One disadvantage of the
forwarding address technique is that not only must the object
itself be available, but so must all the nodes along the
forwarding chain. Thus, although long chains reduce perform-
ance only linearly, they reduce availability exponentially.
Although our experiments to date confirm that chains are
usually short, when a forwarding pointer is not available we
must have an alternative strategy.

Using Storesites to Find Objects

When the object-finding algorithm reaches a point where
there are no more tads to chase (i.e., no tad was returned with
a failed invocation, the fad returned is older than one that has
already failed, or the node named in a fad cannot be contacted
at all), it has to revert to another method. Using a broadcast or
a multicast to locate the object or obtain a newer forwarding
address, although justifiable in a small research network such
as that used for Emerald [15], is inappropriate in a global
network with a complex topology and tens of thousands of
nodes. Moreover, when using an unreliable multicast, the
absence of a response provides no information.

Instead we use the location information in the stable storage
service to help find the object. As mentioned previously, when
an object o is created it is assigned to a storesite. The location
of 0 along with its initially checkpointed state is recorded in
stable storage at that storesite. When o moves to another
Hermes node, its new location is recorded at the storesite
using a two-phase commit protocol. Thus, if one can find the
storesite that supports a given object, then one can find the
object in volatile memory.

Notice that although the tad at the storesite is current, by the
time it reaches the requesting Hermes node the object may
have moved, and it may therefore be necessary to follow a
forwarding addresses. Nevertheless, this process will termi-
nate so long as invocation is faster than migration.

Crashes impact the finding algorithm because they cause a
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Hermes node to lose its entire stash of location information.
Naturally, the node will also lose all its local objects, which
will need to be recovered from stable storage. They may be
recovered onto another node, or onto the crashed node after it
has rebooted. Recall that whenever an object checkpoints or
writes a log record to stable storage, every object reference is
written as a guid and a fad. Consequently, when the crashed
objects are recovered, their new supervisor is provided with a
tad for every object that they reference (which it will discard if
it already has a newer tad).

Rather than letting a Hermes node’s stash of zads be lost in a
crash, the supervisor might write the fads to stable storage at
intervals, or even after every update to its stash. A crash
would then result in little or no loss of location information.
However, writing frequent updates to stable storage is
expensive, and may be of little benefit: if the node stays down
for any length of time many of the tads will be of purely
historic interest. In our current prototype, a Hermes node does
not save its stash of fads on stable storage; after a crash it may
obtain an old fad from a peer, and will update it only when the
corresponding object is invoked. It would be interesting to
evaluate the relative costs of saving the tads and of this
approach.

If a node n does lose its tad in a crash, or even if it recovers
historic fads from stable storage, after # has come back up the
first invocations for an object o directed to # will fail without
returning a newer fad to the invoker. Then the storesite
supporting o will be found (see below), and queried, and will
return 0’s current location. However, it may be that o was
itself at n at the time of the crash, and that the storesite has not
learned that »n has crashed; it will therefore still believe that o
is located at n. In this case, 0 needs to be recovered and
reactivated. The fact that # no longer hosts o is itself sufficient
to distinguish this case from the case in which o migrated to n
after n had recovered.

Notice that the existence of stable storage is not by itself
sufficient to guarantee that invocations always succeed in the
presence of failures. Consider the case where a machine in the
chain of forwarding addresses does not respond to an RPC. If
we can be sure that the invocation did not take place, then we
can treat the lack of response as if it were a failure message,
and try to get a newer fad from the storesite as described
above. However, if it were possible that the invocation
completed and that the node crashed just before sending the
reply, then locating the object through stable storage and
reactivating it might cause the invocation to be performed
twice. To prevent this we need another mechanism, such as an
invocation sequencer, and a higher-level protocol to decide
whether to repeat the invocation once the object is found.
Alternatively, the application may decide that it is always safe
to repeat certain operations (e.g., because they are idempo-
tent). This problem is a consequence of the fact that writing the
log record that records the effect of an invocation and replying
to the invocation is not an atomic action in our system.

Changing and Finding Storesites

If objects can move in volatile memory, why should they be
fixed in stable storage? Indeed, if a form is sent for approval to
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a manager on the opposite coast, and the object consequently
migrates to a machine there, it makes sense that the object be
supported by a nearby storesite. Hermes therefore lets objects
change storesite. However, the former storesite of an object
keeps a forwarding pointer (in stable storage) to its successor.
Now it is possible to find the current storesite for an object by
a process similar to the one already described for Hermes
nodes. Since by definition stable storage does not lose
information in a crash and storesites are highly available, the
search is likely to succeed at this stage.

Provided that all storesites are always available and that
they keep all the forwarding addresses forever, every object in
the system can be found in this way. But these conditions are
not always true—storesites will occasionally be unavailable.
Moreover, a storesite does not need to keep the checkpoint and
log records of an object that migrates to another storesite once
the object has checkpointed at the new storesite, so it would be
convenient if it were eventually possible to purge the
forwarding pointer too. We also need to provide a mechanism
whereby the initial storesite for an object can be found.

One possible solution is to register each object with the
name service, with an attribute indicating its current storesite.
Once the name service has propagated this information and
can guarantee that an enquiry will no longer be answered with
old data, a storesite is free to delete its forwarding pointer.

It seems likely that many objects, particularly short-lived
ones, might remain at their original storesite for as long as
they live; hence, registering them with the name service could
be wasteful. We therefore include an object’s initial storesite
as a component of its guid. This makes it easy to find an
object’s initial storesite, and also means that there is no need to
make a name server entry for an object until it has moved its
storesite for the first time. Moreover, assuming that most
objects choose a nearby storesite, structuring guids from
storesite names gives them geographic locality, thereby
making them suitable for efficient lookup and update in a
global but geographically clustered name service [17].

Having a guid and no other information, there are thus two
ways of starting the finding process: derive the name of the
initial storesite from the guid, or look up the storesite in the
name service. If either operation fails to return information
about the object, it is appropriate to try the other. The first
method will be most efficient if the object has never moved its
storesite; the second will be most efficient if it moved long
ago. Which situation is more likely depends on the application.
One can also seek to minimize elapsed time by making both
enquiries in parallel.

A possible extension of this algorithm is to append a fad to
the information stored in the name service. Now, when a
supervisor asks the name service which storesite currently
supports a target object, a tad for the object is returned too.
The supervisor can try this fad immediately, instead of calling
the storesite. This modification will pay off if objects move in
stable storage as frequently as they move between Hermes
nodes, and if the name service propagates updates sufficiently
rapidly, because under these conditions the 7ad returned from
the name service will be as good as the one at the storesite.
Otherwise, the tad will be stale and trying it first will lengthen
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Fig. 2. Invocations through the LII layer.

the search for the target object. Since it appears that these
conditions will not be satisfied in our environment, we decided
not to adopt this extension.

V. IMPLEMENTING THE LII MECHANISM
Conceptual View

Fig. 2 shows a conceptual view of two invocations (P and
Q). The LII layer is the intermediary in both invocations,
directing them to the correct node and object. In the first case
(dotted line), object 0, invokes operation P of 0,. The LII
layer discovers that 0, is local and calls 0,.P locally. In the
second case (dashed line), 0, invokes operation Q on 03. The
LII layer issues an RPC to its peer on node m, which then calls
03.0Q locally.

How is this redirection of invocations achieved? Imagine
that for every object in the Hermes system there is a proxy
object on every Hermes node. Both the real object and its
proxies export the same interface, which consists of operations
P,, P,, and P,. However, whereas the real object’s operations
are bound to “‘real’’ procedures X, X, X; that perform the
operations on the object, a proxy object’s operations are bound
to *‘stub’’ procedures X, X, , X that merely locate the real
object and invoke the respective X; procedure. Notice that
because of our requirement for strong typing and because the
operation name is not a parameter, we need a different stub for
each operation.

When the invoker makes an invocation, it neither knows nor
cares if it is operating on a real object or a proxy. In Fig. 2,
when 0, invokes 05.0Q, it actually calls the stub Q’ in the local
proxy for 03. The proxy ascertains from the supervisor that 03
is remote and calls 0;.Q on the remote machine.

Implementation Details

We implement our proxies using machine generated proce-
dures called LI stubs. Two stubs are generated for each
procedure P in the interface of an object. The first stub
(P_prime) is called by the application code, while the second
(P_prime_remote) is located at the remote node and is called
(via RPC) by P_prime. If P_prime_remote needs to forward
the invocation a second time, it will make an RPC to an
identical P_prime_remote on another node. An example stub
P_prime is shown in Fig. 3(a); it has the same interface as the
real procedure P except for the addition of the exception
Unavailable. P_prime_remote is shown in Fig. 3(b). Notice
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procedure P_prime (in iarget: Objectld, <P's params> )
returns <P’s return type>
raises { El. . EA, Unavailable);
var myTad, remoteTad: TAD;
5 binding: RPC Binding; re: RPC.CallErrors;
exception: ExceptionDesc;
result: <P's retum type>;

if Object.TryToFix(target, myTad) then
10 try return( P(target, <P’s params>) )
finally Object.UnFix(target)
end try
end if;
/* object is remote: try RPC %/
15 remoteTad := myTad,;
loop
try binding:= LIISupport.GetBinding(myTad.node),
if Client.P_prime_remote(binding,
remoteTad, 0, exception, result,
20 target, <P's params>) = Returned then
LiISupport.UpdateTadtar get, remoteTad),
return(result);

LHSupport.UpdateTad(tar get, remoteTady,
25 case exception.which of
| e n.iu(E,., exception.arg)
| unavailable:
raise(Unavailable, exception.why);
| HopCountExceeded:
30 myTad := remoteTad;
end case
end if
except
| RPC BindingF ailed:
35 if not Object.GotNewerTad(target) then
raise(Unavailable, CannotBindy,
end if
| RPC.CallFailed(re):
if RPC.MightOccured(re) then
40 raise(Unavailable, RPCmightOccured),
elsif not Object.GotNewerTad(target) then
raise(Unavailable, RPCnotOccured),
end if
end try
45 end loop
end P_prime

55

(a) Stub called by object’s clients

procedure P_prime_remote(in target: Objectld; <P's params>;
in-out remoteTad: TAD, in-out hops: short;
out exception: ExceptionDesc;
out result: <P’s return type> )
returns LiISupport.CallOutcome;
var myTad: TAD; co: LIISupport.CallOutcome;
binding: RPC Binding; re: RPC.CallErrors;

try if Object.TryToFix(target, myTad, remoteTad) then
try try result := P(target, <P's params>);
return (Returned);
except E‘, (exception.arg):
exception.which := e ;
return (Raised);
end try;
finally Object.UnFix(targer)
end try
end if
except Unavailable (exception.why) :
exception.which := unavailable;
return (Aborted);
end try;
/* object is remote: try RPC */
remoteTad := myTad;
if hops >= LlISupport. MaxHops then
exception.which := HopCountExceeded;
return (Aborted);
end if;
loop
try
binding:= LIISupport.GetBinding(myTad.node);
co := Client.P_prime_remote(binding, remoteTad,
hops+1, exception, result, target, params);
LliSupport. UpdateTad(tar get, remoteTad),
refurn (co);
except
| RPC BindingFailed:
if not Object.GotNewerTad(iarget) then
exception.which := unavailable;
exception.why := CannotBind;
return(Aborted);
end if
{ RPC.CaliFailed(re):
if RPC MightOccured(re) then
eption.which := tlable;
exception.why := RPCmightOccured;
return(Aborted);
elsif not Object.GotNewerTad(target) then
ption.which := ilable;
exception.why := RPCnotOccured;
return(Aborted),
end if

end try
end loop
end P_prime_remote

(b) Stub called by other stubs remotely

Fig. 3. Pseudo-code for LII stubs.

that this stub has a different interface; it does not raise any
exceptions, and returns as a result the outcome of the call as
well as the result of P itself.!

The only state required by the stub is the location
information stored in the supervisor’s tad for the invoked
object, so the same stub can be used for all the objects of a
given type. Since stubs are almost identical, it is easy to
generate them automatically. Notice that this is different from
an RPC stub where almost everything in the body of the stub
depends on the types of the parameters. Our stub generator
scans the Modula-2+ interface definitions using the Unix™
tool Jex, and is itself written in awk.

Both the local and remote stubs check whether the target

! The existence of two stubs is largely a matter of convenience, influenced
by the fact that in Modula-2 + a procedure that raises an exception cannot also
return result parameters.

™ Unix is a trademark of AT&T Bell Laboratories.

object is local; if so, they call the local P and return its result
to their caller. Otherwise, the remote stub at the node named in
myTad is called. If the object is local, it is fixed for the
duration of the call and is unfixed (by the try... finally
construct) at the end of the call. The reason for fixing the
object is to avoid migrating it while it contains an active
thread, which would involve finding all location-dependent
values on the thread’s stack and in its registers and marshaling
them between the two nodes. (The Emerald system actually
does this, but it is possible only because the compiler
distinguishes between location dependent and independent
values [15].) In this respect moving a single object that is
embedded in a shared address space is harder than migrating
an entire address space [3].

The action of the stub that calls P depends on whether it is
local or remote to the original client; the local stub can return
directly to its caller even if P raises an exception, while the
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remote stub has to catch whatever is returned or raised by P,
package it, and return it together with the current fad.
Conversely, after a stub completes an RPC, the remote stub
can simply propagate the result returned from the call (and
update its own tad), whereas the local stub has to unpackage
the result and accordingly return to, or raise an exception in,
the client application.

Notice that TryToFix takes an optional third argument,
which is the best tad so far found during this invocation. In the
remote stub [Fig. 3(b)], should remoteTad be newer than
myTad, TryToFix obtains a newer tad from stable storage or
from the name service, as discussed in Section IV. In
attempting to do so, it may fail to communicate with them, in
which case the exception Unavailable will be raised.

Alternative Implementations

We considered two alternative approaches for the imple-
mentation of location independent invocation.

1) In the system-service approach, the service both locates
the object and performs the invocation. For example, suppose
that this service is called Invoke; to perform the operation P
of an object name by o, instead of calling o.P(params) or
P(o, params), one calls Invoke(o, P, params). This is
similar to the approach taken by Kalet and Jacky [16].

2) In the integrated-mechanism approach, an extended
RPC system supports LII, that is, both finds objects and
performs the invocations.

We ruled out the first alternative mainly because of its lack
of strong typing: it requires that compile-time type checking
be circumvented, whereas we wanted to take advantage of it. It
also incurs the complexity of maintaining in one place a
complete list of operations and their parameter types. With our
interface-layer approach we maintain strong typing and avoid
having such a list by generating a separate interface for each
operation. The second alternative was rejected because our
RPC system was developed and is maintained by others; it
would require that we modify every new version of the RPC
system to support LIL. (This is not to say that RPC should not
be extended to give better support to objects in general and
mobile objects in particular, as discussed in Section VII). In
addition, our choice of the interface-layer approach allows us
to combine search and invocation and to make only minimal
changes to the interface seen by an object’s clients.

VI. RELATED WORK

The notion of location independent invocation appears in the
Eden distributed object-oriented operating system [1], [6].
Eden supports objects at the system level and it provides
invocation as a system service. Eden uses hints to find objects,
and is quite cavalier about timing out hints when they have
been unused for a few minutes. If it is necessary to find an
object for which there is no hint, or after a hint has failed, the
object’s capability is used as a hint to find a stable storage
server, called a checksite. If this turns out not to be the current
checksite for the object, the invoking system uses an Ethernet
broadcast to interrogate all Eden kernels and a// checksites in
the Eden network. This is a reasonable approach for a research
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prototype of a dozen machines, but is inappropriate for a
world-wide distributed system.

Eden deals with the problem of type-checking invocations in
the same way as an RPC system: it generates a stub for each
operation, which marshals the arguments into a uniform data
structure. The system invocation interface takes this structure
as its argument.

Emerald [7], [15] is a programming language that supports
location-independent operations on mobile objects. The Emer-
ald compiler packages invocation parameters directly, so there
is no need for stubs. Emerald also uses forwarding addresses
for location, but falls back on a broadcast enquiry (a shout)
should the forwarding chain be broken. If there is no response
to the shout, the invoking node performs an exhaustive search
of every Emerald node, first by broadcasting a search message
that requires a response from every node, and then by
following up with reliable point-to-point messages to those
nodes that have not responded.

Although Emerald predated Hermes, in several respects it is
more advanced. Emerald objects can move at any time, even
while invocations are executing inside them. New code can be
injected into a running Emerald system, and will migrate
around the system as necessary to support migrating objects.
Emerald has an innovative object type system to ensure that
invocations on newly-created objects can still be type-checked.
These facilities are only feasible because Emerald is a
programming language as well as a run-time system. While an
attractive paradigm for the future, we judged that we were
unlikely to successfully introduce a new programming lan-
guage for commercial distributed applications. Moreover,
Emerald currently has no provision for making objects
persistent.

The problem of finding objects in Hermes resembles that of
finding an interprocess communication channel in a system
that supports process migration. There are various ways to
redirect these channels after a process has migrated [2],
depending on whether the IPC mechanism treats channels as
hints (as in Demos/MP) [22}]) or as absolutes. Our use of tads
is similar to the unidirectional links used in Demos/MP.
However, unlike fads in Hermes, forwarding addresses in
Demos/MP are not updated when used, and they are discarded
only if the process returns to the same machine.

Locus [9], MOS [4], and R* [18] use the ‘*home’’ approach
to record where an entity is located. In the distributed systems
Locus and MOS the entities of interest are processes; in R*
they are database objects. Each entity is assigned a home
machine at birth; this machine is notified whenever the entity
migrates. Sprite [12] extends this approach to direct location-
dependent kernel calls to the home machine of a process,
regardless of where the process is located. Hermes borrows
from this approach by using an object’s current storesite as a
temporary ‘‘home.”’

The layering in Hermes and the support for LII resemble a
method used to achieve location-independent resource access
in the MOS system. The MOS kernel is a modified Unix
kernel divided into three layers. The lower-kernel provides
low-level, location-dependent kernel services, such as disk
access. The upper-kernel provides user-level and location-
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independent services, using the lower-kernel when necessary.
Between these layers is the linker, which decides whether a
call from the upper to the lower-kernel should be executed
locally or remotely. The Hermes LII layer is analogous to the
upper-kernel, the object operations to the lower-kernel, and
the RPC system to the linker. Notice, however, that the targets
of invocations in MOS (i.e., resources) do not migrate, so
finding them is much simpler than in Hermes.

The system-service approach for implementing invocations
without language support has been used in a large (but
centralized) object-oriented application for radiation therapy
[16]. This application was written in Pascal, with records
representing objects. A ‘‘system’’ function Invoke is used to
initiate all operations; it uses a case statement to select the
right operation, and enqueues a ‘‘work request’” to be per-
formed by the system at some convenient time. To circumvent
typing, arguments are passed as a record that has one variant
per object interface and per operation. The operation name and
target object are arguments too. This approach suffers from
poor maintainability and readability: with every interface
added to the system, the system administrator has to modify
the Invoke function and the structures it uses. Invocation
arguments must be correctly packaged into a record rather
than being written as a list.

Another system built to support object mobility is that of
Wolfson, Voorhees, and Flatley [26]. Unlike our work, they
support migration between heterogeneous machines. Objects
choose when and where to move based on their internal state.
However, this system does not include any mechanism for
locating an object from another node or communicating with it
in a location independent fashion.

VII. EXPERIENCE

The Hermes system has been designed and implemented
over the course of about a year and a half, with most of the
implementation completed by March 1989. At the time of
writing (August 1989) the current prototype of Hermes has
been running in the laboratory for a few weeks over a small
number of machines on a LAN. Below we present some early
performance measures and summarize our experience. The
performance figures we offer here are necessarily very
preliminary since no attempt has yet been made to tune the
system’s performance.

Performance

The measurements reported in Table II were taken on
MicroVAX"™ processors running on a dedicated Ethernet. A
loop that issued a large number of calls was used to eliminate
start-up effects. The time for a local null call represents the
cost of a procedure call and return on this machine in our
programming environment. ‘‘Local Null LII’’ refers to the
cost of an location-independent call to an object that turns out
to be local; the LII is roughly thirteen times as expensive. This
factor is made up in part by real work, and in part by several
procedure calls introduced by our extensive use of data
abstraction, together with a compiler that fails to in-line trivial

™ Ultrix and MicroVAX are trademarks of Digital Equipment Corporation.
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TABLE II
PERFORMANCE MEASUREMENTS FOR INVOCATION

operation time A
Local Null Call 18 us

Local Null LII 240 ps

Round trip UDP 10 ms

Null RPC 22ms 12ms
Null LII 26 ms 4 ms
256 byte RPC 26 ms

256 byte LII 30 ms 4 ms

procedures. Note that a null LII does not correspond to a null
procedure; a target object must be passed as an argument. The
“‘real work’’ therefore includes passing this argument, check-
ing whether the object that it names is in fact local, finding that
object’s representation, and using the dymanic type system to
cast the representation to the type that the operation body
requires. In addition, we must fix the object before the
operation commences and unfix it on exit as discussed in
Section V.

Note that most of this work must be done regardless of the
approach taken to implement LII, or indeed even if LI is not
supported, provided that objects can move. With our current
compiler, some of the overhead can be eliminated by breaking
open the encapsulated data structures of the supervisor ‘‘by
hand,”’ but this approach is error prone. Only a minor fraction
of the measured overhead of LII can be attributed to the fact
that the stubs are machine generated and not hand tuned to
each interface.

The second segment of the table shows the cost of a round
trip from one Ultrix™ user process to another on a remote
machine using UDP. The RPC mechanism that we used (the
experimental RPC from Digital’s Systems Research Center)
requires one such round trip per call in the normal case; the
time for RPC with no parameters is shown. (For a thorough
analysis of the performance of this RPC on a different
substrate, see [25].) The null LII call incurs an overhead of
4 ms relative to the null RPC. This timing is based on having
an up-to-date fad for the invoked object at hand, and having
the binding for the remote node already cached. Recall that a
null LII must still send the identity of the called object; it also
marshals result parameters that are used in the case of RPC
failure and for the remote tad that is sent back when the object
is found. Similarly, the timing for a 256 byte RPC is not
strictly comparable to that for a 256 byte LII: the latter also
involves sending an object reference, receiving exception and
call-outcome descriptors, and both sending and receiving tads
and hop counts. As a consequence, not only are the messages
larger (by about 35 bytes), but extra procedures must be called
to marshal these extra parameters.

To assess the cost of migration, we measured the time taken
to interrogate the state of a small form object locally and
remotely, and compared this to the time taken to migrate the
object. Unlike the timings given above, these measurements
were not made in an isolated laboratory environment, but
represent a ‘‘real’” use of the system, with other processes and
the window manager running concurrently. They therefore
include system overhead for context switching externally
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TABLE 11
PRELIMINARY TIMINGS FOR FORM INVOCATIONS

\ User interface and Hermes Node are: 1
co-located remote
object is local 200 — 240 ms 80 - 140 ms
object is remote 290 ms 370 — 660ms
nalty for remote invocation 50-90ms 300 — 500 ms

between processes as well as internally between threads, and
the overhead of other network traffic (which was measured to
be about 11 percent). Moreover, single calls were timed,
rather than loops that issued large numbers of calls, so startup,
paging, and swapping effects may be significant. For these
reasons the timings are reported as ranges rather than as single
numbers.

All the invocation measurements reported in Table III
include issuing a request from the user interface (a separate
Ultrix process in the current prototype) and receiving the
results back at the interface. The RPC’s between the interface
and the Hermes Node used the ‘‘opaque reference’” mecha-
nism, and marshaled around 90 bytes of structured data. The
left column reports the timings for the case where the user
interface and the Hermes Node were sharing the same
machine; in the right column they were on separate machines.
The remote case is faster, indicating that the machines were
loaded enough for the gain in paralielism to outweigh the cost
of communication. The first row refers to the case where the
invoked object was at the Hermes Node at which the interface
initiated the invocation; in other words, the LII was local. In
the second row the object was remote from the invoking
Hermes Node, and the LI mechanism was thus forced to make
an RPC. However, the timings in the bottom right-hand corner
are unrealistic since only two nodes were used for the tests; the
user interface and the invoked object’s Hermes Nodes shared
one machine. while the interface initiated its invocations at a
Hermes Node on a second machine. (The 660 ms timing is
particularly suspect, and may indicate that the first machine
was swapping.)

Looking at the timings in the first column, the penalty for
remote invocation agrees fairly well with the measurements
reported in Table I, given that the invocation returned a
complex data type with several array, record, and structured
text fields that must be marshaled by calling procedures. The
penalty derived in the second column is much larger and
requires further analysis.

Migration involves two remote procedure calls: one that
passes the object to the destination node, and a second to
commit the move and update the object’s location information
at its storesite. For our experiments we simulated stable
storage using the Ultrix file system. We measured the
overhead of calling the storesite and committing the move to
be 150-230 ms. A careful implementation of stable store, as
used in a commercial database, might take 10 ms to write a
commit record; even after adding the cost of the RPC, our
simulation is five to eight times slower. The measured elapsed
time for migrating forms of two different sizes are reported in
Table IV.

The cost of moving a small object thus appears to be about
four times the penalty for invoking it remotely. Thus, on the
one hand, if a single invocation needs to be made on an object
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TABLE IV
PRELIMINARY TIMINGS FOR OBJECT MOVE

size of form moved time
252 bytes 190 - 310 ms
3176 bytes 690 — 870 ms

that already resides at a remote node, the object should be
invoked remotely. On the other hand, if several invocations
will be made, it will probably be beneficial to move the object.
Migration also makes sense when the system can determine in
advance where an object will be required, as it usually can in
the expense form application; in this case the object can be
moved in the background before an interactive session starts.

For comparison, the cost of migrating a trivial object in
Emerald is reported to be 2 ms above the cost of a remote
invocation [15]. Of course, this does not include the cost of
committing the object’s new location to stable storage; neither
does it include marshaling or de-marshaling, since the
representations of Emerald objects are well-known. The cost
of marshaling is significant. For example, process migration
systems (supported at the operating system kernel) are able to
move medium-sized address spaces (say, 32 kbyte) in times
that are comparable to that taken for a small Hermes object
(say 200-300 ms) largely because they avoid marshaling [3].

Reliability

One of our initial goals was to create a reliable environment
for applications despite the inevitability of machine and
network failure in very large distributed systems. Our system
does not lose object data or location information when a node
fails, although it will do so if *‘stable storage’’ turns out not to
be stable. However, Hermes is not fault tolerant because an
operation can be rejected if the node where the target object is
located or the storesite supporting it are temporarily unreacha-
ble. Nevertheless, despite the ability to scale to very large
number of nodes spread over a large geographic area, failures,
are ‘‘soft’’; that is, although it is possible for a particular
object to be temporarily unavailable, the system as a whole
will still function and operations on other objects can proceed.

The main tool that we used to increase reliability was the
almost complete elimination of residual dependency. Although
finding a remote object may require one to traverse several
nodes, the failure of an intermediate node does not necessarily
reduce the object’s availability or the system’s ability to locate
the object. The failure can be circumvented by using the
storesite, and in some circumstances even storesite failure can
be circumvented by using the name service. In contrast, in
other systems that use forwarding addresses (e.g., Demos/
MP), the failure of any node containing a forwarding address
to an object renders it unavailable.

Finally, our approach introduces some uncertainty concern-
ing invocations. Using a reliable RPC system, one can
normally detect and discard duplicate invocations. However,
when the RPC fails, it is not always possible to ascertain
whether the remote operation has taken place or not. Our
ability to reactivate an object from stable storage does not
allow us to recover from these failures transparently. In these
cases we report failure and expect higher layers to decide
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whether reissuing the invocation is necessary or safe. Making
this recovery automatic would require adding a sequencer to
invocation requests, and ensuring that the sequencers of
completed invocations are written to stable storage when an
object logs or checkpoints. Transaction-based systems recover
from this sort of failure in just this way.

Using RPC

The complete separation of the LII layer from the RPC
system is practical rather than conceptual. In fact, we believe
that much of the support for LII might migrate into the RPC
systems of the future. In particular, the RPC system should
allow control over the granularity of the target of a binding,
instead of dictating the grain to be an address space or module.
The RPC system that we are using supports binding to separate
modules, not merely to an address space. It does not facilitate
combining the interfaces of several modules that share the
same address space: every remotely-callable interface must be
called via a separate binding. Used naively, this mechanism
would necessitate constructing and keeping at hand a dozen
or more bindings to every other supervisor. To eliminate
these extra bindings we have designed an automatic translator
that, given a list of object interfaces, produces a single
‘“‘umbrella’’ interface by systematic renaming. Fortunately,
the Modula-2 + language enables this merging of interfaces to
be done without incurring the cost of extra procedure calls.

RPC systems usually take pains to ensure that a remote call
behaves as if it is executed by the calling thread: alerts (inter-
thread ‘‘interrupts’’) sent to the calling thread are propagated
to the callee, and exceptions raised by the callee are
propagated back to the caller. Although our RPC system
enjoys the latter property, it does not help us, for when a called
procedure raises an exception we need to propagate not only
the exception but also the tad. The LIl stubs therefore
duplicate this functionality, and at considerable inconven-
ience, because exception codes are not manipulable values in
the Modula-2 + programming language.

Our insistence on passing the result and zad all the way back
to the original invoker is based on the assumption that the
propagation chains will usually be short. If the chain becomes
long, this incurs a significant overhead in marshaling and de-
marshaling both the arguments and the results in the intermedi-
ate nodes. Our design might have changed had the RPC system
provided a simple way to return directly from the end of the
chain to the original invoker; this is essentially the same
optimization that a compiler might perform in eliminating a
tail-call from a procedure. Failing this, some way of avoiding
the repeated de-marshaling and marshaling of arguments at the
intermediate nodes would be beneficial, although it is not at all
clear how to achieve this while preserving the RPC abstrac-
tion.

Language Extensions

Our experience writing a distributed object-oriented system
with a language that is not geared towards object-oriented
programming showed us that several language features are
necessary to facilitate writing distributed applications and
services.
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e Concurrency is endemic in a distributed system; such a
system includes multiple processors and (often) multiple
users, and concurrent activity is the norm. The programming
language should provide integrated support for multithread-
ing, including synchronization primitives for the access of
shared data.

® Parameter lists should be first-class data objects. This
would greatly simplify the kind of procedure call redirection
that is performed by the LII layer, while maintaining strong
typing. Ideally, a procedure should be able to call another
procedure by Module.MyName(MyParams) where
MyName is dynamically bound to the caller’s name for the
procedure and MyParams is a parameter list data object.
(MyName is similar to the argv[0] notion of Unix.)

® Polymorphic procedures, as in Russell [10], and implicit
parameterization by types, would allow us to write a single
stub that could be used for every operation.

o If Exceptions were manipulable as data objects, the task
of writing our stubs would have been significantly simplified,
as mentioned above. At the level of the language implementa-
tion exceptions are indeed data objects, and it is not clear why
this is hidden from the user.

In addition, while Modula-2 + does have reasonable data
typing facilities, they are quite inconvenient to use. For
example, while combining interfaces it is necessary to
automatically generate a type that can represent the value of
one of a number of existing enumerations. This can be done as
a variant record (which is very clumsy) or an ordinary record
(which wastes space). A true discriminated union of types
would have been much easier to use.

VIII. SUMMARY

This paper presented some of the problems of finding
objects in large and wide-area networks where objects may
change their location in volatile memory as well as on stable
storage. We discussed possible solutions and described those
adopted in the Hermes system. We designed and developed a
location-independent-invocation mechanism that combines
finding with invocation, using temporal location information.
The mechanism also updates the system’s knowledge of an
object’s location as a side-effect of invocation and object
migration. Based on our assumptions about object mobility,
objects are likely to be found within a few propagations of an
invocation. If they cannot be found in this way, stable-storage
and name services are used to locate the object. The major
contribution of this paper is to show how LII can be achieved
in a large and dynamic environment in which objects are
supported by neither the operating system nor the program-
ming language.
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