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Abstract

Emerald is a statically typed object-oriented language that was originally intended for programming

distributed subsystems and applications [Jul 88]. It is important that such systems be dynamically extensible,

i.e., that it be possible to introduce new kinds of entities into the system without re-compiling or re-linking

the whole system. This led us to devise a type system based on the notion of type conformity rather

than type equality. We also felt that polymorphism was a necessary feature of a modern programming

language: programmers should be able to de�ne generic abstractions like homogeneous sets, lists and �les

into which objects of arbitrary type can be placed. The combination of object-orientation, type-checking

based on conformity and polymorphism gave rise to some interesting problems when designing Emerald's

type system. This paper describes the Emerald's type-checking mechanism and the notion of types and

parameterization on which it is based.
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1 Introduction

Emerald is an object-oriented language, by which we mean that the basic entities (objects) manipulated

by programmers have identities as well as values. Emerald objects are said to be autonomous: each object

\owns" its own set of operations, and these operations are the only ones that can be applied to the data that

is used in the implementation of the object.

In a traditional value-oriented language, one of the major rôles of the type system is to prevent the mis-

interpretation of values, and thus to ensure that the meaning of a program is independent of the particular

representation that is chosen for its data types [Donahue 85]. The rôle of types in an object-oriented lan-

guage like Emerald is somewhat di�erent, because autonomy and encapsulation already ensure that the only

operations that can be applied to an object are those that belong to the object itself. Emerald's type system

has other functions: earlier and more meaningful error detection and reporting, improved performance, and

the classi�cation of objects.

From the perspective of error detection, the assertion that an Emerald expression is type correct means

that its evaluation will never lead to an object being requested to execute an operation that it does not

possess. In Smalltalk terminology, typechecking guarantees that \operation not understood" errors are

never generated. As a consequence, the runtime system need not check for such errors.

Before we proceed, we introduce some caveats. Emerald does not have subrange types of the kind found

in Pascal; [0..9] and [5..19] are not types, and the question of whether either can be used in place of the

other, or in the place of integer , does not arise. Neither are the bounds of the index of an array part of

its type; as in CLU [Liskov 79], all Emerald arrays have 
exible bounds. Emerald types never depend on

ordinary non-type values; this is not because we do not believe that it is useful to specify the range of an

integer variable, but because we regard the enforcement of such a speci�cation as range checking, not type

checking [Welsh 78].

Emerald also lacks an explicit notion of class. However, Emerald types induce a classi�cation on Emerald

objects: all objects that have a given type have an important property in common. Moreover, the conformity

relation between types de�nes a lattice structure that is similar to a \multiple inheritance hierarchy". A

group of objects that share the same implementation also have a common property, but our view, coloured

by a strong belief in encapsulation and implementation experience on heterogeneous architectures, is that

this particular property is of lesser interest to the programmer (although it is of great importance to the

implementor.)

Having uttered these cautions as to what Emerald types are not, we are now ready to explain what they

are. Speaking loosely, an Emerald type is a set of operation names: associated with each operation name

is a signature that describes the arguments and results that the operation accepts and returns. Here is the

type Boolean in Emerald:

const Boolean  

typeobject b

operation ^ [b] ! [b]

operation _ [b] ! [b]

operation : [ ] ! [b]

operation = [b] ! [b]

end b

This fragment of Emerald binds the name Boolean to the expression to the right of the  ; the fact that

Boolean is declared const means that it cannot later be rebound. The expression typeobject b : : : end b

is a type constructor: it returns an Emerald object of type type. The identi�er b is a bound variable that

names this new object within the scope of the type constructor. The value of the type constructor represents

a type with four operations, named ^, _, : and =. Each of these operations takes one argument and
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one result, whose types are given by the expressions in the square brackets; recall that in an object-oriented

language, every operation gets the target object as an implicit argument. Thus, if an object of type b receives

the operation request ^, it expects a single argument of type b and produces a result of type b. (Although

there is nothing in the type de�nition to tell us what this result might be, which we might reasonably expect

it to be the conjunction of the values of the target and the argument.) An object-oriented version of : would

normally take no arguments, and would return the negation of the target. However, in this paper we will

use a restricted version of Emerald in which all operations have a single argument and result; the empty

argument list for : formally represents an argument of type Any. This restriction is made to simplify the

notation and exposition of the paper; dealing with the full generality of argument lists of unbounded size

introduces signi�cant notational complexity, but requires no new concepts.

Thus, we see that Emerald's view of types is quite di�erent from that adopted by, for example, Russell:

when Donahue and Demers [Donahue 85] state that types are set of operations, they mean that they are

sets of functions; each function provides an interpretation of the underlying value space of representations.

Emerald types are sets of names; the functions that are eventually applied to the representation are not a

property of the type at all, but of the invoked object. As a consequence, Emerald types are abstract: it is

possible for many di�erent objects to be of the same type, even though they have di�erent code bodies for

their operations, and execute on di�erent hardware architectures.

To illustrate this, here are two objects, both of which are Boolean, even though they have quite di�erent

implementations.

const true  

object t

operation ^ [a: Boolean] ! [r: Boolean]

r  a

operation _ [a: Boolean] ! [r: Boolean]

r  t

operation : [ ] ! [r: Boolean]

r  false

operation = [a: Boolean] ! [r: Boolean]

r  a

end t

const false  

object f

operation ^ [a: Boolean]! [r: Boolean]

r  f

operation _ [a: Boolean]! [r: Boolean]

r  a

operation : [ ] ! [r: Boolean]

r  true

operation = [a: Boolean]! [r: Boolean]

r  a.:[ ]

end t

Another important thing to notice about the de�nition of type Boolean is that it is self-referential; its

local name b appears in its own body. This is typical of most types encountered in practice, and will turn out

to be very important in our treatment of type checking. Formally, the meaning of such a de�nition is given

as the �xedpoint of a function. Let �b: (b) denote the function of the bound variable b corresponding to the

Emerald type constructor typeobject b : : :end b; the description of exactly what this function is will be

deferred to section 2, but for now it is su cient to realize that it is a function from types to types, also known

as a type generator. Intuitively, a type is a set of operator names and the corresponding signatures. The

interesting properties of Boolean are captured by the type that is the �xedpoint of the generator �b: (b),

which we write as (�b: (b)), or more concisely as �b: (b), following the notation introduced by Mac ueen

et al. [Mac ueen 84, Mac ueen 86].

Informally, we can represent this by the graph structures shown in Figure 1. The circles represent types;

the shaded circles correspond to the captions. The arcs represent arguments and results of operations, as

indicated by their labels. The graph on the left shows the type generator applied to an arbitrary type

argument t. The graph on the right represents the �xedpoint of .

Unfortunately, there is one situation in which the notion of type as a mapping from operation names to

signatures does not capture all of the information in an Emerald object constructor. As we will see in Section

4, dealing correctly with type parameters requires that we regard the constraint on a type parameteras a type

generator, i.e., as a function from types to types. This has little implication for the practising programmer,
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Figure 1: The type Boolean as a graph structure

since a type constructor such as typeobject b : : :end b can be regarded equally well as representing a

generating function or its �xedpoint.

The application areas for which Emerald is intended demand that systems be malleable and extensible.

This means that it must be possible to introduce not just new objects, but new types of objects, into a

running system, and that existing applications must be able to operate on these objects. In general, it is

possible to substitute one object for another provided that the new object is at least as functional as the

old one. This means that the new object must provide all of the operations o�ered by the old object, and

that the arguments, results and semantics of these operations are appropriate. We regard the syntactic part

of this substitutability condition to be the responsibility of the type system; ensuring that the semantics

are appropriate involves program proving rather than type checking. A type system based upon equality

of types will disallow many valid substitutions; Emerald's type system [Black 87] is based upon the notion

of conformity, which is the largest relation between types that ensures that substitutions are safe. It can

be argued that in some application areas there are reasons to use a more restricted rule. For example, in

a centralized system in which all the types are introduced by one group of programmers, one might require

an explicit statement of substitutability in addition to conformance; Trellis [Scha�ert 86] is a language that

takes this approach. However, using a rule that is less stringent than conformity will lead to an unsafe type

system, i.e., to a situation in which an unde�ned operation can be invoked on an object [Cook 89].

The remaining sections of this paper de�ne conformity and explain how type checking is performed by

the Emerald compiler. First we deal with the case where there are no type parameters; then we introduce

them. For simplicity of presentation, we ignore two features of Emerald: the attributes that state whether

an object is mutable and an operation is functional. As mentioned above, we also assume that all operations

have a single argument and result, whereas in fact Emerald allows arbitrary numbers of arguments and

results, and lets the same operator symbol be de�ned with di�erent arities. This is handled formally by

regarding the arity of a symbol to be part of its name. For example, nullary and unary are treated as

the distinct function symbols 0;1 and 1;1, where the subscripts give the number of arguments and results.
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The correct subscript for the operator in an invocation can always be inferred by counting the commas in

the argument and result lists.

nd on or it

Emerald uses the notation a � b to mean that type a conforms to type b. The symbol � is intended to

indicate that a has more operations than b, and that objects of type a can be used where those of type b are

expected. (Some authors say that a is a subtype of b, but we will avoid this terminology; we �nd it confusing

to call a type with more operations a subtype.)

Before de�ning conformity on types, we must state formally what a type is; this requires some subsidiary

de�nitions. We regard a type as a mapping from operation names (elements of a denumerable set de�ned

by the language syntax) to signatures. Intuitively, the signature of an operation gives the types of its

argument and result, and is represented as a pair of types, which we write a, r . When we introduce type

parameters, the types in a signature will no longer be constants, but may depend on the type or value of the

argument; for this reason we de�ne a signature to be a function from a type and a value to pairs of types.

(However, until section 4, all these functions will be constant functions.) As mentioned in the introduction,

in order to describe constraits on type parameters, we also need to deal with type generators, i.e., functions

from types to types. Thus, we have the following domains.

enerators: =

Types: =

Signatures: = ( )

To make this more concrete, Boolean from Section 1 is the �xedpoint of the generator given by

= �b:� :

>
>
>
>
>

>
>
>
>
>

if = ^

if = _

r if = :

if = =

n otherwise ;

where n is a distinguished error signature, and where

r = � t; : Any; b

= � t; : b; b :

Usually, we will write functions like more compactly as

= �b: ^ ;_ ;: r;= :

Hence, the type Boolean that is the �xedpoint of this function is given by

= �b: ^ ;_ ;: r;= :

otat on: Two types are of particular interest: Any, which corresponds to the type that has no operations

at all, and n , which corresponds to the type with all possible operations, each having the most general

possible signature.

Any = � : n

n = � : � t; : Any; n
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For convenience, we de�ne the following operations on types and signatures:

: 2 t = t = n

i : i t =
t if t

� ; : n ; Any otherwise

: t1; t = t1

: t1; t = t

otat on: When we de�ne a relation between types, we will also de�ne a derived relation for

signatures.

1 = t; : ( 1 t; ) ( t; ) ^ ( t; ) ( 1 t; )

For example, when we de�ne conformity ( � ) between types, we have also induced a relation �

on signatures: two signatures conform exactly when the result parts of those signatures conform, and the

argument parts conform in ersely.

1 � = t; : ( 1 t; ) � ( t; ) ^ ( t; ) � ( 1 t; )

The contravariance of the arguments is quite natural, because the information 
ow associated with an

argument is the inverse of that associated with a result. iew a signature as a (partial) speci�cation of an

operation: one operation is stronger (more useful) than another if the result it delivers is stronger, or if the

requirement that it places on its argument is weaker.

We formalize this notion of \more useful" using the idea that one type can be a re nement of another.

e n t on e ne ent e at on : A relation between types is said to be a re nement relation if and

only if t1 t implies

1. t1 t

2. t : i t1 i t

Re�nement represents the minimum requirement for substitutability; if an object of type t1 is supplied

where type t is speci�ed, then t1 must possess all of t 's operations, the results of each of t1's operations

must be usable where the result of the corresponding operation of t was usable, and t1's operation must be

no more demanding in its arguments than was t 's operation.

Now we are �nally in a position to de�ne Emerald's conformity relation.

e n t on con or ty : Conformity (written � ) is the ma imal re�nement relation, i.e., the one

containing the most pairs.

The properties of conformity can be captured by inference rules; these rules represent theorems that can

be proved from the de�nition of conformity, but we will not include the proofs here.

The �rst rule says that conformity is re
exive:

a : type

a � a
(1)

and should be read as follows: if one can prove in the naming environment that the symbol a denotes a

type, then one can infer that in the same environment, a � a. We will usually omit antecedents like a : type

in what follows.
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The second rule covers the case where one type, , has more operations than another type ; it lets us

deduce that � whenever the signatures of the corresponding operations conform appropriately.

= �t: 1 1; : : : ; ; : : : ; ;

= � : 1 1; : : : ; ;

; t = ; = [1; ]: �

�

(2)

(Recall that types are mappings, and therefore that the ordering of the operation names between the braces is

irrelevant.) This rule lets us create a conforming type both by adding operations to a type, and by generalizing

the signatures of its existing operations. Note that since the expressions may contain occurrences of t,

and the may contain , it is necessary (in the third antecedent) to augment the environment before

proving that � .

We introduce a special rule for n ; because this type has an in�nite number of operations it cannot

be written as in rule (2).

a : type

n � a
(3)

The �nal rule for conformity without type parameters is a generalization of rule (2) that deals with self

referential and mutually referential types.

= �t: 1 1; : : : ; ; : : : ; ;

= �t: 1 1; : : : ; ;

; t = ; = ; � [1; ]: �

�

(4)

This is the same as rule (2), except that in the third antecedent we may assume � , the very propo-

sition that we wish to prove. Intuitively, since and may refer not only to themselves but also to each

other, in applying rule (2) we may have to show that � . Rule (4) says that if we get into this situation,

it is all right to assume what we are trying to prove, provided that we do not do so at the top level. Taking

the converse point of view, the rule says that the only reason for two types not to conform is that at some

le el one does not have enough operations.

To see rule (4) in action, let us examine for conformity the three types , and .

const  typeobject nt

operation [ nt ]! [ nt ]

operation s ero [ ] ! [Boolean]

operation ne [ ] ! [ nt ]

end nt

const  typeobject en

operation [ ] ! [ en ]

end en

const  typeobject tra

operation [ tra] ! [ tra]

end tra

Rule (2) tells us that � if we can prove that, when t = and = , the signature of in

� to the signature of in . This requires that we prove that � nt and nt � en . The �rst
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condition follows from rule (1) but we have no way of proving the second condition. However, using rule (4)

in place of rule (2), nt � en follows from the extra assumption.

Rule (4) (correctly) does not permit us to prove � ; even though has more operations, the contra-

variance of signature conformity for the common operation, , would require that � an � . The

latter condition is clearly false, and cannot be deduced from any of our rules.

From our de�nition of conformity, we can derive an equivalence relation � by:

a � b = a � b ^ b � a

It can be shown that � is a partial order over � , and n and Any are the maximum and minimum

elements, respectively, under this ordering.

c in

Emerald's fundamental theorem of typing guarantees that if a statement is type correct, then executing it

will never cause an operation to be invoked on an object that does not possess that operation.

To state this theorem formally, we need to introduce the concepts of syntactic and dynamic type. Because

Emerald objects are autonomous, it is possible to ask an object at runtime what operations it implements, and

what their signatures are: from this one can deduce the ynamic type of the object. The Emerald expression

typeo e p returns the dynamic type of the object that results from evaluating e p; the implementation of

typeo requires, in general, dynamic interrogation of the target object.

In contrast, syntactic type is a property of an Emerald language expression, not an object. Syntactic

type can always be determined statically. Emerald expressions are constructed recursively out of literals,

identi�ers, object constructors, and invocations. There is a corresponding set of rules that gives the syntactic

type of the various forms of expression in terms of their constituent parts. If is an expression and t is a

type, we have so far written : t to mean that t is the syntactic type of . It is sometimes convenient to

have a function that returns the type of an expression ; we will write [[e]] for this purpose. By de�nition,

: [[e]].

Emerald statements do not have a type; they are either type-correct or erroneous. We will write [[s]]

to mean that the statement (or expression) s is type-correct. By convention, for an expression e, [[e]]

[[e]]= n . Here are the type-checking rules for the most important constructs in Emerald.

eclarations:
[[t ]] type

[[ ar : t ]]; [[ ]] t
(5)

[[t ]] type; [[e]] � t

[[const c : t  e]]; [[c]] t
(6)

Rule is stron er but less ele ant than the rule iven by Cook . Cook 0 :

This rule states that if the results of applyin two type enerators to conformin types also conform, then the edpoints of

those enerators conform. t deals with -references in the type- enerators and , but does deal with references from

to . For e ample, Cook's rule cannot be used to prove that above: when we compare the ar uments of we are

comparin a bound variable to a constant.
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[[e]]

[[const c  e]]; [[c]] [[e]]
(7)

pressions:
[[e]]; [[t ]] type

[[ e e as t ]] t
(8)

[[a]]; [[a]]; [[e]] � i [[a]] [[e]] e

[[a. [e ]]] i [[a]] [[e]] e
(9)

tatements:
[[e]] � [[ ]]

[[  e]]
(10)

Let us look brie
y at rule (10): it states that for an assignment  e to be type correct, the type of

the expression e must conform to the type of the identi�er that is being assigned. Rule (9) is the most

interesting: it gives the typing conditions for the invocation a. [ e ]. The principal antecedents are that

be a de�ned operation on the syntactic type of a, and that the type of the argument conforms to the type

declared for the argument of in a's type; if these conditions are satis�ed, the type of the result is as given

by a's type. Note that this rule speci�es that the signature function i [[a]] is applied to [[e]], e . Since all

of the signature functions that have been introduced so far in this paper have been constant functions, the

choice of argument is not very interesting. We will return to this rule and explain the argument in Section 4.

bserve that all of the conditions for type correctness are phrased in terms of the syntactic type of the

constituent elements. For a. [ e ] to be type correct it is not su cient for the ob ect bound to a to satisfy

the given conditions; it must be possible to determine that the conditions are true of the e pression a: this

is what we mean by static type checking. If it turns out that the expression a does not have the required

type, but the programmer knows through some other channel that the object bound to a will have a larger

type, then a view expression can be used to create an expression of the required type, as shown in rule (8):

the value of e e as t is the same as the value of e, but the type is always t . In general, execution of a

view expression will require a run time check that the dynamic type of the object does indeed conform to

the requested type.

In addition to the above, there are similar rules giving the types of literals, type constructors and object

constructors, which are the only mechanisms whereby new objects may be introduced into the universe of

an Emerald program. For each of these basic syntactic elements e, the following invariant holds:

typeo e � [[e]] (11)

i.e., the dynamic type of the object that results from the evaluation of the literal conforms to the syntactic

type of that literal . By induction over the structure of the language, it can be shown that invariant (11)

actually holds for all Emerald expressions. In particular, since an invocation can be shown to be type correct

using only rule 9, it must be the case that the antecedent [[a]] holds. This ensures our goal, i ,

that in a type-correct program no operation will ever be invoked on an object that does not support it.

r t r

The previous two sections have been concerned with the �rst of our requirements for Emerald's type system:

that type checking be based on a conformity relation that is larger than equality. We now turn our attention

n fact, for all the literals, .
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to the second requirement: that Emerald support statically typed polymorphism. Let us �rst consider an

example of implicit polymorphism:

const a  typeobject

operation a l [a t ] ! [r t ]

ora t

end

Here is an object that has type map:

const ent t  object

operation a l [e t ] ! [r t ]

ora t

r  e

end a l

end

The operation apply of i entity simply returns its argument; it is the identity function. It is important

that the syntactic type of the result be the same as that of the argument; this is achieved by use of the

type parameter t , which is introduced by the clause ora t , and is bound to the syntactic type of the

formal parameter a. The signature of i entity .apply thus depends on the type of its argument e; we can

now appreciate why signatures must be functions. Referring back to rule (9) in Section 3, we see that

the argument to the signature function is [[e]], e . The signature of apply in map is � t; : t; t ; when

applied to [[e]], e the result is [[e]], [[e]] . In the invocation i entity.apply [e], the type of the argument e

trivially conforms to [[e]] [[e]] = [[e]], the conformity condition in the antecedent of rule (9) is always

satis�ed, and the invocation is type correct whenever the other conditions are satis�ed. Moreover, the type

of i entity.apply [e] is [[e]] [[e]] = [[e]] as required.

Let us now turn our attention to explaining the second element of the argument to the signatures in

rule (9). This is e, by which we mean to convey the actual value of the expression e. (Strictly, we should

introduce an evaluation function from expressions to values, but we avoid this as extraneous notation.) At

�rst sight, passing a value to a signature function would appear to contradict our claim that typechecking

in Emerald is concerned only with types, and never with values. To see why this is not in fact so, consider

the following type, empty et , which describes an object that creates empty sets of a speci�ed type. (The

notation t e and the rôle of e will be explained in the next subsection.)

const e t et typeobject e t et

operation of [t type] ! [r ]

s c t at t e

ere e  typeobject e

operation =[e] ! [Boolean]

end e

ere  typeobject set

operation nsert [t] ! [ ]

operation e tra t[ ] ! [t ]

end set

end e t et

Suppose that an object set has type empty et . We can then create a set of Booleans with:

const bset  set.of [Boolean]

and a set of characters with:
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const set  set.of [ ar ]

bserve that the type of the result of an invocation of set.of [t ] must depend on the alue of the argument

t . Since t has type type, it is reasonable for the type system to be concerned with its value. In fact, the

only values that are ever examined by the Emerald type system are type values.

We are now in a good position to attempt to write the signature of of on empty et :

� t; : type; � : insert � t ; : ; Any ; e tract � t ; : Any; (12)

As always, this signature is a function from a type and a value to a pair of types. The argument component

is type, because the argument to of must have type type. The result component is a type in which the

operation names insert and e tract are mapped to constant signature functions, i.e., insert and e tract are

not themselves polymorphic. However, the argument type of insert and the result type of e tract do depend

on , the value of the argument given to of , as required.

Although it is promissing, the above signature does not address the two issues raised by the empty et

example: constrained types and the de�nition of conformity for type parameters.

To guarantee that sets do not contain duplicate elements, we wish to require that the type argument t

support an equality operation. This might be used by the implementation of insert to eliminate duplicates.

The purpose of the s c t at clause is to express this requirement:

s c t at t e

ere e  typeobject e

operation =[e] ! [Boolean]

end e

The symbol (read matches) is used to introduce a constraint on a type parameter such as t . In earlier

versions of Emerald, we used the symbol � to indicate such constraints. However, this is misleading, since

the relation that we require between our type parameter and the constraint is not conformity. To see this,

consider the following type.

const ar  typeobject ar

operation =[ ar ] ! [Boolean]

operation or [ ] ! [ nt ]

end ar

ur de�nition of conformity (correctly) states that c ar � e ; if c ar did conform to e , contravariance

on the argument to = would require that e conform to c ar . This cannot be the case because e has

fewer operations than c ar . We may think that this is an indication that our de�nition of conformity is

incorrect, but this is not so. If we were to \correct" our de�nition of conformity in some way to allow c ar

to conform to e , then we would also allow Boolean (as de�ned in section 1) to conform to e . If c ar � e

and Boolean � e then the following program would be type correct.

ar a b e

a  a

b  true

assert a.=[b] t e error
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To see why this cannot be allowed, notice that the assert statement will cause a.= to be invoked with b

as its argument. This is a type error, since a.= requires a c ar as argument. (The implementation of a.=

might take advantage of the fact that its argument has type c ar by invoking or on it; b does not possess

this operation.)

So, our de�nition of conformity is correct in stating that c ar does not conform to e . Nevertheless, c ar

is a suitable argument for empty et.of , since the result of that invocation is a homogeneous set in which the

= operation is applied only to objects of the same type as the target.

We have emphasized this point at such length for several reasons. First, although we �rst observed

in reference [Hutchinson 87, Section 3.8] that conformity is not the appropriate relation to bound a type

parameter, our overloading of the symbol � has probably led to confusion. Second, other authors have also

used the same symbol for parameter constraints and for their \subtyping" relation. For example, America

and van der Linden [America 90] �rst use to denote subtyping, which is essentially identical to our � ,

but they then give an example in which an operation sort takes a type parameter written as \ r ere ".

In our notation, r ere would be given by

typeobject r ere

operation less[ r ere ]! [Boolean]

end r ere

and, using America's de�nition of subtyping, contravariance prevents nt and loat from being subtypes of

r ere in just the same way as (in our notation) nt � e . Later, America and van der Linden apply sort

to both nt and loat ; however, the interpretation of the symbol that permits this is never given.

The third reason for dealing with this topic in such detail is that the appropriate test to determine

whether a type parameter satis�es a constraint, which we denote by (read matc es), can be expressed only

when constraints are modeled as type generators rather than as types. For a type : and a constraint

:

= � ( ) (13)

Matching appears to be very similar to boun e polymorp ism as de�ned by Canning et al. [Canning 89].

Canning et al. de�ne the F-bounding condition as t [t], where is the subtyping realtion, and [t] is

an e pression, generally containing t. Because our approach is model-theoretic rather than proof-theoretic,

it is natural for us to de�ne matching in terms of a constraining function rather than an expression.

ne consequence of this de�nition is that when we write an expresion like s c t at t e , in which a

name like e appears on the right hand side of the relation, that name must denote a function from types to

types. The syntax of the programming language must therefore ensure that constraints can indeed be treated

as functions. In our example, this has always been the case, since the constraint e has been represented

by a type constructor in which the self-referential structure is explicit. However, we have been less than

rigorous in the discussion that opened this subsection and motivated the need for matching. Although we

wrote c ar � e , if e denotes a type generator, then in fact we showed that c ar � e ual , where e ual =

e is a type constant.

const e ual  typeobject e

operation =[e] ! [Boolean]

end e

In practice, it is always possible to infer the need to take the �xedpoint of a type generator, so no confusion

need arise. However, in the remainder of this paper, we will take care to use e to mean the type generator,

and e ual to mean its �xedpoint.

11



The relation captures the similarity in self-referential structure between two types. In particular,

although c ar � e ual , c ar e , as is readily seen by substituting c ar for the formal parameter e in the

expression that de�nes the function e .

We can now see what is missing from the signature for empty et.of that we wrote in (12): it does not

capture the constraint on the type argument of of . We extend (12) by adding this condition:

� t; :

t en type; � : insert � t ; : ; Any ; e tract � t ; : Any;

e se n , n

(14)

When we type-check an Emerald program that does not contain type parameters, all of the types are

manifest. This is necessary for the term static type checking to be meaningful, and is enforced by the syntax

of the language. However, when we type-check the body of an operation with a type parameter, the values

that the parameter may take on, although constant throughout the scope of the operation, are no longer

manifest. Indeed, it is implicit in the concept of statically checking an operation with a type parameter that

the operation body is deemed type-correct only if all valid parameterizations of that body are correct.

To illustrate this, consider the following operation body.

const o  object o

operation lle al [a t ] ! [r Boolean]

ora t

r  a.:[ ]

end lle al

end o

If o.illegal is applied to true, t is bound to Boolean and the body gives rise to no type error. Nevertheless,

the body is not type-correct as written because the type of o also allows o.illegal to be applied to a character.

To make it o correct, we must add an appropriate constraint on t , e.g., by changing the quanti�er to

ora t s c t at t not

ere not  typeobject n

operation : [ ] ! [Boolean]

end n .

Thus it is clear that the constraint on a type parameter must play a central rôle in the type-checking

process. In the model, a type parameter is treated as the set of types that match the constraint; any

statement involving the type parameter : par is true only if it is true for every member of the set

t t .

Most of the existing model and inference rules, which were developed with constant types in mind, are

easily adapted to type parameters. For example, if is a type parameter constrained by (which we will

write as : par ), then . However, we do need new rules for the conformance properties

of type parameters.

The obvious candidate rule,
: par ^ � a

� a

in which conformity of a type parameter follows from the conformity of the �xedpoint of its constraint, turns

out not to hold. To see this, consider the object returned by an invocation of empty et.of . This object

might well contain the following declaration of an array to hold the representation of the set:

12



ar e rra .of [t ]

where t : par e . The e tract operation might use the expression

e .re o e o er [ ]

the type of which is t . To what identi�ers can this expression be legally assigned Clearly, the following

code must be permitted:

operation e tra t [ ] ! [result t ]

result  e .re o e o er [ ]

end e tra t .

In other words, when t : par e , t � t .

However, the following is incorrect according to our model:

operation ba tra t[ ] ! [result e ual]

result  e .re o e o er [ ]

end ba tra t .

We have already seen that c ar t , so the set used to model t contains c ar . Thus, the assigment in

ba tract can be type correct only if c ar � e ual , and we have already shown that this is not so. However,

our candidate inference rule would let us deduce that t � e ual , because e � e ual (indeed, e =

e ual), and so it must be rejected.

It turns out that the correct rule is

: par ^ ( ) � a

� a
; (15)

if the constraint (considered as a type generator) applied to conforms to a, then we can deduce that � a.

Although it is di cult to provide the intuition behind this rule, it is easily justi�ed by the model.

eore : Inference rule (15) is sound with respect to the model.

roo s etc : The type parameter is modeled by the set of types matching the constraint :

= t t

= t t � (t) (by de�nition of )

Hence,

t : t � (t) : (16)

The second conjunct in the antecedent, ( ) � a, gives us, by the de�nition of conformity for sets:

t : (t) � a : (17)

Combining (16) and (17), we get

t : t � (t) ^ (t) � a (18)

from which we can deduce, by transitivity of � ,

t : t � a (19)
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which is equivalent to � a, the required consequent.

So far we have examined the conformance of a type parameter to other types. Now let us look at

conformity in the reverse direction. If is a type parameter constrained by , then the model tells us that

a � only if a = n or a = . This is because contains all the types that are \stronger" than , i.e.,

they may have many more operations. However, since these conformities can be deduced from rules (1) and

(3), no new inference rules are needed.

Because the antecedent of rule (15) requires us to prove ( ) � a, in attempting to apply this rule we

may become involved in proving that � a , or that a � , for some types a and a . The latter can be

derived by use of rules (1) and (3); the former requires the recursive application of rule (15).

We can now state a fundamental result: once the body of an operation that contains a type parameter

has been type checked using the rules given above, the body will also be type correct if the type parameter

is replaced by any type that matches the constraint.

eore : iven an operation body ( ), where is a type parameter constrained by , then if we can

prove that ( ) is type correct using the rules given in this paper, then it follows that (t) is also type

correct for any type t that matches . In symbols:

: par ^ [[ ( )]]

; t [[ (t)]]

This result follows immediately from the soundness of the inference rules with respect to a model in

which a type parameter is treated as representing the set of all matching types.

u r

This paper has described the type system of the Emerald programming language. The basic notion un-

derlying the type system, conformity, has been described previously with varying degrees of formality

[Scha�ert 86, Black 87, Cook 90, America 90]. ur contributions are the extension of the basic concepts

to allow both implicit and explicit polymorphism, which require the recognition that the bounding con-

straints of parameters cannot be expressed using conformity alone, but need the notion of matching, or

F-boundedness. Matching cannot be expressed if constraints are treated as mappings from operation names

to signatures; it is necessary to recognize that a constraint is a generating function whose �xedpoint is such

a mapping. This is reminiscent of Cook's recognition that inheritance requires that classes be treated as the

�xedpoints of generating functions, and that it is these generators, and not the classes themselves, that are

inherited.

It is important to recognize that, although the notion of conformity is very powerful, it is by itself

insu cient to describe constrained types. The combination of matching with the rule for the conformity of

type parameters results in our being able to type-check the body of a parametric procedure once when it

is declared, rather than whenever it is parameterized. Thus, operations with type parameters become �rst

class citizens in Emerald.

t is temptin to stren then rule 15 further, in the same way that rule was stren thened to become rule . t would

then become

:

0

However, we have not been able to prove this rule sound or unsound ; neither have we been able to nd a e ample in which

the e tra assumption is necessary.
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