Typechecking Polymorphism in Emerald

Andrew P. Black Norman Hutchinson

Digital Equipment Corporation University of Arizona

Digital Equipment Corporation
Cambridge Research Lab

CRL 91/1 (Revised) 8th July 1991

Abstract

Emerald is a statically typed object-oriented language that was originally intended for programming
distributed subsystems and applications [Jul 88]. It is important that such systems be dynamically extensible,
i.e., that it be possible to introduce new kinds of entities into the system without re-compiling or re-linking
the whole system. This led us to devise a type system based on the notion of type conformity rather
than type equality. We also felt that polymorphism was a necessary feature of a modern programming
language: programmers should be able to define generic abstractions like homogeneous sets, lists and files
into which objects of arbitrary type can be placed. The combination of object-orientation, type-checking
based on conformity and polymorphism gave rise to some interesting problems when designing Emerald’s
type system. This paper describes the Emerald’s type-checking mechanism and the notion of types and
parameterization on which it is based.

Keywords: object-oriented programming, static type checking, polymorphism, matching, F-bounded poly-
morphism, subtyping, conformity, extensibility, distributed programming.

(©Digital Equipment Corporation and Norman Hutchinson 1991. All rights reserved.

Authors’ electronic mail addresses: black@crl.dec.com; norm@cs.ubc.ca

This work was supported in part by the National Science Foundation under Grant CCR-8701516.

Norman Hutchinson was with the University of Arizona when this work was performed, and is now with the University of
British Columbia.

1 Introduction

Emerald is an object-oriented language, by which we mean that the basic entities (objects) manipulated
by programmers have identities as well as values. Emerald objects are said to be autonomous: each object
“owns” its own set of operations, and these operations are the only ones that can be applied to the data that
is used in the implementation of the object.

In a traditional value-oriented language, one of the major roles of the type system is to prevent the mis-
interpretation of values, and thus to ensure that the meaning of a program is independent of the particular
representation that is chosen for its data types [Donahue 85]. The rdle of types in an object-oriented lan-
guage like Emerald is somewhat different, because autonomy and encapsulation already ensure that the only
operations that can be applied to an object are those that belong to the object itself. Emerald’s type system
has other functions: earlier and more meaningful error detection and reporting, improved performance, and
the classification of objects.

From the perspective of error detection, the assertion that an Emerald expression is type correct means
that its evaluation will never lead to an object being requested to execute an operation that it does not
possess. In Smalltalk terminology, typechecking guarantees that “operation not understood” errors are
never generated. As a consequence, the runtime system need not check for such errors.

Before we proceed, we introduce some caveats. Emerald does not have subrange types of the kind found
in Pascal; [0..9] and [5..19] are not types, and the question of whether either can be used in place of the
other, or in the place of integer, does not arise. Neither are the bounds of the index of an array part of
its type; as in CLU [Liskov 79], all Emerald arrays have flexible bounds. Emerald types never depend on
ordinary non-type values; this is not because we do not believe that it is useful to specify the range of an
integer variable, but because we regard the enforcement of such a specification as range checking, not type
checking [Welsh 78].

Emerald also lacks an explicit notion of class. However, Emerald types induce a classification on Emerald
objects: all objects that have a given type have an important property in common. Moreover, the conformity
relation between types defines a lattice structure that is similar to a “multiple inheritance hierarchy”. A
group of objects that share the same implementation also have a common property, but our view, coloured
by a strong belief in encapsulation and implementation experience on heterogeneous architectures, is that
this particular property is of lesser interest to the programmer (although it is of great importance to the
implementor.)

Having uttered these cautions as to what Emerald types are not, we are now ready to explain what they
are. Speaking loosely, an Emerald type is a set of operation names: associated with each operation name
is a signature that describes the arguments and results that the operation accepts and returns. Here is the
type Boolean in Emerald:

const Boolean «—
typeobject b
operation A [b
operation V [b]
operation — [
operation = [
end b

]
b]

This fragment of Emerald binds the name Boolean to the expression to the right of the «; the fact that
Boolean is declared const means that it cannot later be rebound. The expression typeobject b ... end b
is a type constructor: it returns an Emerald object of type type. The identifier 4 is a bound variable that
names this new object within the scope of the type constructor. The value of the type constructor represents
a type with four operations, named A, vV, = and =. Each of these operations takes one argument and

one result, whose types are given by the expressions in the square brackets; recall that in an object-oriented
language, every operation gets the target object as an implicit argument. Thus, if an object of type b receives
the operation request A, it expects a single argument of type b and produces a result of type b. (Although
there is nothing in the type definition to tell us what this result might be, which we might reasonably expect
it to be the conjunction of the values of the target and the argument.) An object-oriented version of — would
normally take no arguments, and would return the negation of the target. However, in this paper we will
use a restricted version of Emerald in which ell operations have a single argument and result; the empty
argument list for - formally represents an argument of type Any. This restriction is made to simplify the
notation and exposition of the paper; dealing with the full generality of argument lists of unbounded size
introduces significant notational complexity, but requires no new concepts.

Thus, we see that Emerald’s view of types is quite different from that adopted by, for example, Russell:
when Donahue and Demers [Donahue 85] state that types are set of operations, they mean that they are
sets of functions; each function provides an interpretation of the underlying value space of representations.
Emerald types are sets of names; the functions that are eventually applied to the representation are not a
property of the type at all, but of the invoked object. As a consequence, Emerald types are abstract: it is
possible for many different objects to be of the same type, even though they have different code bodies for
their operations, and execute on different hardware architectures.

To illustrate this, here are two objects, both of which are Boolean, even though they have quite different

implementations.
const true «— const false «—
object ¢ object f
operation A [a: Boolean] — [r: Boolean] operation A [a: Boolean] — [r: Boolean]
r< a r—f
operation V [a: Boolean] — [r: Boolean] operation V [a: Boolean] — [r: Boolean]
r«t r< a
operation — [] — [r: Boolean] operation — [] — [r: Boolean]
r « false r «— true
operation = [a: Boolean] — [r: Boolean] operation = [a: Boolean] — [r: Boolean]
re a r— a[]
end t end t

Another important thing to notice about the definition of type Boolean is that it is self-referential; its
local name b appears in its own body. This is typical of most types encountered in practice, and will turn out
to be very important in our treatment of type checking. Formally, the meaning of such a definition is given
as the fixedpoint of a function. Let Ab.B(b) denote the function of the bound variable b corresponding to the
Emerald type constructor typeobject b...end b; the description of exactly what this function is will be
deferred to section 2, but for now it is sufficient to realize that it is a function from types to types, also known
as a type gemerator. Intuitively, a type is a set of operator names and the corresponding signatures. The
interesting properties of Boolean are captured by the type that is the fixedpoint of the generator Ab.B(b),
which we write as Y(Ab.B(b)), or more concisely as ub.B(b), following the notation introduced by MacQueen
et al. [MacQueen 84, MacQueen 86].

Informally, we can represent this by the graph structures shown in Figure 1. The circles represent types;
the shaded circles correspond to the captions. The arcs represent arguments and results of operations, as
indicated by their labels. The graph on the left shows the type generator B applied to an arbitrary type
argument £. The graph on the right represents the fixedpoint of B.

Unfortunately, there is one situation in which the notion of type as a mapping from operation names to
signatures does not capture all of the information in an Emerald object constructor. As we will see in Section
4, dealing correctly with type parameters requires that we regard the constraint on a type parameteras a type
generator, i.e., as a function from types to types. This has little implication for the practising programmer,

<A, arg>

<v, arg>
<v, res>

<-, res>

<v, arg>
<v, res>

<=, res>

B(1) B tB(1)

Figure 1: The type Boolean as a graph structure

since a type constructor such as typeobject b ...end b can be regarded equally well as representing a
generating function or its fixedpoint.

The application areas for which Emerald is intended demand that systems be malleable and extensible.
This means that it must be possible to introduce not just new objects, but new types of objects, into a
running system, and that existing applications must be able to operate on these objects. In general, it is
possible to substitute one object for another provided that the new object is at least as functional as the
old one. This means that the new object must provide all of the operations offered by the old object, and
that the arguments, results and semantics of these operations are appropriate. We regard the syntactic part
of this substitutability condition to be the responsibility of the type system; ensuring that the semantics
are appropriate involves program proving rather than type checking. A type system based upon equality
of types will disallow many valid substitutions; Emerald’s type system [Black 87] is based upon the notion
of conformity, which is the largest relation between types that ensures that substitutions are safe. It can
be argued that in some application areas there are reasons to use a more restricted rule. For example, in
a centralized system in which all the types are introduced by one group of programmers, one might require
an explicit statement of substitutability in addition to conformance; Trellis [Schaffert 86] is a language that
takes this approach. However, using a rule that is less stringent than conformity will lead to an unsafe type
system, i.e., to a situation in which an undefined operation can be invoked on an object [Cook 89].

The remaining sections of this paper define conformity and explain how type checking is performed by
the Emerald compiler. First we deal with the case where there are no type parameters; then we introduce
them. For simplicity of presentation, we ignore two features of Emerald: the attributes that state whether
an object is mutable and an operation is functional. As mentioned above, we also assume that all operations
have a single argument and result, whereas in fact Emerald allows arbitrary numbers of arguments and
results, and lets the same operator symbol be defined with different arities. This is handled formally by
regarding the arity of a symbol to be part of its name. For example, nullary 4+ and unary + are treated as
the distinct function symbols +¢,; and +1,1, where the subscripts give the number of arguments and results.

The correct subscript for the operator in an invocation can always be inferred by counting the commas in
the argument and result lists.

2 Types and Conformity

Emerald uses the notation ¢ o> b to mean that type @ conforms to type . The symbol o> is intended to
indicate that a has more operations than b, and that objects of type a can be used where those of type b are
expected. (Some authors say that a is a subtype of b, but we will avoid this terminology; we find it confusing
to call a type with more operations a subtype.)

Before defining conformity on types, we must state formally what a type is; this requires some subsidiary
definitions. We regard a type as a mapping from operation names (elements of a denumerable set F defined
by the language syntax) to signatures. Intuitively, the signature of an operation gives the types of its
argument and result, and is represented as a pair of types, which we write {(a, r). When we introduce type
parameters, the types in a signature will no longer be constants, but may depend on the type or value of the
argument; for this reason we define a signature to be a function from a type and a value to pairs of types.
(However, until section 4, all these functions will be constant functions.) As mentioned in the introduction,
in order to describe constraits on type parameters, we also need to deal with type generators, i.e., functions
from types to types. Thus, we have the following domains.

Generators: ¢ = 7 —7T
Types: T = F->S
Signatures: & = (7 xV)—>7x7

To make this more concrete, Boolean from Section 1 is the fixedpoint of the generator B given by

s if ¢ = A
s if ¢ = v
B=2Xb2g.{ r if ¢ = —
s if g = =

wrongs otherwise ,
where wrongg is a distinguished error signature, and where

r = A{t, v).{Any, b)
s = A, v). (b, b) .

Usually, we will write functions like B more compactly as
B = X{A~sV~s~r,=~s} .
Hence, the type Boolean that is the fixedpoint of this function is given by
YB = pb{A~s,V~s~r,=~s}.

Notation: Two types are of particular interest: Any, which corresponds to the type that has no operations
at all, and None, which corresponds to the type with all possible operations, each having the most general
possible signature.

Any = X¢. wrongg
None = X¢.A(t, v).(Any, None)

For convenience, we define the following operations on types and signatures:

ops : T —2% opst = {¢ € F |t + wrongs}

. . tp if¢copst
: F->T -8 t =

*& oo s8¢ { A(g, v). (None, Any) otherwise

arg : T xT—>T arg (t1, t2) = t1

res : T xT—T res (t1, t3) = t2

Notation: When we define a relation R between types, we will also define a derived relation R, for
signatures.

$1R 89 def V(t, v).res (s1(t, v))Rres (s2(t, v)) A arg (s2{t, v))Rarg (s1(t, v))

For example, when we define conformity (o>) between types, we have also induced a relation o>
on signatures: two signatures conform exactly when the result parts of those signatures conform, and the
argument parts conform inversely.

s1 % 82 def V(t, v).res (s1(t, v)) o> res (s2(t, v)) A arg (s2(t, v)) o> arg (s1(t, v))

The contravariance of the arguments is quite natural, because the information flow associated with an
argument is the inverse of that associated with a result. View a signature as a (partial) specification of an
operation: one operation is stronger (more useful) than another if the result it delivers is stronger, or if the
requirement that it places on its argument is weaker.

We formalize this notion of “more useful” using the idea that one type can be a refinement of another.

Definition (Refinement Relation): A relation R between types is said to be a refinement relation if and
only if £; R t5 implies

1. ops t; D ops t2
2. V¢ € ops ty: sigets R siggta

Refinement represents the minimum requirement for substitutability; if an object of type ¢; is supplied
where type t; is specified, then ¢; must possess all of £5’s operations, the results of each of ¢;’s operations
must be usable where the result of the corresponding operation of ¢, was usable, and ¢;’s operation must be
no more demanding in its arguments than was ¢;’s operation.

Now we are finally in a position to define Emerald’s conformity relation.

Definition (conformity): Conformity (written o>) is the mazimal refinement relation, i.e., the one
containing the most pairs.

The properties of conformity can be captured by inference rules; these rules represent theorems that can
be proved from the definition of conformity, but we will not include the proofs here.

The first rule says that conformity is reflexive:

I'Fa:type
F'aoc>a

(1)

and should be read as follows: if one can prove in the naming environment I' that the symbol a denotes a
type, then one can infer that in the same environment, ¢ o> a. We will usually omit antecedents like @ : type
in what follows.

The second rule covers the case where one type, f, has more operations than another type g; it lets us
deduce that f o> g whenever the signatures of the corresponding operations conform appropriately.

I‘|_f:,U't-{d’lNpl;---;d’nan:---:¢n+m"‘pn+m}:
F'tg=pu{d1~qi...,¢n~an},
Tvi=fiu=gkVie[l,n].p; o> ¢

'Ffo>g

(2)

(Recall that types are mappings, and therefore that the ordering of the operation names between the braces is
irrelevant.) This rule lets us create a conforming type both by adding operations to a type, and by generalizing
the signatures of its existing operations. Note that since the expressions p; may contain occurrences of £,
and the g¢; may contain u, it is necessary (in the third antecedent) to augment the environment I' before
proving that p; o> g;.

We introduce a special rule for None; because this type has an infinite number of operations it cannot
be written as f in rule (2).

I'Fa:type (3)
't None o> a
The final rule for conformity without type parameters is a generalization of rule (2) that deals with self
referential and mutually referential types.

I‘|_f:,U't-{d’lNpl;---;d’nan:---:¢n+m"‘pn+m}:
Phg=pt{d1~q1,...,¢n~an},
Tyi=fiu=g,fo>gkVie[l,n].p; o ¢
'Ffo>g

(4)

This is the same as rule (2), except that in the third antecedent we may assume f o> g, the very propo-
sition that we wish to prove. Intuitively, since f and g may refer not only to themselves but also to each
other, in applying rule (2) we may have to show that f o> g. Rule (4) says that if we get into this situation,
it is all right to assume what we are trying to prove, provided that we do not do so at the top level. Taking
the converse point of view, the rule says that the only reason for two types not to conform is that at some
level one does not have enough operations.

To see rule (4) in action, let us examine for conformity the three types 4, E and I.

const [— typeobject Int
operation + [Int] — [Int]
operation isZero [] — [Boolean)]
operation neg [| — [Int]

end Int

const A «— typeobject Addend
operation + [I] — [Addend]
end Addend

const E «— typeobject Eztra
operation + [Eztra] — [Eztra)
end Eztra

Rule (2) tells us that I o> A if we can prove that, when Int = I and Addend = A, the signature of + in
I o> to the signature of + in A. This requires that we prove that I o> Int and Int o> Addend. The first

condition follows from rule (1) but we have no way of proving the second condition. However, using rule (4)
in place of rule (2), Int o> Addend follows from the extra assumption.

Rule (4) (correctly) does not permit us to prove I o> E; even though I has more operations, the contra-
variance of signature conformity for the common operation, +, would require that I o> F and E o> I. The
latter condition is clearly false, and cannot be deduced from any of our rules.*

From our definition of conformity, we can derive an equivalence relation = by:
a=b & ao>bAbo>a

It can be shown that o> is a partial order over 7., and None and Any are the maximum and minimum
elements, respectively, under this ordering.

3 Type Checking

Emerald’s fundamental theorem of typing guarantees that if a statement is type correct, then executing it
will never cause an operation to be invoked on an object that does not possess that operation.

To state this theorem formally, we need to introduce the concepts of syntactic and dynamic type. Because
Emerald objects are autonomous, it is possible to ask an object at runtime what operations it implements, and
what their signatures are: from this one can deduce the dynamic type of the object. The Emerald expression
typeof ezp returns the dynamic type of the object that results from evaluating ezp; the implementation of
typeof requires, in general, dynamic interrogation of the target object.

In contrast, syntactic type is a property of an Emerald language expression, not an object. Syntactic
type can always be determined statically. Emerald expressions are constructed recursively out of literals,
identifiers, object constructors, and invocations. There is a corresponding set of rules that gives the syntactic
type of the various forms of expression in terms of their constituent parts. If e is an expression and ¢ is a
type, we have so far written e : ¢ to mean that ¢ is the syntactic type of e. It is sometimes convenient to
have a function that returns the type of an expression e; we will write 7[¢] for this purpose. By definition,
e: 7[e].

Emerald statements do not have a type; they are either type-correct or erroneous. We will write /[s]
to mean that the statement (or expression) s is type-correct. By convention, for an expression e, \/[e] =
T[e]#wrong;. Here are the type-checking rules for the most important constructs in Emerald.

7[t] = type
Declarations: (5)
Vlvar v: t], 7[v] =1t

7[t] = type, 7[e] o> ¢
Jconst ¢ : t—e], T[c]=1

*Rule (4) is stronger (but less elegant) than the rule given by Cook et al.[Cook 90]:

T,r o> sk F(r) o> G(s)
T F pt.F(t) o> pt.G(t)

This rule states that if the results of applying two type generators to conforming types also conform, then the fixedpoints of
those generators conform. It deals with self-references in the type-generators F' and G, but does not deal with references from
F to G. For example, Cook’s rule cannot be used to prove that I 0> A above: when we compare the arguments of + we are
comparing a bound variable to a constant.

VIl
Vconst ¢ — e], 7[c] =7[e]

Vel 7[t] =type
Ezpressions: (8)
T[view e as t] =1

Vial, ¢ € ops T[a], T[e] o> arg (siggT[a] (T[e], €))
Tla.¢le]] = res (siggT[al(r[e]. €))

Tle] o> T[v]
Statements: _— (10)

v]

Let us look briefly at rule (10): it states that for an assignment v «—e to be type correct, the type of
the expression e must conform to the type of the identifier that is being assigned. Rule (9) is the most
interesting: it gives the typing conditions for the invocation a.¢[e]. The principal antecedents are that ¢
be a defined operation on the syntactic type of @, and that the type of the argument conforms to the type
declared for the argument of ¢ in a’s type; if these conditions are satisfied, the type of the result is as given
by a’s type. Note that this rule specifies that the signature function sigg7[a] is applied to (r[e], e). Since all
of the signature functions that have been introduced so far in this paper have been constant functions, the
choice of argument is not very interesting. We will return to this rule and explain the argument in Section 4.

Observe that all of the conditions for type correctness are phrased in terms of the syntactic type of the
constituent elements. For a.¢[e] to be type correct it is not sufficient for the object bound to @ to satisfy
the given conditions; it must be possible to determine that the conditions are true of the ezpression a: this
is what we mean by static type checking. If it turns out that the expression ¢ does not have the required
type, but the programmer knows through some other channel that the object bound to e will have a larger
type, then a view expression can be used to create an expression of the required type, as shown in rule (8):
the value of view e as % is the same as the value of e, but the type is always ¢. In general, execution of a
view expression will require a run time check that the dynamic type of the object does indeed conform to
the requested type.

In addition to the above, there are similar rules giving the types of literals, type constructors and object
constructors, which are the only mechanisms whereby new objects may be introduced into the universe of
an Emerald program. For each of these basic syntactic elements e, the following invariant holds:

typeof e o> 7[e] (11)

i.e., the dynamic type of the object that results from the evaluation of the literal conforms to the syntactic
type of that literal’. By induction over the structure of the language, it can be shown that invariant (11)
actually holds for all Emerald expressions. In particular, since an invocation can be shown to be type correct
using only rule 9, it must be the case that the antecedent ¢ € ops 7[a] holds. This ensures our goal, viz,
that in a type-correct program no operation will ever be invoked on an object that does not support it.

4 Type Parameters

The previous two sections have been concerned with the first of our requirements for Emerald’s type system:
that type checking be based on a conformity relation that is larger than equality. We now turn our attention

tIn fact, for all the literals, typeof e = T[e].

to the second requirement: that Emerald support statically typed polymorphism. Let us first consider an
example of implicit polymorphism:

const map «— typeobject m
operation apply[a: t] — [r: {]
forall ¢
end m

Here is an object that has type map:

const identity «— object id
operation applyle: t] — [r:]
forall ¢
T €
end apply
end id

The operation apply of identity simply returns its argument; it is the identity function. It is important
that the syntactic type of the result be the same as that of the argument; this is achieved by use of the
type parameter ¢, which is introduced by the clause forall ¢, and is bound to the syntactic type of the
formal parameter a. The signature of :dentity.apply thus depends on the type of its argument e; we can
now appreciate why signatures must be functions. Referring back to rule (9) in Section 3, we see that
the argument to the signature function is (r[e], e). The signature of epply in map is A(t, v).(t, t); when
applied to {7[e], e) the result is (r[e], 7[e]). In the invocation identity.apply[e], the type of the argument e
trivially conforms to arg (7[e], 7[e]) = 7[e], the conformity condition in the antecedent of rule (9) is always
satisfied, and the invocation is type correct whenever the other conditions are satisfied. Moreover, the type
of identity.apply[e] is res (r[e], T[e]) = 7[e] as required.

Let us now turn our attention to explaining the second element of the argument to the signatures in
rule (9). This is e, by which we mean to convey the actual value of the expression e. (Strictly, we should
introduce an evaluation function € from expressions to values, but we avoid this as extraneous notation.) At
first sight, passing a value to a signature function would appear to contradict our claim that typechecking
in Emerald is concerned only with types, and never with values. To see why this is not in fact so, consider
the following type, emptySet, which describes an object that creates empty sets of a specified type. (The
notation ¢ > eq and the role of eg will be explained in the next subsection.)

const emptySet «— typeobject emptySet
operation of[t: type] — [r: z]
such that ¢t > eq
where eq «— typeobject e
operation =[e] — [Boolean]
end e
where z «— typeobject set
operation insert[t] — []
operation eztract[| — [t]
end set
end emptySet

Suppose that an object set has type emptySet. We can then create a set of Booleans with:

const bset «— set.of[Boolean]

and a set of characters with:

const cset «— set.of[char]

Observe that the type of the result of an invocation of set.of[t] must depend on the value of the argument
t. Since t has type type, it is reasonable for the type system to be concerned with its value. In fact, the
only values that are ever examined by the Emerald type system are type values.

We are now in a good position to attempt to write the signature of of on emptySet:

Alt, v). (type, pz . {insert ~ A(t', v'). (v, Any), estract ~ A{t', v'). (Any, v)}) (12)

As always, this signature is a function from a type and a value to a pair of types. The argument component
is type, because the argument to of must have type type. The result component is a type in which the
operation names insert and extract are mapped to constant signature functions, i.e., insert and eztract are
not themselves polymorphic. However, the argument type of insert and the result type of eztract do depend
on v, the value of the argument given to of, as required.

Although it is promissing, the above signature does not address the two issues raised by the empitySet
example: constrained types and the definition of conformity for type parameters.

Constrained Types

To guarantee that sets do not contain duplicate elements, we wish to require that the type argument ¢
support an equality operation. This might be used by the implementation of insert to eliminate duplicates.
The purpose of the such that clause is to express this requirement:

such that ¢t > eq

where eq «— typeobject e
operation =[e] — [Boolean]

end e

The symbol > (read matches) is used to introduce a constraint on a type parameter such as ¢. In earlier
versions of Emerald, we used the symbol o> to indicate such constraints. However, this is misleading, since
the relation that we require between our type parameter and the constraint is not conformity. To see this,
consider the following type.

const char «— typeobject char
operation =[char] — [Boolean]
operation ord[] — [int]

end char

Our definition of conformity (correctly) states that char gbeq; if char did conform to eg, contravariance
on the argument to = would require that eq conform to cher. This cannot be the case because eg has
fewer operations than char. We may think that this is an indication that our definition of conformity is
incorrect, but this is not so. If we were to “correct” our definition of conformity in some way to allow char
to conform to eg, then we would also allow Boolean (as defined in section 1) to conform to eq. If char o> egq
and Boolean o> eq then the following program would be type correct.

var a, b: eq

a«— ‘a’

b «— true

assert a.=[}] % type error

10

To see why this cannot be allowed, notice that the assert statement will cause ¢.= to be invoked with &
as its argument. This is a type error, since a.= requires a char as argument. (The implementation of a.=
might take advantage of the fact that its argument has type char by invoking ord on it; b does not possess
this operation.)

So, our definition of conformity is correct in stating that char does not conform to eq. Nevertheless, char
is a suitable argument for emptySet.of , since the result of that invocation is a homogeneous set in which the
= operation is applied only to objects of the same type as the target.

We have emphasized this point at such length for several reasons. First, although we first observed
in reference [Hutchinson 87, Section 3.8] that conformity is not the appropriate relation to bound a type
parameter, our overloading of the symbol o> has probably led to confusion. Second, other authors have also
used the same symbol for parameter constraints and for their “subtyping” relation. For example, America
and van der Linden [America 90] first use < to denote subtyping, which is essentially identical to our o>,
but they then give an example in which an operation sort takes a type parameter written as “X < Ordered”.
In our notation, Ordered would be given by

typeobject Ordered
operation less[Ordered] — [Boolean)]
end Ordered

and, using America’s definition of subtyping, contravariance prevents Int and Float from being subtypes of
Ordered in just the same way as (in our notation) Int > eq. Later, America and van der Linden apply sort
to both Int and Float; however, the interpretation of the symbol < that permits this is never given.

The third reason for dealing with this topic in such detail is that the appropriate test to determine
whether a type parameter satisfies a constraint, which we denote by > (read matches), can be expressed only
when constraints are modeled as type generators rather than as types. For a type p : 7 and a constraint

c:q

p>C def p o> C’(p) (13)

Matching appears to be very similar to F-bounded polymorphism as defined by Canning et al. [Canning 89].
Canning et al. define the F-bounding condition as ¢ C F[t], where C is the subtyping realtion, and F[t] is
an ezpression, generally containing t. Because our approach is model-theoretic rather than proof-theoretic,
it is natural for us to define matching in terms of a constraining function rather than an expression.

One consequence of this definition is that when we write an expresion like such that ¢ >egq, in which a
name like eq appears on the right hand side of the > relation, that name must denote a function from types to
types. The syntax of the programming language must therefore ensure that constraints can indeed be treated
as functions. In our example, this has always been the case, since the constraint eq has been represented
by a type constructor in which the self-referential structure is explicit. However, we have been less than
rigorous in the discussion that opened this subsection and motivated the need for matching. Although we
wrote char gbeq, if eq denotes a type generator, then in fact we showed that char gbequal, where equal =
Yegq is a type constant.

const equal +— typeobject e
operation =[e] — [Boolean]
end e

In practice, it is always possible to infer the need to take the fixedpoint of a type generator, so no confusion
need arise. However, in the remainder of this paper, we will take care to use eg to mean the type generator,
and equel to mean its fixedpoint.

11

The relation > captures the similarity in self-referential structure between two types. In particular,
although char dbequal, char>eq, as is readily seen by substituting char for the formal parameter e in the
expression that defines the function eq.

We can now see what is missing from the signature for emptySet.of that we wrote in (12): it does not
capture the constraint on the type argument of of. We extend (12) by adding this condition:

Alt, v). if v D> eg
then (type, pz. {insert ~ A{t', v'). (v, Any), eziract ~ A{t', v'). (Any, v)}) (14)
else (wrong;, wrongs)

Conformity of type parameters

When we type-check an Emerald program that does not contain type parameters, all of the types are
manifest. This is necessary for the term static type checking to be meaningful, and is enforced by the syntax
of the language. However, when we type-check the body of an operation with a type parameter, the values
that the parameter may take on, although constant throughout the scope of the operation, are no longer
manifest. Indeed, it is implicit in the concept of statically checking an operation with a type parameter that
the operation body is deemed type-correct only if all valid parameterizations of that body are correct.

To illustrate this, consider the following operation body.

const o «— object o
operation illegal [a: t] — [r: Boolean]
forall ¢
r— a[]
end :llegal
end o

If o0.illegal is applied to true, ¢ is bound to Boolean and the body gives rise to no type error. Nevertheless,
the body is not type-correct as written because the type of o also allows o.illegal to be applied to a character.
To make it 0 correct, we must add an appropriate constraint on ¢, e.g., by changing the quantifier to

forall ¢ such that ¢t > not
where not «— typeobject n

operation — [] — [Boolean]
end n .

Thus it is clear that the constraint on a type parameter must play a central role in the type-checking
process. In the model, a type parameter is treated as the set of types that match the constraint; any
statement involving the type parameter 7 : par > C is true only if it is true for every member of the set
{t|t>C}.

Most of the existing model and inference rules, which were developed with constant types in mind, are
easily adapted to type parameters. For example, if 7 is a type parameter constrained by C (which we will
write as 7 : par > C), then ops m O ops YC. However, we do need new rules for the conformance properties
of type parameters.

The obvious candidate rule,
'Fx:par>C A YCo>a

F'Fro>a
in which conformity of a type parameter follows from the conformity of the fixedpoint of its constraint, turns

out not to hold. To see this, consider the object returned by an invocation of emptySet.of. This object
might well contain the following declaration of an array to hold the representation of the set:

12

var Rep: Array.of[t],

where ¢ : par > eq. The eztract operation might use the expression

Rep.removeLower|] ,

the type of which is £. To what identifiers can this expression be legally assigned? Clearly, the following
code must be permitted:

operation eztract[] — [result: t]
result «— Rep.removeLower][]
end eztract .

In other words, when ¢ : par > eg, t o> t.

However, the following is incorrect according to our model:

operation badEztract[] — [result: equal]
result «— Rep.removeLower][]
end badEztract .

We have already seen that char D>t, so the set used to model ¢ contains char. Thus, the assigment in
badFEztract can be type correct only if char o> equal, and we have already shown that this is not so. However,
our candidate inference rule would let us deduce that ¢ o> equal, because Yeg o> equal (indeed, Yeq =
equal), and so it must be rejected.

It turns out that the correct rule is

I'tx : par>C A C(1) o> a

; 15
T'Fro>a ! (15)

if the constraint (considered as a type generator) applied to m conforms to e, then we can deduce that = o> a.
Although it is difficult to provide the intuition behind this rule, it is easily justified by the model.

Theorem: Inference rule (15) is sound with respect to the model.

Proof (sketch): The type parameter 7 is modeled by the set of types matching the constraint C:

™

{t|t>C}
= {t|to> C(t)} (by definition of &)

Hence,
Vier .t Ct) . (16)

The second conjunct in the antecedent, C(7) o> a, gives us, by the definition of conformity for sets:

Vier.C(t)o>a . (17)

Combining (16) and (17), we get

Vierm.ta>Ct)AC(t) o>a (18)

from which we can deduce, by transitivity of o>,
Vier.to>a (19)

13

which is equivalent to m o> a, the required consequent.

So far we have examined the conformance of a type parameter to other types. Now let us look at
conformity in the reverse direction. If 7 is a type parameter constrained by C, then the model tells us that
a o> 7 only if @ = None or a = w. This is because 7 contains all the types that are “stronger” than C, i.e.,
they may have many more operations. However, since these conformities can be deduced from rules (1) and
(3), no new inference rules are needed.

Because the antecedent of rule (15) requires us to prove C() o> a, in attempting to apply this rule we
may become involved in proving that = o> o/, or that @’ o> 7, for some types o’ and a”. The latter can be
derived by use of rules (1) and (3); the former requires the recursive application of rule (15).

We can now state a fundamental result: once the body of an operation that contains a type parameter
has been type checked using the rules given above, the body will also be type correct if the type parameter
is replaced by any type that matches the constraint.

Theorem: Given an operation body B(w), where 7 is a type parameter constrained by C, then if we can
prove that B(w) is type correct using the rules given in this paper, then it follows that B(¢) is also type
correct for any type ¢t that matches C. In symbols:

k7 : par>C A /[B(7)]

T,t>C F /[B()]

This result follows immediately from the soundness of the inference rules with respect to a model in
which a type parameter is treated as representing the set of all matching types.

5 Summary

This paper has described the type system of the Emerald programming language. The basic notion un-
derlying the type system, conformity, has been described previously with varying degrees of formality
[Schaffert 86, Black 87, Cook 90, America 90]. Our contributions are the extension of the basic concepts
to allow both implicit and explicit polymorphism, which require the recognition that the bounding con-
straints of parameters cannot be expressed using conformity alone, but need the notion of matching, or
F-boundedness. Matching cannot be expressed if constraints are treated as mappings from operation names
to signatures; it is necessary to recognize that a constraint is a generating function whose fixedpoint is such
a mapping. This is reminiscent of Cook’s recognition that inheritance requires that classes be treated as the
fixedpoints of generating functions, and that it is these generators, and not the classes themselves, that are
inherited.

It is important to recognize that, although the notion of conformity is very powerful, it is by itself
insufficient to describe constrained types. The combination of matching with the rule for the conformity of
type parameters results in our being able to type-check the body of a parametric procedure once when it
is declared, rather than whenever it is parameterized. Thus, operations with type parameters become first
class citizens in Emerald.

i1t is tempting to strengthen rule (15) further, in the same way that rule (2) was strengthened to become rule (4). It would
then become
I'm: par D C,
Fmo>abkC(r)o>a . (20)
'Fwro>a

However, we have not been able to prove this rule sound (or unsound); neither have we been able to find a example in which
the extra assumption is necessary.

14

6 Acknowledgements

The work reported in this paper has taken place over a period of years. The authors wish to thank Martin
Abadi, Laurence Carter, William Cook, Alan Demers, Albert Meyer, Vaughan Pratt, Jon Riecke and Mark
Tuttle for many helpful and stimulating discussions. We also thank Luca Cardelli for encouraging us to

strive for ever-higher standards of rigor in our presentation.

References

[America 90]

[Black 87]

[Canning 89]

[Cook 89]

[Cook 90]

[Donahue 85]
[Hutchinson 87]
[Jul 88]

[Liskov 79]

[MacQueen 84]

[MacQueen 86]

[Schaffert 86]

[Welsh 78]

Pierre America and Frank van der Linden. A parallel object-oriented language with inheritance
and subtyping. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 161-168. ACM, October 1990. Published in SIGPLAN Notices,
25(10), October 1990.

Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Distribution and
abstract types in Emerald. IEEE Transactions on Software Engineering, 13(1):65-76, January 1987.

Peter S. Canning, William R. Cook, Walter L. Hill, Walter Olthoff, and John C. Mitchell. F-Bounded
polymorphism for object-oriented programming. In Proceedings of the Fourth International Confer-
ence on Functional Programming Languages and Computer Architecture, pages 273-280, September
1989.

W. R. Cook. A proposal for making FEiffel type-safe. Computer Journal, 32(4):305-311, August
1989.

William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In Proceedings
of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages 125—
135, January 1990.

James Donahue and Alan Demers. Data types are values. ACM Transactions on Programming
Languages and Systems, 7(3):426—445, July 1985.

Norman Hutchinson. Emerald: An Object-Oriented Language for Distributed Programmaing. PhD
thesis, Department of Computer Science, University of Washington, January 1987.

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems, 6(1):109-133, February 1988.

Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert, Bob Scheifler, and Alan
Snyder. CLU reference manual. Technical Report TR-225, Massachusetts Institute of Technolgy,
Laboratory for Computer Science, October 1979.

David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal model for recursive polymorphic types.
In Proceedings of the Eleventh Annual ACM Symposium on Principles of Programming Languages,
pages 165-174, January 1984.

David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal model for recursive polymorphic types.
Information and Control, 71(1):95-130, October/November 1986.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An introduction
to Trellis/Owl. In Proc. First Conf. on Object-Oriented Programming Systems, Languages and
Applications, pages 9-16, Portland, OR, October 1986. ACM.

J. Welsh. Economic range checks in Pascal. Software — Practice and Ezperience, 8:85-97, 1978.

15

