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The Eden distributed system has been running at the University of Washington for over two years. Most of 
the principles and implementation ideas of Eden have been adequately discussed in the literature [4]. This 
paper presents some of the experience that has been gained from the implementation and use of Eden. 
Much of this experience is relevant to other distributed systems, even though they may be based on 
different assumptions. 

1. Introduction 

The Eden project started in September 1980 with the goal 
of  experimentally investigating a particular paradigm for 
distributed computation. In its fundamentals, the Eden 
system of  today has changed little from that described in 
the original design paper [20], although the details have 
evolved as we have moved from one prototype to the 
next [4]. What have changed - as a consequence of  two 
years experience designing, building and using distributed 
applications - are our ideas about implementation, 
programming language support, and the relationship 
between experimental systems and the systems on which 
one does one's daily work. 

We believe that much of  this experience is applicable 
to other distributed systems; even if they are not object 
based. The purpose of  this paper is to share our successes, 
our failures and the lessons we have learned with as wide a 
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community as possible. The intention is not to preach a 
gospel. In some cases we started with a particular model, 
have stuck with it, and are able to report that it has served 
us well. However, one cannot infer that some other model 
might not have been as good or better. 

For reasons of  space, this paper is for the most part 
confined to lessons relating to distributed systems and 
distributed programming. Our scope is thus much more 
restricted than Lampson's Hints for Computer System 
Design [19], which presents excellent advice on system 
building in general. 

The organisation of  this paper is as follows. Section 2 
sets the context by summarising the basic concepts of 
Eden and of  the Eden programming language, and by 
giving some idea of  the scale of  the system. Section 3 
describes some of  our more significant experiences to date. 
Some conclusions and directions for further work are 
presented in Section 4. 

2. A n  O v e r v i e w  o f  E d e n  

Eden represents a merging of  three distinct threads in 
operating system design: 

• Eden is a complete distributed operating system. In 
this sense it is rather like the Apollo DOMAIN [21] 
system, or the various distributed UNIX 1 systems that 
are now available, e.g., L o c u s  [29] and The Newcastle 
Connection [10]. 

• Eden is an object-oriented system. Viewed in this 
way, Eden is a descendant of  Hydra [30][31]. It offers 
the programmer a model of  computation significantly 
different from that of  conventional operating systems. 

t UNIX is a trademark of AT&T BeU Laboratories. 
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• A third way of viewing Eden is as an implementation 
of remote procedure call. In this sense it is rather like 
the RPC System pioneered at Xerox's Palo Alto 
Research Center [5]. The Eden Programming 
Language automatically generates stubs for both the 
caller and the callee; Eden is a very early example of a 
full-scale RPC system. 

Thus, Eden has something in common with several of 
the distributed operating systems projects of the last few 
years. However, in combining their advances, Eden 
provides a unique set of facilities. It is distinguished from 
systems like LOCUS in being based on a contemporary 
object-oriented model. In contrast to the Apollo DOMAL~ 
system, Eden's notion of object is definable and extensible 
by the user. It differs from the Xerox RPC system because 
objects are mobile, and the binding of a "client" to a 
"server" is performed potentially on every invocation, 
rather than in a separate initial phase. 

It is important to observe that Eden is not a set of 
facilities provided on top of an existing operating system 
in an attempt to graft distribution onto some other model 
of computation. This is true despite the fact that the 
current prototype of Eden is implemented using the 
facilities of UNIX. Eden itself provides the user with a 
complete environment for program development and 
execution. 

Eden is an integrated system with a single uniform 
system-wide namespace spanning multiple machines. Its 
space of objects is managed by the system, in the sense 
that the system takes care of obtaining resources for the 
creation of new objects and for garbage collecting objects 
when they are no longer accessible. Eden objects have the 
following characteristics: 

• Objects are referenced by capabilities. Capabilities 
are not addresses. Rather, each object has a unique 
identifier. A capability consists of that unique 
identifier and a set of sixteen rights. The problem of 
locating an object given only its capability is handled 
by the system itself. Capabilities are protected from 
forgery; this ensures that only legitimate clients can 
access an object. 

• Invocation is the means whereby one object obtains 
service from another. It may be thought of as a request 
message followed sometime later by a response 
message. Invocation is location independent: in order 
to invoke an object, the invokee needs to know its 
capability but not its location. 

• Objects are mobile, i.e. their physical location within 
the system changes over time. Because invocation is 
location independent, clients of an object need not be 
aware of its migration. 

• Conceptually, objects are active at all times. Each 
object has one or more processes within it, and can 
initiate activities as well as respond to invocations; 
Eden objects thus subsume the conventional notion of 
program. In practice, an object may voluntarily 

deactivate (to economise on resources) or be forced to 
crash (if its code is faulty or its machine crashes). 
However, if such an inactive object is invoked, the 
system will reactivate it automatically, so users of an 
object need not be concerned with these practicalities. 

• Each object has a concrete Edentype, which may be 
regarded as a description of the state machine that 
defines the behaviour of the object, i.e. those patterns 
of invocation that it will accept and the effect of each 
invocation. In implementation terms the concrete 
Edentype is a piece of code in the Eden Programming 
Language. 

• Each object has a data part, which includes long-term 
state representing the data encapsulated by the object 
and short-term state consisting of the local data of 
invocations currently in progress, hints, caches, and so 
on. This data is private to the object in question; other 
objects can access it only via invocation. Eden thus 
supports information hiding at the system level; if an 
object's data structure is found to violate its invariants 
then the code of only that object need be examined to 
find out why. 

• An object may checkpoint, that is, it may atomically 
write its state to stable storage. Typically, all of the 
long-term state will be written, and as much of the 
short-term state as is necessary to achieve appropriate 
reliability. Only state information that has been 
checkpointed will be available when an object is 
reactivated. 

The use of Eden has been made significantly easier by 
the design and implementation of the Eden Programming 
Language (EPL). This is a modest language based on 
Concurrent Euclid [14][15], a Pascal extension providing 
processes, modules and monitors. EPL provides direct 
support for the fundamental abstractions of Eden, that is, 
capabilities and invocation. Because EPL provides 
multiple, light-weight processes, it makes it possible to 
manage many synchronous remote invocations at one 
time. This is discussed further in Section 3.1.2. 

Both the Eden programming language and the Eden 
system itself have been available since April 1983, first on 
a network of four VAX computers, and then on a network 
of sixteen Sun workstations. About fifty different 
Edentypes have been publicly released; there are almost 
certainly an equal number of "private" Edentypes used by 
small groups of people. A random selection of seventy 
public and private Edentypes were found to contain over 
three hundred thousand lines of code, and define about 
three hundred different invocations. 

Our implementation is built on top of Berkeley 4.2 
UNIX; we use UNIX to provide us with processes and 
virtual address spaces, to load code into those address 
spaces, and to provide access to the disk and the network. 
The Eden kernel is implemented as a UNIX user process. 
A local invocation on a Sun workstation currently takes 
about fifty milliseconds of waUclock time for a null 
operation and return; a remote invocation takes about 
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seventy milliseconds. Of the fifty milliseconds, just over 
half is used by the UNIX IPC mechanism; the remainder 
represents the overhead imposed by Eden's parameter and 
result packaging, operation and type checking, lightweight 
process dispatching, object location, capability checking, 
and so on. 

3. Lessons from Eden 

The lessons are grouped into four divisions; within the 
divisions each lesson is introduced by a paragraph, and 
then motivated by our experience. The first two divisions 
comprise lessons relating to programming style and 
lessons relating to naming and distribution. We believe 
that these are applicable to a wide range of systems. The 
third category contains lessons that we have learned in the 
context of Eden objects. While the applicability of some 
of them may be restricted to systems that provide some 
notion of "object", several are relevant in other contexts. 
The final division is more managerial than technical; it 
discusses some of the difficulties we faced in running a 
major systems project. 

3.1. Lessons relating to Programming Style 

3.1.1. Type Abstractly 

Objects should be typed abstractly (according to their 
behaviour) rather than concretely (according to their 
implementation). The purpose of type checking is to 
prevent the misinterpretation of values. Its purpose is not 
to prevent multiple implementations of a type from 
coexisting; neither is it to prevent new types from being 
added to an existing system, provided that they are 
interpreted appropriately. A good type system should give 
warning of misinterpretation, if possible at compile time, 
without preventing legitimate evolution of the system. 

To misinterpret a value of a particular type is to 
mistakenly treat the collection of bits used to represent it 
as being a value of some completely different type, for 
example, to interpret a pointer as a character, or a boolean 
as an integer. Misinterpretation is a programming error 
that can be very difficult to track down if it is not detected 
explicitly; static type checking is thus preferable to 
dynamic type checking because misinterpretation errors 
are detected earlier and more completely. Static checking 
is also more efficient. 

Unfortunately, it is clear that not all inter-object type 
checking can be performed at compile time, if only 
because the code for the object that one wishes to invoke 
may not have been written yet. For example, Eden mail 
message objects now invoke the Deliver operation on both 
mail boxes and mail distribution lists, even though mail 
distribution lists did not exist when the code for mall 
messages was written [3]. 

In an object-oriented language like Smalltalk [12], it is 
not necessary to perform type checking in order to prevent 
the misinterpretation of values; the object encapsulation 
mechanism achieves the same effect. If the // (integer 

division) message is sent to a boolean object, the result is a 
"Message not understood" error, not the result of 
attempting division on the representation of the boolean. 
However, object encapsulation does not provide early 
warning of such errors; the SmaUtalk programmer who 
accidentally types 

7 > x / / 3  

instead of 

7>(x l /3 )  

is not warned of his error until the code is executed. 

In an object-oriented system like Hydra [31], objects 
are typed. When a procedure is called to act upon an 
object, it checks that the object is of a particular concrete 
type. There cannot be a Deliver procedure that operates 
on both mail boxes and mail distribution lists. In Hydra, 
all attempted misinterpretation of data can be detected at 
run-time, but at the expense of the flexibility and 
extensibility that we think are important in a distributed 
system. 2 

In the Eden programming language, capabilities are 
not typed; they are like PL/I pointers. There is no way to 
determine the concrete Edentype of the object to which a 
capability refers, unless the object chooses to export an 
invocation that reveals this information. For example, ff 
one object thinks that it is reading from another object of 
type Stream, and issues transfer and close requests in 
order to read data, there is no check that the invokee is 
actually a Stream. There are checks that the invokee 
experts transfer and close invocations, and that the 
parameter lists of these invocations are correct. As a 
consequence, the invokee need not be a Stream, but can be 
any object prepared to present the appropriate interface 
[6][7]. 

In order to detect type errors at the invocation interface 
as soon as possible, the Eden Programming Language 
performs compile time type-checking in addition to the 
run-time checking described above. When a capability- 
valued identifier is declared, the programmer asserts that it 
is for a given Edentype; the compiler then checks that the 
invocations made on that capability are indeed exported by 
that Edentype, and that the parameter lists conform. 
However, the initial assertion is not checked, even if the 
capability is provided at compile time. 

We call this abstract typing because the Edentype 
mentioned in the for clause of a capability declaration 
need not be implemented; it can simply be an invocation 
interface that abstracts from several implemented (or to- 
be-implemented) concrete Edentypes. For example, there 
is no concrete Edentype Stream; streams are an abstraction 
of the interface presented by the bytestore and terminal 

z Flexibility can be regained through that universal panaccca, an 
ex~a level of indirection [23]. The Hydra TypeCall mechanism 
is one way of obtaining this indirection, and solves this problem, 
although that was not its original purpose. 
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handler Edentypes. It is also sometimes the case that a 
particular concrete Edentype implements several 
abstractions; for example, bytestores implement a random 
access interface in addition to the stream interface. 

There is currently no mechanism that allows us to tell 
whether an object of a particular concrete Edentype 
conforms to a certain abstract type specification. Given 
such a mechanism, it would be possible to check the 
assertion that accompanies capability declarations, and 
eliminate the checking that accompanies every invocation. 
This would help us to reduce run-time overhead, while 
preserving the open-endedness of the Eden type system. 
We are adopting this approach to type checking in the 
Emerald language [8]. 

3.1.2. Use Synchronous Communication 

We have found that programmers prefer to use 
synchronous (procedure-call-like) communication 
primitives rather than asynchronous (send-receive) 
primitives. This observation was made in an environment 
which provided approximately equal syntactic support for 
synchronous and asynchronous invocation, but also 
provided multiple processes at low cost. 

When the Eden Programming Language was designed, 
the most appropriate invocation semantics and 
programming style for Eden were still unknown. We 
therefore decided to provide a similar kind of language 
support for both synchronous invocation, which acts rather 
like a remote procedure call, and asynchronous invocation, 
where a request is sent and later a response is awaited. In 
fact, the asynchronous form has been used only rarely, 
even though we took care to provide equal support for 
both. (For example, initially both synchronous and 
asynchronous stubs were produced for every Edentype that 
was compiled.) 

We believe that synchronous invocation was preferred 
because multiple local processes are directly supported by 
the constructs of the language. In contrast, multiple 
remote invocations managed by one local process are not 
so supported. For example, the monitors and condition 
variables of EPL make it relatively easy for an EPL 
process to wait for a condition involving other processes. 
In a system that does not support local concurrency, or 
supports it inefficiently, a different conclusion might be 
reached about the desirability of synchrony. For example, 
Jones, Rashid and Thompson report that a quarter of all 
calls that use the Accent stub generator are asynchronous 
[17]. However, of the various languages for which stubs 
may be generated, only Ada - not widely used on Accent 
at the present time - provides lightweight processes and 
concurrency control. This leads us to the next lesson, the 
importance of concurrency. 

3.1.3. Provide Concurrency -Inexpensively 

Our expedence is that local processes and synchronisation 
primitives are powerful tools for the management of 
remote concurrency. Eden provides concurrency at two 

levels. Naturally, different objects running on different 
processors may execute in parallel. In addition, multiple 
lightweight processes and structures for concurrency 
control are available within each object. 

The Eden Programming Language provides processes 
that communicate through monitors. We do not claim that 
monitors are better or worse than, for example, Ada tasks 
and rendezvous. In fact, our lesson is independent of the 

particular communication mechanism supported by the 
language. Because of the various compromises that were 
made in order to implement EPL rapidly, the model of 
concu/rency provided by our language is very different 
from that provided by the Eden system as a whole. In 
spite of this, the processes and monitors of the Eden 
Programming Language have been a major success: the 
implementation overhead is small, and the EPL code of 
objects is cleanly structured and easy to understand. 

One of the reasons for the importance of concurrent 
processes within an object is that one object will typically 
be managing many remote activities simultaneously. This 
is true both when one is using multiple objects in a 
computationally intensive task and when one is making 
calls on remote services. If one has five remote objects 
performing some computation on one's behalf, the 
simplest way of managing that situation is to have five 
local processes, each one of which initiates some remote 
computation and waits for it to complete, and then finally 
repoas progress back to a coordinating process. In this 
way we separate the concerns of managing concurrency 
from those of managing remote operations. Conceptually, 
this is a much simpler arrangement than having one 
process that asynchronously starts the five remote 
processes and then waits for response from any of them, 
remembers which one has finished, and so on. 

3.1.4. Make the Language Support the System 

Ideally, a systems programming language and the system 
that it supports should be designed together. If this is not 
the case, it is inevitable that the language and the system 
will present differing computational models. However, 
each step that can be taken to narrow this difference is of 
major assistance to the programmer. 

Two of the central features of Eden are capabilities 
and invocations. Capabilities may be thought of as 
location-independent object pointers; invocations may be 
thought of as remote operation requests. Both of these 
features are provided with substantial linguistic support. 

Instead of introducing a special invocation construct, 
the Eden Programming Language packages invocations to 
look like procedure calls. This choice was made for 
implementation reasons, and because programmers are 
familiar with procedure call; nevertheless there are some 
significant semantic differences between invocation and 
true procedure call. One of them is that a var parameter to 
an invocation is strictly a result, whereas a vat parameter 
to an ordinary procedure call is both an argument and a 
result. Another difference is in the set of types that are 
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understood on both sides of the two kinds of call. A 
parameter to a procedure call can be of any type that is in 
scope both at the point of call and in the called procedure 
body. However, parameters to invocations are limited to a 
fixed set of system-defined types. This restriction was 
originally imposed partly to simplify the initial 
implementation, and partly because there are genuine 
semantic problems in trying to decide when two types 
declared in different pieces of code compiled on different 
machines at different times are equivalenL We had 
intended to remove the restriction, but the pragmatics of 
project management have always given other tasks higher 
priority. Furthermore, in many cases, being prohibited 
from passing a record structure as an invocation argument 
is not as bad as it sounds: the record can be implemented 
as an Eden object, and its capability passed instead. 

Our experience with the first prototype of Eden (called 
Newark) helped motivate the development of EPL. 
Newark, constructed in the autumn of 1981, was 
progmnmu~d in Pascal and did not ha~,e any language 
support for invocation. Sending an invocation to another 
object involved fabricating a variant record out of the 
arguments (to circumvent the Pascal type system), calling 
the system-provided invocation primitive, and 
reconstructing the argument list in the remote object. This 
and other contortions convinced us of the need for an Eden 
programming language. 

Apart from invocation, the other major Eden-specific 
feature of EPL is the incorporation of a capability type as a 
first class citizen. By this we mean that capabilities can be 
manipulated as freely as integers, without programmers 
having to concern themselves with "C-lists"; the 
programmer can declare both capability variables and 
initialised capability constants. Ideally, capability constant 
inid~lisation would be done by the editor at program 
composition time. Because we do not have an object- 
based program editor, we resort to a more complicated 
arrangement. 

Capability constants are denoted by a string that 
represents a path through the Eden directory system. This 
path is interpreted at compile time, with the result that a 
capability for the appropriate object is bound into the 
executable image of the newly compiled Edentype. When 
objects of this type execute, the capabifity need no longer 
be present in the directory system at all, and certainly need 
not be accessible by the client of the object. This facility 
is useful when confidential information or privileged code 
is being handled. A simpler scheme would have been to 
provide a function that returned the capability for the root 
of the directory system and to perform all lookups at run 
time. Our arrangement encompasses this simpler scheme; 
we feel that the flexibility of being able to bind an 
arbitrary capability into the code of an object, as well as 
the conceptual simplicity of being able to treat capability 
comtants in the same way as constants of other types, has 
made the extra implementation effort worthwhile. 

3.2. Lessons relat ing to Naming  and  Distribution 

3.2.1. Distribution: Hidden or Visible? 

Various kinds of appficadons run on a distributed system; 
some are born to distribution, while others have 
distribution thrust upon them. In the former case, when it 
is appropriate for an application to exploit distribution, the 
system should make it easy to do so. In the later case, the 
programmer would prefer to be able to ignore distribution. 
Her task would be greatly simplified, if the system were 
actually centralised, and the function of the operating 
system ought to be to simulate that happy state, 

The Eden mail system and the translator for the Eden 
Programming Language are examples of applications that 
have distribution thrust upon them, i.e. they are forced to 
deal with distribution. Translating the EPL code of an 
object requires access to a large environment, including 
the interfaces of all the objects that it invokes. It is 
impractical to keep current copies of this environment on 
all machines; it is intolerable to insist that all translations 
take place on a particular "database" machine because of 
the excessive load this would place on it. This was the 
dilemma that faced us so long as we relied on our initial 
cross-compiler for EPL, which ran on UNIX. Once we 
ported the translator to Eden, the problem vanished. The 
various objects that make up the translator can be on any 
machine in the network, but there need be only a single 
copy of each file object that makes up the environment. 
The fact that some or all of these files may be remote need 
concern neither the writer nor the user of the translator. 

By applications that are born to distribution, we mean 
those that can actually take advantage of the many 
machines in the network in order to work more effectively 
- perhaps faster, or with greater availability, or by 
exploiting particular hardware. If distribution is hidden 
competely, then the system itself must take the 
responsibility for all of these things. We believe this is 
presentiy infeasible, and also inappropriate in an 
experimental system. 

One application that was implemented on Eden 
specifically to exploit distribution finds approximate 
solutions to queuing network models; this involves solving 
large systems of equations. A coordinator object partitions 
the equations among several "slave" objects; each slave 
finds an approximate solution to its part. The cxx~rdinator 
collects these partial solutions, calculates an approximate 
result, and then (possibly) asks the slaves to iterate. This 
process is computationally intensive, and the purpose of 
distributing, it is to obtain faster results through 
parallelism; it is clearly important that each of the slaves 
run on a different machine. Thus, at some level, the 
programmer needs access to some location dependent 
primitives that let him examine the load on different 
machines in the network and explicitly create his slave 
objects at specific locations. Once this has been done, the 
remainder of the application, in which the coordinator 
object communicates with its subordinates, can reap the 

185 



benefits of location independence. 

The EPL translator mentioned above is also able to 
exploit distribution. Although the translator wil l  work no 
matter where the various objects are located, it will clearly 
work faster if some reasonable policy is used to distribute 
the load over the available machines. However, the part of 
the translator that determines where to locate its various 
components is quite separate from the components 
themselves. 

Replication for reliability is another example of an 
application that needs to take advantage of distribution 
rather than to have it hidden. Clearly the replicas need to 
reside on machines with independent failure modes. Our 
view of location independence is that the basic operations 
of the system can be carried out on the entities of the 
system without regard for their location. In terms of the 
Eden system this means that possessing a capability for an 
object and invoking that object neither require nor imply 
any knowledge of its location. Location independence 
does not imply that one cannot make location dependent 
inquiries and requests, such as asking whether two objects 
are on the same machine, or that one's checkpoint file 
should be created on a particular disk. Our work on 
replication [25] makes extensive use of Eden's location 
dependent primitives. 

3.2.2. Name Uniformly 

In Eden, all global system entities are named uniformly: 
by capabilities. This includes not only objects, but also 
Edentypes, nodes (machines), and checksites (disks). 

The preceding discussion indicates that there is an 
occasional need to refer to nodes and to checksites as well 
as to objects. Rather than introducing new namespaces for 
these purposes, we have named nodes and checksites with 
capabilities. The concept supported by the location 
dependent primitives is that of co.location; one asks the 
system to co-locate a pair of capabilities. For example, the 
kernel call 

CreateAt(Type : Capability, Place : Capability, 
var NewObject : Capability, 
var Status: Kernel.KStatus) 

creates a new object with Edentype Type, and returns its 
capability in NewObject. If Place is a capability for a 
node, the NewObject will be placed there ff that is 
possible. If Place is the capability for an active object, 
NewObject will be created on the node on which Place is 
running. Although we have had only limited experience 
with these primitives so far, it seems that naming machines 
with capabilities reduces the number of location dependent 

• primitives required and provides a convenient conceptual 
unity. 

3.23. Permit Mobility 

The mobility of Eden objects is an advantage not shared 
by many other distributed systems. Mobility enables us to 
perform load balancing; it also simplifies the task of 

writing re~verable applications. 

We have always intended that Eden objects not be tied 
to a particular machine but that they move around the 
system in response to fluctuations in load. This also 
enables a particular machine to be taken down for 
maintenance without interrupting operation of the system 
as a whole. As a consequence, none of our protocols for 
locating objects relies on an object being where it was last 
- although that is a useful heuristic. However, at the time 
of writing, objects cannot move while they are active. In 
order to move, an object must first request that its next 
reactivation occur on another node, and then &activate 
itself. 

We do not see any conceptual problem in moving an 
active object from one node to another; indeed, the 
DEMOS/MP system provides this function [24]. However, 
various practical difficulties have deterred us from 
completing this part of Eden's implementation. We 
foresee two classes of problem. The first class is caused 
by our prototyping environment: moving an object would 
involve creating a new UNLX process on a new machine 
with the same code and execution state as those of the old 
process. This would require performing appropriate 
translations on the various UNIX namespaces. Were Eden 
implemented on a bare machine there would be no 
translations to be performed, as all Eden names are 
location independent. The second class of problems has to 
do with invocation messages that are in progress when an 
object moves; these have to be stored and forwarded by 
one of the kernels involved. 

As a result of the restriction that only passive objects 
can move, our experiments with load sharing in Eden have 
been limited to those applications where jobs are moved 
before they start; once they are running on a particular 
node they stay there. Being able to move active objects 
would naturally widen the range of load sharing 
experiments. In particular, it would let us investigate 
problems of stability, which seem not to have received 
much attention. Nevertheless, because all of the entities 
referred to by an object are named in a location- 
independent manner, there is still much more scope for 
load sharing in Eden than in, say, a network of Suns 
running UNix. 

Another advantage of mobility is that it simplifies 
recovezy. Consider an Eden object executing on a single 
node, and checkpointing to a disk on that node. Should the 
node break, the object will be unavailable until it is 
repaired. Now suppose that we try to increase the 
availability of the object by replicating its checkpoint file 
on two additional nodes; the active form is not replicated. 
When the node on which it is running breaks, our object 
can be reactivated on another node, using the remotely 
checkpOinted state. Such replication is currently being 
implemented by introducing a variant of Gifford's voting 
scheme [ 11] into the checkpoint mechanism. This is fairly 
simple to do, and introduces overhead only when the 
object checkpoints; moreover, the interface to Checkpoint 
is the same in the replicated and unmplicated cases. 
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Now consider what would happen if objects could not 
move. Replicating the checkpoint file would not help, 
because even though the data would still be available after 
the crash, the node to run the object would not be. Service 
could not be resumed until the node is repaired or 
replaced. In order to increase availability, it would be 
necessary to replicate the acdve form of the object, and to 
employ transaction techniques to ensure consistency 
between the replicas. 

The above discussion also illustrates why we do not 
rely on forwarding pointers to locate objects that have 
moved; if the old location of the object is not available, 
neither is the forwarding pointer. In addition, there are 
difficulties in determining when the forwarding pointers 
can be garbage collected. 

3.3. Lessons Relating to Objects 

3.3.1. System-Supported Objects Improve the Structure of 
Applications 

Our experience with objects has been very positive. This 
is true despite the inefficiencies of a prototype 
implementation constructed on top of a conventional 
operating system. Eden objects subsume the conventional 
notions of file, value of an abstract data type, and program. 
They provide a convenient answer to the question of what 
is distributed in a distributed system. 

The major benefit of Eden objects is that they enable 
one to structure an application in what now seems to be a 
very nataral way. For example, in the Eden mail system 
[2], not only are the mall boxes of users represented as 
objects, but so is each message. To people who have been 
brought up on file based operating systems, the notion of 
making each message a separate object may seem strange. 
In fact, it provides a straightforward way to state that 
messages are an abstract data type with operations that set 
and interrogate the various fields - the To field, the Subject 
field, and so on. Because objects are encapsulated, each 
message can enforce invariants on its data. For example, 
mail messages refuse to modify themselves after they have 
been delivered. A more complicated example arises when 
a new message is created in reply to an earlier message; 
the new message can ensure that its Subject field is derived 
from that of the earlier message (possibly by prefixing 
Re:), and that its To field contains the earlier message's 
From field. 

Another benefit of representing data abstractions as 
Eden objects is that they can easily be shared. In the mail 
system, this enables us to achieve some economies; for 
example, a message sent to a large number of addressees 
need not be copied into each mail box. Instead, each mall 
box is given a capability for the message; this also reduces 
the task of duplicate suppression to a test of equality on 
capabilities s. 

a Strictly, equality of the unique identifiers in the capabilities. 

A more significant use of sharing occurs in the Eden 
appointment calendar system [13]. When a meeting is 
scheduled for several participants, a single Event object is 
created to represent the details of the meeting. This event 
is shared by the various calendars, which necessarily hold 
consistent views of the state of the meeting. In this case 
Eden enables us to capture succinctly the distinction 
between a single meeting attended by four people and four 
separate meetings that happen to occur at the same time. 

For objects to be used in such a free way, it is essential 
that the system allocates and deallocates them 
automatically. The Eden mail system would be quite 
useless without a garbage collector that frees the resources 
used by a message when there are no more capabilities for 
it in the system. Even if the mail system programmers had 
been willing to go to the trouble of maintaining reference 
counts to messages, this would have prevented other 
subsystems - like the directory system - from keeping 
capabilities for messages. 

Eden objects are not cheap. In our prototype 
implementation, each Eden object is represented by a 
UNtX process - and a large one, as it contains a lot of 
library code that is logically part of the Eden kernel. For 
example, the code for the ByteStore object occupies 
approximately 122 kbytes on a Sun. Of this, 15 kbytes are 
code specific to ByteStore, 23 kbytes are from the UNIX 
library, and 84 kbytes are from the Eden library. Even 
though this code is shared by all the ByteStores that are 
active on a given machine, obtaining it from the disk 
initially, loading it into a UNIX address space, and 
subsequently paging it and swapping it, all impose a 
considerable overhead on the system. Because of this, 
there were places where we were dissuaded from using 
Eden objects as generously as we might have liked, and 
instead relied on the data structures and modules of the 
Eden Programming Language. Being able to choose 
between two different representations with different costs 
enabled us to use the more expensive, system-wide 
abstraction tool only when it was justified. In a 
"production" system, objects could be made relatively 
cheaper, but we still believe that some form of language- 
level abstraction tool is necessary. The Oz/Emerald 
project recently begun at the University of Washington 
aims to integrate the abstraction facilities of a language 
with those of a distributed system [8]. 

3.3.2. Eliminate Redundant Concepts 

Each Eden object has an Edentype, which contains its 
code and therefore describes its behaviour. Edentypes are 
named by capabilities; moreover, they are themselves 
ordinary objects, without special privileges. 

We initially imagined Eden to have a three-level type 
hierarchy, like the class-instance hierarchy of 
Smalltalk-76 [16]. Each object would be an instance of a 
concrete EdentyI~e. Ordinary objects would be at the 
bottom of the hierarchy, and would be instances of 
Edentypes. Edentypes would be instances of a 
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distinguished object called "typetype", and typetyge 
would be an instance of itself 4. 

We have now come to the conclusion that both 
"typetype" and the distinction between types and 
instances are unnecessary. Currently, every object is still 
an instance of a type. However, this type is another 
ordinary object, of type typestore. Instances of typestore 
are "ordinary" in the sense that the kernel treats them just 
like other objects; typestores are special only in that their 
representations contain executable code. Like other 
objects, typestores provide an invocation interface; indeed, 
the EPL translator writes them and the debugger reads 
them by using invocations to access their bytes and 
eapabifities. The type of a typestore is simply the 
typestore that contains its code. 

Apart from the conceptual simplification, the new 
scheme has a practical advantage. Typetype, as a 
distinguished object that was an instance of itself, had to 
be implemented by the kernel. In contrast, typestore is an 
ordinary Edentype, and is implemented outside the kernel. 
Moreover, because typestores are not distinguished by the 
kernel, several implementations of typestore can co-exist. 
This enables a programmer to create a new kind of 
typestore, and to test it, without the risk of breaking the 
translator. 

3.3.3. Make Namespaces Large 

The need for adequately sized global namespaces is 
obvious; what was not obvious to us was that one strategy 
for dealing with small namespaces - making them local - 
is rather hard to apply. 

Unlike Hydra, the rights in an Eden capability are not 
interpreted by the system itself; that task is left to the 
object, which is thus free to interpret each bit as it sees fit. 
At first sight it might seem that sixteen different access 
rights for each object is ample. In fact, the rights space is 
inadequate; rights interact with the abstract type system so 
that in the most general case there are only sixteen 
different access rights for the whole system. Each abstract 
Edentype defines its own set of access rights, but since any 
two abstract types may be combined in a particular 
concrete type, one abstract type is not free to re-use a right 
that has been used by another type. 

Returning to the mail system example, suppose that the 
MailSink abstract type chose to use right five to represent 
defivcry privilege, while DirectoryMap required right five 
in order to add a new entry. So long as these two abstract 
Edentypes are unrelated, all is well, but as soon as we 
create the Mail Distribution List Edentype, which exports 
the interfaces of both MailSink and DirectoryMap, it 
becomes impossible to create a capability permitting 
delivery to a fist without also permitting the addition of 
n e w  entries. 

4 That is, the type of typetype would  be typetype, whence the 
nlllne,. 

We do not have a solution to this problem. It is clearly 
impractical to increase greatly the number of rights so long 
as sets of rights are part of capabilities. The lesson is that 
moving the responsibility for the interpretation of a 
variable from a global agent (the kernel) to a local agent 
(the object) does not necessarily make the variable's 
meaning local. 

3.3.4. One Object, One Capability? 

In Eden, as in most other object-oriented systems, each 
object is named by exactly one system-wide identifier. An 
alternative is to allow each object to be named by several 
identifiers. We have not been able to explore this 
alternative directly, but some of our experiences indicate 
that it might be a useful generalisation. 

Consider a sequential file object that can be read 
simultaneously by several cfients; for each of these clients 
the file maintains a "current position" pointer. A client 
cannot simply invoke the read operation on the file, 
because the file would not know which current position 
pointer should be used. There are two solutions to this 
problem. The first is for clients to provide some kind of 
channel identifier when making a read invocation. The 
second is for the file object to create a sub-object for each 
open channel, and for each client to read from these 
channel objects rather than from the file itself. Each of 
these solutions might be appropriate in different situations; 
however, the interfaces that they present to the client are 
different, so they cannot be freely mixed. 

The Eden Transput protocol achieves a uniform 
interface to these two different styles of implementation by 
simulating multiple capabilities. Streams are always 
represented by <capability, integer> pairs; objects that 
implement a single stream ignore the integer. 

Another application for multiple capabilities might be 
to solve the problem of the small rights space mentioned 
above. Suppose that instead of interpreting our sixteen 
rights bits as a set of fights, we interpret them simply as an 
integer counter that allows each object to have up to 216 
capabilities, and that sensitive operations are protected by 
requirirlg special capabilities. One of the consequences of 
this is that a client presently holding a single capability 
containing a set of rights would be required under the new 
scheme to hold a set of capabilities, each of which would 
confer slightly different rights. In practice this might turn 
out to be intractable. If the application wanted to treat the 
capability index as a set, it would have to provide 
invocations to subset it. 

Allowing several capabilities for each object 
represents an interesting compromise between port 
addressing and the usual kind of object addressing. In 
systems like Accent [27], each process can receive 
messages at a number of ports. The identity of the 
receiving port is thus an implicit argument of every 
request, and ports subsume the uses of multiple 
capabilities. However, Accent ports are more general than 
multiple capabilities, because the right to read from a port 
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can be passed from one process to another, whereas the 
object corresponding to a given capability remains fixed. 
Retaining the object (rather than the port) as the 
addressable entity, but allowing several capabilities for 
each object, may be a useful combination of facilities. 

3.3.5. Checkpoint is Inadequate 

The Eden checkpoint operation enables an object to write 
its state to disk atomically ; in doing so any previous 
checkpoint written by that object becomes inaccessible. 
This mechanism is conceptually very simple, and fulfills 
the goal of ensuring that the state of an object can survive 
a crash, thus enabling Eden objects to exist indefinitely. 
However, with the benefit of hindsight, it is easy to spot 
the deficiencies of checkpoint: for many objects, it is 
neither a primitive nor a solution. 

The requirement that checkpoint be atomic with 
respect to failures was motivated by the need to write 
transaction systems, and other applications that recover a 
consistent state after a crash. However, this same 
requirement makes checkpoint very difficult to implement 
efficiently in our UNDO-based prototype. This makes it 
infeasible for applications to use checkpoint as a primitive, 
that is, to build more sophisticated recovery schemes from 
a collection of checkpointing objects. The requirement 
that the whole state be written at once means that 
checkpoint is not an appropriate solution when a small 
change is made to a large object; a logging facility would 
be more useful in such a case. 

It may take as long as a second to perform a 
checkpoint operation s . Most of the blame for this can be 
attributed to our prototyping environment: updating the 
disk atomically is not something for which the UNIX file 
system is particularly well adapted. Indeed, in our initial 
implementation under Berkeley 4.1 UNIX, it was 
impossible. Berkeley 4.2 UNIX provides an atomic 
rename system call and an operation that flushes the disk 
cache for a particular file; these enable us to achieve 
atomicity, but it remains very expensive. Over eighty per 
cent of the CPU time of a checkpointing object is 
consumed by five UNIX file system calls - and that does 
not include the write calls! The overhead is in opening, 
creating, and especially in linking and unlinking files in 
the directory system. Similarly, over seventy per cent of 
the time spent by the kernel process at the checksite is 
consumed by link, unllnk, and open. Database 
implernentors often have similar experiences with the 
services of conventional operating systems, which turn out 
either to do the wrong thing, or to have severe 
performance problems [28]. 

Another way of looking at the deficiencies of our 
checkpoint operation is to say that it hides the power of the 

s If the amount of data is small (less than a few kilobytes), the 
time taken for a checkpoint operation is more or less independent 
of the size of the data. 

disk. Object programmers know that disks are capable of 
random access, and they resent being forced to treat the 
disk as ff it were a magnetic tape. If the file is organised 
as a list of pages, then a small atomic change can be made 
simply by creating replacements for a few pages in the file 
and changing some of the page references in the index. In 
other words, the disk is capable of atomically changing a 
small part of a large file, but we do not take advantage of 
it. 6 

One other attribute of the checkpoint operation comes 
partially to our aid: it is private. By this we mean that only 
the object that checkpoints data can read it. It would be 
quite possible for Eden to provide more than one kind of 
operation that writes to stable storage. For example, in 
addition to our current "write everything" form of 
checkpointing, one could also provide a "logging" 
checkpoint that atomically adds records to the end of a log 
file. If an object used a combination of these two methods 
to maintain its data on stable storage, this complexity 
would be hidden from the clients of that object. One could 
envisage several alternative checkpoint implementations, 
rather like the provision of many access methods in 
conventional operating systems. But because of the 
encapsulation provided by Eden objects, this proliferation 
of methods would not be visible at the interfaces between 
objects. In contrast, for example, it would not be feasible 
for Eden to provide several different kinds of invocation. 

3.4. Project  Organisa t ion  

The previous sections have described some of the 
technical lessons of Eden; this section is concerned with 
project management and implementation rather than with 
research issues. Managing a large project is generally 
recognised to be difficult, and we do not make any claim 
to be experts. However, we feel that the sub-headings 
below capture experiences that are interesting and useful 
to other system builders. 

3.4.1. Separate Research from Development 

The first major lesson is that one should decide what 
research one wants to do and to concentrate on doing it; 
other research problems met along the way should be 
scrupulously avoided, however interesting they may be. 
This may sound rather obvious, but in practice it is easy to 
dissipate a limited amount of manpower amongst too 
many projects, or worse still, to have one piece of research 
depend on the successful outcome of another piece of 
research. 

One of Eden's early mistakes was to base the 
development of its prototype machines on research being 
performed by the Intel Corporation on the iAPX-432 

e Many of these problems could be avoided by using the raw 
disk, rather than the UNIX file system, to implement checkpoint. 
But this in turn would cause problems in the implementation of 
object creation, when it is necessary to execute cheekpointed 
data. 
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object-oriented processor. I suspect that neither we nor 
Intel realised that the 432 represented research rather than 
development. In relrospect, the non-performance of the 
432 may have been fortunate: we were sometimes tempted 
to take advantage of some enticing feature of the 432's 
architecture to improve the functionality of Eden, and in so 
doing we were sacrificing portability for efficiency, a 
premature optimisation. In fact we have recovered well 
from the non-delivery of the 432, but it probably cost us 
nine months or more in lost momentum. 

One place where we have learned and applied this 
lesson is in the area of the Eden programming language. 
After using the Newark prototype, it became clear that 
some programming language support was necessary to 
achieve our goal of making distributed programming easy. 
We made a conscious decision to avoid language design 
research by choosing an existing language and adding a 
minimal set of distribution dependent features. Of course, 
no existing language was entirely suitable. In the end we 
chose Concurrent Euclid, which was available on a large 
range of machines and had very good reports from users in 
industry and academia, but lacked debugging facilities, 
commercial support 7, and some basic language facilities 
like union types, procedures as arguments, and garbage 
collection. 

In some places our goal of rninimising changes to 
Concurrent Euclid and to its implementation has adversely 
affected the programmer's view of EPL. For example, the 
EPL programmer must explicitly enumerate those data 
structures that he wishes to checkpoint, and must explicitly 
manage the capability table to ensure that unused 
capabilities are purged. However, because of our limited 
objectives, we were able to implement EPL rapidly 
without diverting a large number of people from the 
implementation of Eden itself. 

As a result of these compromises we were able to 
produce a language and an implementation that have been 
used heavily by Eden programmers. While EPL has its 
deficiencies, we now have a much better idea of the way 
programmers actually u s e  a language in a distributed 
environment. Some of the things we originally regarded 
as research issues turn out to be unimportant, and some 
necessary features that we had not previously considered 
have been brought to our attention. Having gained this 
experience, we are in a much better position to do research 
in language design for distributed systems than we were at 
the inception of the Eden project. This is indeed 
something that we are now starting to do. However, over 
the last three years we have been free to concentrate our 
attention on the systems aspects of Eden. 

7 Concurrent Euclid is distributed by the University of Toronto. 
Although they were not committed to support the compiler, the 
response to bug reports was always fast and helpful. 

3.4.2. Don't  Hide Power 

A now famous lesson listed by Butler Lampson [19] is 
"Don't  hide power", and I don't think we did, although 
this lesson sometimes conflicts with the principles of 
information hiding and good modular structure. 

The Eden kernel provides an asynchronous invocation 
interface, in which a message is sent and the sender is free 
to continue processing; the sender will receive an 
interrupt when the reply arrives. However, the interface 
that is normally used by a programmer is synchronous: 
each invocation looks like a procedure call, and the 
invoking process is blocked until the invocation 
completes. To make this model feasible, multiple 
processes are provided within each object. The 
synchronous interface is implemented out of the 
asynchronous one by a module called the Dispatcher, 
which consists of a process that waits for invocation 
messages and a monitor containing queues of waiting 
processes. 

It was suggested to us during the design of the current 
implementation that perhaps we should hide the 
asynchronous interface and present a programmer with 
just the synchronous procedure-call interface. This of 
course would give us more freedom for reimplementing 
the underlying Eden kernel. In a production system this 
might be the fight thing to do; however, in a prototype 
system like Eden, we thought it best to expose the details 
of the implementation so that programs could take 
advantage of them. As mentioned above, the 
asynchronous interface has rarely been used, and it would 
be reasonable to hide it in a reimplementation of Eden. 

In contrast, there are quite a number of places where 
UNiX does hide power, and this has caused us a certain 
amount of grief. One of these places has already been 
alluded to above: the hiding of the page index in the UNIX 
file system, which makes the atomic checkpoint of a large 
file unnecessarily expensive. UNIX also hides the 
hardware page map and dirty bits, which would otherwise 
provide a most appropriate mechanism for automating the 
selection of the appropriate pages to checkpoint. Another 
example of power hiding occurs in the interprocess 
communication system of Berkeley 4.2 UNIX. 

Eden was initially implemented on Berkeley 4.1 UNIX, 
which provides no real intetprocess communication 
facilities. In order to build Eden, we adopted the UNIX 
implementation of Accent IPC [26]. This mechanism is 
restricted to a single machine, and is thus able to notify the 
caller if a message cannot be delivered because of 
congestion. In the absence of such notification the sender 
can be sure that the message will be delivered. 

The interprocess communication system of Berkeley 
4.2 UNIX works both locally and remotely. Because of the 
unreliability of the network, remote messages may be lost; 
because the IPC interface attempts to hide the difference 
between the ,local and remote cases, the message 
primitives do not guarantee delivery in either case. In 
other words, even in the local case, UNIX does not tell the 
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caller whether an IPC message has been delivered. 

Our prototype of Eden uses IPC messages to 
implement what would be simple kernel calls in a 
production system. By "kernel calls" we mean requests 
for service made from an Eden object to its Eden kernel, 
which is always on the same machine; examples are 
asking for the time of day, sending an invocation, or 
performing a checkpoint. These requests must be reliable, 
and yet the UNIX 4.2 IPC primitives are inherently 
unreliable. This is a clear example of hidden power: the 
UNIX kernel knows whether a local message can or cannot 
be delivered, but it refuses to tell the client process. Our 
solution here has been to incorporate the Accent IPC 
mechanism into our UNIX 4.2 kernel, and to use Accent 
IPC for all Eden "kernel call" communication. An 
alternative would be to layer an acknowledgement 
protocol on top of the bare IPC primitives, but the 
primitives are slow enough that this would be unrealistic. 

3.4.3. Use Prototypes 

As Fred Brooks said, when building a large system: "Plan 
to throw one away; you will, anyhow" [9]. We feel that in 
developing a system of the complexity of Eden it is 
essential to build prototypes that one can freely throw 
away• We learned a great deal from the Newark 
prototype, and the current implementation of Eden is much 
the better for it. Similarly, the current prototype built on 
top of Ut, r~x has told us a lot about what is and what is not 
important in a system like Eden. It is now coming to the 
end of its useful life, in the sense that some of the 
improvements that clearly are necessary (like the 
checkpoint mechanism) need access to the machine at a 
level lower than that allowed by UNIX. 

The use of prototypes also helps to reconcile the need 
to not hiding power with the need to hide information. In 
the earliest prototypes one should feel free to expose 
everything. Later, as one gets a better feeling for which 
implementation details should not be exposed, one can 
increase information hiding. A final production version of 
the system can be fully, encapsulated. 

3.4.4. Provide Migration Paths 

It is easy to underestimate the amount of effort required to 
produce a system that other people would want to use for 
their daily work in the way they use UNIX or TOPS-20. 
Lampson and Sturgis [18] have claimed that a kernel is ten 
per cent of an operating system. We have created a lot 
more in Eden than the kernel: a file system, a mail system, 
a calendar system, a self-hosting compiler for our own 
programming language, a terminal handier, a command 
language and an interpreter for it. We are working on 
debuggers and performance monitors, a transaction 
system, replication facilities, load sharing tools and a more 
sophisticated screen-based user interface. In other words, 
we have built quite a number of the tools and utilities one 
would expect to find in a complete operating system. 
Nevertheless, we still have far fewer tools than one finds 

in a system like UNIx that has been around for fifteen 
years and has accumulated software from all over the 
world. It was naive for us to expect that people would 
clamour to use the Eden system in their daily work, even if 
distribution was an important part of that work. 

We have mitigated this problem in two ways. First, 
building Eden on top of UNLX, despite the technical 
problems that have been hinted at above, had the great 
advantage of providing an easy path by which users could 
migrate from UNIX to Eden. It also provided an 
environment in which it was possible to use UNIX tools to 
accomplish Eden tasks. As an example, at a time when 
there were no Eden facilities for input from and output to 
the terminal, it was possible to demonstrate the Eden mail 
system by using the Emacs editor and a filter process to 
compose a mail message [2]. Similarly, we have an 
interface that allows one to use Emacs to edit Eden 
ByteStores as easily s as UNIX files. Second, we actively 
sought out researchers who could use Eden and gave them 
positive encouragement and support to do their 
experiments on it. This was in our own interest: without 
applications, there can be no experience with the use of the 
system. And as this paper has tried to show, there is no 
substitute for experience. 

4. Conclusion 

We have discussed many of the lessons arising from our 
experience with Eden, concentrating on those that relate to 
design choices in distributed systems and to the 
organisation and management of a large systems project. 

Our most significant successes have been the use of 
abstract object typing and the design of the Eden 
programming language, which recognises the importance 
of fightweight processes, concurrency control primitives 
and parameter packaging for invocations. Neither abstract 
typing nor language support for distribution axe unique to 
Eden; the Xerox RPC system, for example, has both 
programming language support (from Lupine) and a 
notion of "interface" inherited from the Cedar/Mesa 
language that is similar to an Abstract Edentype. 
However, our formulation of these ideas in terms of an 
object-oriented system seems to ~be novel, and presents 
research opportunities that we inWnd to pursue. 

Eden's fundamental idea of basing a distributed 
architecture on objects has been adopted widely. The 
basic concepts of our particular notion of Eden object - 

• • , • 

locatton independent mvocaUon, abstract typing, mobility 
and encapsulation - have proven to be remarkably 
powerful and flexible. Nevertheless, some parts of our 
object model need modification. In this paper I have 
discussed the need for better primitives for maintaining 
state on stable storage and the problems with access rights 
(see Sections 3.3.5 and 3.3.3), and have mentioned the 
possibility of allowing multiple capabilities for a single 

s As easily, but not as rapidly. 
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object (Section 3.3.4). 

One question that in our view remains open is the 
provision to be made for atomicity. Eden provides an 
atomic checkpoint primitive, but does not provide a 
general-purpose atomic action system. Thus, 
programmers who so desire can build robust and secure 
applications, but to do so they must construct their own 
transaction mechanism. This is a different approach from 
that taken by, for example, the Argus system [22] and the 
Clouds system [1], where atomic actions are among the 
basic building blocks provided at the system level. In the 
Eden Calendar system, which contains its own support for 
a particular kind of atomic action, we estimate that about 
ten per cent of the code is concerned with maintaining the 
consistency of the distributed database of calendars. On 
one hand, this is not a lot; on the other hand, the 
transaction code is probably some of the most complicated 
in the application. And yet, because transactions are built 
as part of the calendar system, we are able to take 
advantage of the semantics of the calendar and event 
objects so as to reduce the number of writes to stable 
storage, compared to the number that would be required 
by a general purpose transaction system. 

An obvious remaining question is where the Eden 
project goes from here. We do not currently plan to re- 
implement Eden on a bare machine; the cost of doing so 
would be high, and the payoff in terms of new knowledge 
about supporting distributed applications would be low. 
Of course, it would be pleasant to have a "real" 
implementation of Eden that could be used for our daily 
work, but building one is probably a task for a company 
rather than a university. 

We do plan to continue with our experiments in load 
sharing, repfication, transactions, concurrency control, 
graphical interfaces, distributed programming languages, 
type checking and checkpointing. Some of the personnel 
involved with these projects are using the Eden system as 
it now exists, some and are making experimental 
modifications (for example to allow a limited form of 
replication), and one group is constructing a new 
distributed system [8] whose initial prototype is based on 
parts of the Eden implementation. 
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