
Supporting Distributed Applications:

Experience with Eden

A n d r e w P. B l a c k

University of Washington

The Eden distributed system has been running at the University of Washington for over two years. Most of
the principles and implementation ideas of Eden have been adequately discussed in the literature [4]. This
paper presents some of the experience that has been gained from the implementation and use of Eden.
Much of this experience is relevant to other distributed systems, even though they may be based on
different assumptions.

1. Introduction

The Eden project started in September 1980 with the goal
of experimentally investigating a particular paradigm for
distributed computation. In its fundamentals, the Eden
system of today has changed little from that described in
the original design paper [20], although the details have
evolved as we have moved from one prototype to the
next [4]. What have changed - as a consequence of two
years experience designing, building and using distributed
applications - are our ideas about implementation,
programming language support, and the relationship
between experimental systems and the systems on which
one does one's daily work.

We believe that much of this experience is applicable
to other distributed systems; even if they are not object
based. The purpose of this paper is to share our successes,
our failures and the lessons we have learned with as wide a

This work was supported in part by the National Science Founda-
tion under Grant Number MCS-8004111. Computing Equipment
was provided in part under a cooperative research agreement
with Digital Equipment Corporation.

Author's Address: Department of Computer Science FR-35,
University of Washington, Seattle, WA 98195. Electronic mail:
Black@Washington.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM-0-89791- 174- 1- 12/85-0181 $00.75

community as possible. The intention is not to preach a
gospel. In some cases we started with a particular model,
have stuck with it, and are able to report that it has served
us well. However, one cannot infer that some other model
might not have been as good or better.

For reasons of space, this paper is for the most part
confined to lessons relating to distributed systems and
distributed programming. Our scope is thus much more
restricted than Lampson's Hints for Computer System
Design [19], which presents excellent advice on system
building in general.

The organisation of this paper is as follows. Section 2
sets the context by summarising the basic concepts of
Eden and of the Eden programming language, and by
giving some idea of the scale of the system. Section 3
describes some of our more significant experiences to date.
Some conclusions and directions for further work are
presented in Section 4.

2. A n O v e r v i e w o f E d e n

Eden represents a merging of three distinct threads in
operating system design:

• Eden is a complete distributed operating system. In
this sense it is rather like the Apollo DOMAIN [21]
system, or the various distributed UNIX 1 systems that
are now available, e.g., L o c u s [29] and The Newcastle
Connection [10].

• Eden is an object-oriented system. Viewed in this
way, Eden is a descendant of Hydra [30][31]. It offers
the programmer a model of computation significantly
different from that of conventional operating systems.

t UNIX is a trademark of AT&T BeU Laboratories.

181

• A third way of viewing Eden is as an implementation
of remote procedure call. In this sense it is rather like
the RPC System pioneered at Xerox's Palo Alto
Research Center [5]. The Eden Programming
Language automatically generates stubs for both the
caller and the callee; Eden is a very early example of a
full-scale RPC system.

Thus, Eden has something in common with several of
the distributed operating systems projects of the last few
years. However, in combining their advances, Eden
provides a unique set of facilities. It is distinguished from
systems like LOCUS in being based on a contemporary
object-oriented model. In contrast to the Apollo DOMAL~
system, Eden's notion of object is definable and extensible
by the user. It differs from the Xerox RPC system because
objects are mobile, and the binding of a "client" to a
"server" is performed potentially on every invocation,
rather than in a separate initial phase.

It is important to observe that Eden is not a set of
facilities provided on top of an existing operating system
in an attempt to graft distribution onto some other model
of computation. This is true despite the fact that the
current prototype of Eden is implemented using the
facilities of UNIX. Eden itself provides the user with a
complete environment for program development and
execution.

Eden is an integrated system with a single uniform
system-wide namespace spanning multiple machines. Its
space of objects is managed by the system, in the sense
that the system takes care of obtaining resources for the
creation of new objects and for garbage collecting objects
when they are no longer accessible. Eden objects have the
following characteristics:

• Objects are referenced by capabilities. Capabilities
are not addresses. Rather, each object has a unique
identifier. A capability consists of that unique
identifier and a set of sixteen rights. The problem of
locating an object given only its capability is handled
by the system itself. Capabilities are protected from
forgery; this ensures that only legitimate clients can
access an object.

• Invocation is the means whereby one object obtains
service from another. It may be thought of as a request
message followed sometime later by a response
message. Invocation is location independent: in order
to invoke an object, the invokee needs to know its
capability but not its location.

• Objects are mobile, i.e. their physical location within
the system changes over time. Because invocation is
location independent, clients of an object need not be
aware of its migration.

• Conceptually, objects are active at all times. Each
object has one or more processes within it, and can
initiate activities as well as respond to invocations;
Eden objects thus subsume the conventional notion of
program. In practice, an object may voluntarily

deactivate (to economise on resources) or be forced to
crash (if its code is faulty or its machine crashes).
However, if such an inactive object is invoked, the
system will reactivate it automatically, so users of an
object need not be concerned with these practicalities.

• Each object has a concrete Edentype, which may be
regarded as a description of the state machine that
defines the behaviour of the object, i.e. those patterns
of invocation that it will accept and the effect of each
invocation. In implementation terms the concrete
Edentype is a piece of code in the Eden Programming
Language.

• Each object has a data part, which includes long-term
state representing the data encapsulated by the object
and short-term state consisting of the local data of
invocations currently in progress, hints, caches, and so
on. This data is private to the object in question; other
objects can access it only via invocation. Eden thus
supports information hiding at the system level; if an
object's data structure is found to violate its invariants
then the code of only that object need be examined to
find out why.

• An object may checkpoint, that is, it may atomically
write its state to stable storage. Typically, all of the
long-term state will be written, and as much of the
short-term state as is necessary to achieve appropriate
reliability. Only state information that has been
checkpointed will be available when an object is
reactivated.

The use of Eden has been made significantly easier by
the design and implementation of the Eden Programming
Language (EPL). This is a modest language based on
Concurrent Euclid [14][15], a Pascal extension providing
processes, modules and monitors. EPL provides direct
support for the fundamental abstractions of Eden, that is,
capabilities and invocation. Because EPL provides
multiple, light-weight processes, it makes it possible to
manage many synchronous remote invocations at one
time. This is discussed further in Section 3.1.2.

Both the Eden programming language and the Eden
system itself have been available since April 1983, first on
a network of four VAX computers, and then on a network
of sixteen Sun workstations. About fifty different
Edentypes have been publicly released; there are almost
certainly an equal number of "private" Edentypes used by
small groups of people. A random selection of seventy
public and private Edentypes were found to contain over
three hundred thousand lines of code, and define about
three hundred different invocations.

Our implementation is built on top of Berkeley 4.2
UNIX; we use UNIX to provide us with processes and
virtual address spaces, to load code into those address
spaces, and to provide access to the disk and the network.
The Eden kernel is implemented as a UNIX user process.
A local invocation on a Sun workstation currently takes
about fifty milliseconds of waUclock time for a null
operation and return; a remote invocation takes about

182

seventy milliseconds. Of the fifty milliseconds, just over
half is used by the UNIX IPC mechanism; the remainder
represents the overhead imposed by Eden's parameter and
result packaging, operation and type checking, lightweight
process dispatching, object location, capability checking,
and so on.

3. Lessons from Eden

The lessons are grouped into four divisions; within the
divisions each lesson is introduced by a paragraph, and
then motivated by our experience. The first two divisions
comprise lessons relating to programming style and
lessons relating to naming and distribution. We believe
that these are applicable to a wide range of systems. The
third category contains lessons that we have learned in the
context of Eden objects. While the applicability of some
of them may be restricted to systems that provide some
notion of "object", several are relevant in other contexts.
The final division is more managerial than technical; it
discusses some of the difficulties we faced in running a
major systems project.

3.1. Lessons relating to Programming Style

3.1.1. Type Abstractly

Objects should be typed abstractly (according to their
behaviour) rather than concretely (according to their
implementation). The purpose of type checking is to
prevent the misinterpretation of values. Its purpose is not
to prevent multiple implementations of a type from
coexisting; neither is it to prevent new types from being
added to an existing system, provided that they are
interpreted appropriately. A good type system should give
warning of misinterpretation, if possible at compile time,
without preventing legitimate evolution of the system.

To misinterpret a value of a particular type is to
mistakenly treat the collection of bits used to represent it
as being a value of some completely different type, for
example, to interpret a pointer as a character, or a boolean
as an integer. Misinterpretation is a programming error
that can be very difficult to track down if it is not detected
explicitly; static type checking is thus preferable to
dynamic type checking because misinterpretation errors
are detected earlier and more completely. Static checking
is also more efficient.

Unfortunately, it is clear that not all inter-object type
checking can be performed at compile time, if only
because the code for the object that one wishes to invoke
may not have been written yet. For example, Eden mail
message objects now invoke the Deliver operation on both
mail boxes and mail distribution lists, even though mail
distribution lists did not exist when the code for mall
messages was written [3].

In an object-oriented language like Smalltalk [12], it is
not necessary to perform type checking in order to prevent
the misinterpretation of values; the object encapsulation
mechanism achieves the same effect. If the // (integer

division) message is sent to a boolean object, the result is a
"Message not understood" error, not the result of
attempting division on the representation of the boolean.
However, object encapsulation does not provide early
warning of such errors; the SmaUtalk programmer who
accidentally types

7 > x / / 3

instead of

7>(x l /3)

is not warned of his error until the code is executed.

In an object-oriented system like Hydra [31], objects
are typed. When a procedure is called to act upon an
object, it checks that the object is of a particular concrete
type. There cannot be a Deliver procedure that operates
on both mail boxes and mail distribution lists. In Hydra,
all attempted misinterpretation of data can be detected at
run-time, but at the expense of the flexibility and
extensibility that we think are important in a distributed
system. 2

In the Eden programming language, capabilities are
not typed; they are like PL/I pointers. There is no way to
determine the concrete Edentype of the object to which a
capability refers, unless the object chooses to export an
invocation that reveals this information. For example, ff
one object thinks that it is reading from another object of
type Stream, and issues transfer and close requests in
order to read data, there is no check that the invokee is
actually a Stream. There are checks that the invokee
experts transfer and close invocations, and that the
parameter lists of these invocations are correct. As a
consequence, the invokee need not be a Stream, but can be
any object prepared to present the appropriate interface
[6][7].

In order to detect type errors at the invocation interface
as soon as possible, the Eden Programming Language
performs compile time type-checking in addition to the
run-time checking described above. When a capability-
valued identifier is declared, the programmer asserts that it
is for a given Edentype; the compiler then checks that the
invocations made on that capability are indeed exported by
that Edentype, and that the parameter lists conform.
However, the initial assertion is not checked, even if the
capability is provided at compile time.

We call this abstract typing because the Edentype
mentioned in the for clause of a capability declaration
need not be implemented; it can simply be an invocation
interface that abstracts from several implemented (or to-
be-implemented) concrete Edentypes. For example, there
is no concrete Edentype Stream; streams are an abstraction
of the interface presented by the bytestore and terminal

z Flexibility can be regained through that universal panaccca, an
ex~a level of indirection [23]. The Hydra TypeCall mechanism
is one way of obtaining this indirection, and solves this problem,
although that was not its original purpose.

183

handler Edentypes. It is also sometimes the case that a
particular concrete Edentype implements several
abstractions; for example, bytestores implement a random
access interface in addition to the stream interface.

There is currently no mechanism that allows us to tell
whether an object of a particular concrete Edentype
conforms to a certain abstract type specification. Given
such a mechanism, it would be possible to check the
assertion that accompanies capability declarations, and
eliminate the checking that accompanies every invocation.
This would help us to reduce run-time overhead, while
preserving the open-endedness of the Eden type system.
We are adopting this approach to type checking in the
Emerald language [8].

3.1.2. Use Synchronous Communication

We have found that programmers prefer to use
synchronous (procedure-call-like) communication
primitives rather than asynchronous (send-receive)
primitives. This observation was made in an environment
which provided approximately equal syntactic support for
synchronous and asynchronous invocation, but also
provided multiple processes at low cost.

When the Eden Programming Language was designed,
the most appropriate invocation semantics and
programming style for Eden were still unknown. We
therefore decided to provide a similar kind of language
support for both synchronous invocation, which acts rather
like a remote procedure call, and asynchronous invocation,
where a request is sent and later a response is awaited. In
fact, the asynchronous form has been used only rarely,
even though we took care to provide equal support for
both. (For example, initially both synchronous and
asynchronous stubs were produced for every Edentype that
was compiled.)

We believe that synchronous invocation was preferred
because multiple local processes are directly supported by
the constructs of the language. In contrast, multiple
remote invocations managed by one local process are not
so supported. For example, the monitors and condition
variables of EPL make it relatively easy for an EPL
process to wait for a condition involving other processes.
In a system that does not support local concurrency, or
supports it inefficiently, a different conclusion might be
reached about the desirability of synchrony. For example,
Jones, Rashid and Thompson report that a quarter of all
calls that use the Accent stub generator are asynchronous
[17]. However, of the various languages for which stubs
may be generated, only Ada - not widely used on Accent
at the present time - provides lightweight processes and
concurrency control. This leads us to the next lesson, the
importance of concurrency.

3.1.3. Provide Concurrency -Inexpensively

Our expedence is that local processes and synchronisation
primitives are powerful tools for the management of
remote concurrency. Eden provides concurrency at two

levels. Naturally, different objects running on different
processors may execute in parallel. In addition, multiple
lightweight processes and structures for concurrency
control are available within each object.

The Eden Programming Language provides processes
that communicate through monitors. We do not claim that
monitors are better or worse than, for example, Ada tasks
and rendezvous. In fact, our lesson is independent of the

particular communication mechanism supported by the
language. Because of the various compromises that were
made in order to implement EPL rapidly, the model of
concu/rency provided by our language is very different
from that provided by the Eden system as a whole. In
spite of this, the processes and monitors of the Eden
Programming Language have been a major success: the
implementation overhead is small, and the EPL code of
objects is cleanly structured and easy to understand.

One of the reasons for the importance of concurrent
processes within an object is that one object will typically
be managing many remote activities simultaneously. This
is true both when one is using multiple objects in a
computationally intensive task and when one is making
calls on remote services. If one has five remote objects
performing some computation on one's behalf, the
simplest way of managing that situation is to have five
local processes, each one of which initiates some remote
computation and waits for it to complete, and then finally
repoas progress back to a coordinating process. In this
way we separate the concerns of managing concurrency
from those of managing remote operations. Conceptually,
this is a much simpler arrangement than having one
process that asynchronously starts the five remote
processes and then waits for response from any of them,
remembers which one has finished, and so on.

3.1.4. Make the Language Support the System

Ideally, a systems programming language and the system
that it supports should be designed together. If this is not
the case, it is inevitable that the language and the system
will present differing computational models. However,
each step that can be taken to narrow this difference is of
major assistance to the programmer.

Two of the central features of Eden are capabilities
and invocations. Capabilities may be thought of as
location-independent object pointers; invocations may be
thought of as remote operation requests. Both of these
features are provided with substantial linguistic support.

Instead of introducing a special invocation construct,
the Eden Programming Language packages invocations to
look like procedure calls. This choice was made for
implementation reasons, and because programmers are
familiar with procedure call; nevertheless there are some
significant semantic differences between invocation and
true procedure call. One of them is that a var parameter to
an invocation is strictly a result, whereas a vat parameter
to an ordinary procedure call is both an argument and a
result. Another difference is in the set of types that are

184

understood on both sides of the two kinds of call. A
parameter to a procedure call can be of any type that is in
scope both at the point of call and in the called procedure
body. However, parameters to invocations are limited to a
fixed set of system-defined types. This restriction was
originally imposed partly to simplify the initial
implementation, and partly because there are genuine
semantic problems in trying to decide when two types
declared in different pieces of code compiled on different
machines at different times are equivalenL We had
intended to remove the restriction, but the pragmatics of
project management have always given other tasks higher
priority. Furthermore, in many cases, being prohibited
from passing a record structure as an invocation argument
is not as bad as it sounds: the record can be implemented
as an Eden object, and its capability passed instead.

Our experience with the first prototype of Eden (called
Newark) helped motivate the development of EPL.
Newark, constructed in the autumn of 1981, was
progmnmu~d in Pascal and did not ha~,e any language
support for invocation. Sending an invocation to another
object involved fabricating a variant record out of the
arguments (to circumvent the Pascal type system), calling
the system-provided invocation primitive, and
reconstructing the argument list in the remote object. This
and other contortions convinced us of the need for an Eden
programming language.

Apart from invocation, the other major Eden-specific
feature of EPL is the incorporation of a capability type as a
first class citizen. By this we mean that capabilities can be
manipulated as freely as integers, without programmers
having to concern themselves with "C-lists"; the
programmer can declare both capability variables and
initialised capability constants. Ideally, capability constant
inid~lisation would be done by the editor at program
composition time. Because we do not have an object-
based program editor, we resort to a more complicated
arrangement.

Capability constants are denoted by a string that
represents a path through the Eden directory system. This
path is interpreted at compile time, with the result that a
capability for the appropriate object is bound into the
executable image of the newly compiled Edentype. When
objects of this type execute, the capabifity need no longer
be present in the directory system at all, and certainly need
not be accessible by the client of the object. This facility
is useful when confidential information or privileged code
is being handled. A simpler scheme would have been to
provide a function that returned the capability for the root
of the directory system and to perform all lookups at run
time. Our arrangement encompasses this simpler scheme;
we feel that the flexibility of being able to bind an
arbitrary capability into the code of an object, as well as
the conceptual simplicity of being able to treat capability
comtants in the same way as constants of other types, has
made the extra implementation effort worthwhile.

3.2. Lessons relat ing to Naming and Distribution

3.2.1. Distribution: Hidden or Visible?

Various kinds of appficadons run on a distributed system;
some are born to distribution, while others have
distribution thrust upon them. In the former case, when it
is appropriate for an application to exploit distribution, the
system should make it easy to do so. In the later case, the
programmer would prefer to be able to ignore distribution.
Her task would be greatly simplified, if the system were
actually centralised, and the function of the operating
system ought to be to simulate that happy state,

The Eden mail system and the translator for the Eden
Programming Language are examples of applications that
have distribution thrust upon them, i.e. they are forced to
deal with distribution. Translating the EPL code of an
object requires access to a large environment, including
the interfaces of all the objects that it invokes. It is
impractical to keep current copies of this environment on
all machines; it is intolerable to insist that all translations
take place on a particular "database" machine because of
the excessive load this would place on it. This was the
dilemma that faced us so long as we relied on our initial
cross-compiler for EPL, which ran on UNIX. Once we
ported the translator to Eden, the problem vanished. The
various objects that make up the translator can be on any
machine in the network, but there need be only a single
copy of each file object that makes up the environment.
The fact that some or all of these files may be remote need
concern neither the writer nor the user of the translator.

By applications that are born to distribution, we mean
those that can actually take advantage of the many
machines in the network in order to work more effectively
- perhaps faster, or with greater availability, or by
exploiting particular hardware. If distribution is hidden
competely, then the system itself must take the
responsibility for all of these things. We believe this is
presentiy infeasible, and also inappropriate in an
experimental system.

One application that was implemented on Eden
specifically to exploit distribution finds approximate
solutions to queuing network models; this involves solving
large systems of equations. A coordinator object partitions
the equations among several "slave" objects; each slave
finds an approximate solution to its part. The cxx~rdinator
collects these partial solutions, calculates an approximate
result, and then (possibly) asks the slaves to iterate. This
process is computationally intensive, and the purpose of
distributing, it is to obtain faster results through
parallelism; it is clearly important that each of the slaves
run on a different machine. Thus, at some level, the
programmer needs access to some location dependent
primitives that let him examine the load on different
machines in the network and explicitly create his slave
objects at specific locations. Once this has been done, the
remainder of the application, in which the coordinator
object communicates with its subordinates, can reap the

185

benefits of location independence.

The EPL translator mentioned above is also able to
exploit distribution. Although the translator wil l work no
matter where the various objects are located, it will clearly
work faster if some reasonable policy is used to distribute
the load over the available machines. However, the part of
the translator that determines where to locate its various
components is quite separate from the components
themselves.

Replication for reliability is another example of an
application that needs to take advantage of distribution
rather than to have it hidden. Clearly the replicas need to
reside on machines with independent failure modes. Our
view of location independence is that the basic operations
of the system can be carried out on the entities of the
system without regard for their location. In terms of the
Eden system this means that possessing a capability for an
object and invoking that object neither require nor imply
any knowledge of its location. Location independence
does not imply that one cannot make location dependent
inquiries and requests, such as asking whether two objects
are on the same machine, or that one's checkpoint file
should be created on a particular disk. Our work on
replication [25] makes extensive use of Eden's location
dependent primitives.

3.2.2. Name Uniformly

In Eden, all global system entities are named uniformly:
by capabilities. This includes not only objects, but also
Edentypes, nodes (machines), and checksites (disks).

The preceding discussion indicates that there is an
occasional need to refer to nodes and to checksites as well
as to objects. Rather than introducing new namespaces for
these purposes, we have named nodes and checksites with
capabilities. The concept supported by the location
dependent primitives is that of co.location; one asks the
system to co-locate a pair of capabilities. For example, the
kernel call

CreateAt(Type : Capability, Place : Capability,
var NewObject : Capability,
var Status: Kernel.KStatus)

creates a new object with Edentype Type, and returns its
capability in NewObject. If Place is a capability for a
node, the NewObject will be placed there ff that is
possible. If Place is the capability for an active object,
NewObject will be created on the node on which Place is
running. Although we have had only limited experience
with these primitives so far, it seems that naming machines
with capabilities reduces the number of location dependent

• primitives required and provides a convenient conceptual
unity.

3.23. Permit Mobility

The mobility of Eden objects is an advantage not shared
by many other distributed systems. Mobility enables us to
perform load balancing; it also simplifies the task of

writing re~verable applications.

We have always intended that Eden objects not be tied
to a particular machine but that they move around the
system in response to fluctuations in load. This also
enables a particular machine to be taken down for
maintenance without interrupting operation of the system
as a whole. As a consequence, none of our protocols for
locating objects relies on an object being where it was last
- although that is a useful heuristic. However, at the time
of writing, objects cannot move while they are active. In
order to move, an object must first request that its next
reactivation occur on another node, and then &activate
itself.

We do not see any conceptual problem in moving an
active object from one node to another; indeed, the
DEMOS/MP system provides this function [24]. However,
various practical difficulties have deterred us from
completing this part of Eden's implementation. We
foresee two classes of problem. The first class is caused
by our prototyping environment: moving an object would
involve creating a new UNLX process on a new machine
with the same code and execution state as those of the old
process. This would require performing appropriate
translations on the various UNIX namespaces. Were Eden
implemented on a bare machine there would be no
translations to be performed, as all Eden names are
location independent. The second class of problems has to
do with invocation messages that are in progress when an
object moves; these have to be stored and forwarded by
one of the kernels involved.

As a result of the restriction that only passive objects
can move, our experiments with load sharing in Eden have
been limited to those applications where jobs are moved
before they start; once they are running on a particular
node they stay there. Being able to move active objects
would naturally widen the range of load sharing
experiments. In particular, it would let us investigate
problems of stability, which seem not to have received
much attention. Nevertheless, because all of the entities
referred to by an object are named in a location-
independent manner, there is still much more scope for
load sharing in Eden than in, say, a network of Suns
running UNix.

Another advantage of mobility is that it simplifies
recovezy. Consider an Eden object executing on a single
node, and checkpointing to a disk on that node. Should the
node break, the object will be unavailable until it is
repaired. Now suppose that we try to increase the
availability of the object by replicating its checkpoint file
on two additional nodes; the active form is not replicated.
When the node on which it is running breaks, our object
can be reactivated on another node, using the remotely
checkpOinted state. Such replication is currently being
implemented by introducing a variant of Gifford's voting
scheme [11] into the checkpoint mechanism. This is fairly
simple to do, and introduces overhead only when the
object checkpoints; moreover, the interface to Checkpoint
is the same in the replicated and unmplicated cases.

186

Now consider what would happen if objects could not
move. Replicating the checkpoint file would not help,
because even though the data would still be available after
the crash, the node to run the object would not be. Service
could not be resumed until the node is repaired or
replaced. In order to increase availability, it would be
necessary to replicate the acdve form of the object, and to
employ transaction techniques to ensure consistency
between the replicas.

The above discussion also illustrates why we do not
rely on forwarding pointers to locate objects that have
moved; if the old location of the object is not available,
neither is the forwarding pointer. In addition, there are
difficulties in determining when the forwarding pointers
can be garbage collected.

3.3. Lessons Relating to Objects

3.3.1. System-Supported Objects Improve the Structure of
Applications

Our experience with objects has been very positive. This
is true despite the inefficiencies of a prototype
implementation constructed on top of a conventional
operating system. Eden objects subsume the conventional
notions of file, value of an abstract data type, and program.
They provide a convenient answer to the question of what
is distributed in a distributed system.

The major benefit of Eden objects is that they enable
one to structure an application in what now seems to be a
very nataral way. For example, in the Eden mail system
[2], not only are the mall boxes of users represented as
objects, but so is each message. To people who have been
brought up on file based operating systems, the notion of
making each message a separate object may seem strange.
In fact, it provides a straightforward way to state that
messages are an abstract data type with operations that set
and interrogate the various fields - the To field, the Subject
field, and so on. Because objects are encapsulated, each
message can enforce invariants on its data. For example,
mail messages refuse to modify themselves after they have
been delivered. A more complicated example arises when
a new message is created in reply to an earlier message;
the new message can ensure that its Subject field is derived
from that of the earlier message (possibly by prefixing
Re:), and that its To field contains the earlier message's
From field.

Another benefit of representing data abstractions as
Eden objects is that they can easily be shared. In the mail
system, this enables us to achieve some economies; for
example, a message sent to a large number of addressees
need not be copied into each mail box. Instead, each mall
box is given a capability for the message; this also reduces
the task of duplicate suppression to a test of equality on
capabilities s.

a Strictly, equality of the unique identifiers in the capabilities.

A more significant use of sharing occurs in the Eden
appointment calendar system [13]. When a meeting is
scheduled for several participants, a single Event object is
created to represent the details of the meeting. This event
is shared by the various calendars, which necessarily hold
consistent views of the state of the meeting. In this case
Eden enables us to capture succinctly the distinction
between a single meeting attended by four people and four
separate meetings that happen to occur at the same time.

For objects to be used in such a free way, it is essential
that the system allocates and deallocates them
automatically. The Eden mail system would be quite
useless without a garbage collector that frees the resources
used by a message when there are no more capabilities for
it in the system. Even if the mail system programmers had
been willing to go to the trouble of maintaining reference
counts to messages, this would have prevented other
subsystems - like the directory system - from keeping
capabilities for messages.

Eden objects are not cheap. In our prototype
implementation, each Eden object is represented by a
UNtX process - and a large one, as it contains a lot of
library code that is logically part of the Eden kernel. For
example, the code for the ByteStore object occupies
approximately 122 kbytes on a Sun. Of this, 15 kbytes are
code specific to ByteStore, 23 kbytes are from the UNIX
library, and 84 kbytes are from the Eden library. Even
though this code is shared by all the ByteStores that are
active on a given machine, obtaining it from the disk
initially, loading it into a UNIX address space, and
subsequently paging it and swapping it, all impose a
considerable overhead on the system. Because of this,
there were places where we were dissuaded from using
Eden objects as generously as we might have liked, and
instead relied on the data structures and modules of the
Eden Programming Language. Being able to choose
between two different representations with different costs
enabled us to use the more expensive, system-wide
abstraction tool only when it was justified. In a
"production" system, objects could be made relatively
cheaper, but we still believe that some form of language-
level abstraction tool is necessary. The Oz/Emerald
project recently begun at the University of Washington
aims to integrate the abstraction facilities of a language
with those of a distributed system [8].

3.3.2. Eliminate Redundant Concepts

Each Eden object has an Edentype, which contains its
code and therefore describes its behaviour. Edentypes are
named by capabilities; moreover, they are themselves
ordinary objects, without special privileges.

We initially imagined Eden to have a three-level type
hierarchy, like the class-instance hierarchy of
Smalltalk-76 [16]. Each object would be an instance of a
concrete EdentyI~e. Ordinary objects would be at the
bottom of the hierarchy, and would be instances of
Edentypes. Edentypes would be instances of a

187

distinguished object called "typetype", and typetyge
would be an instance of itself 4.

We have now come to the conclusion that both
"typetype" and the distinction between types and
instances are unnecessary. Currently, every object is still
an instance of a type. However, this type is another
ordinary object, of type typestore. Instances of typestore
are "ordinary" in the sense that the kernel treats them just
like other objects; typestores are special only in that their
representations contain executable code. Like other
objects, typestores provide an invocation interface; indeed,
the EPL translator writes them and the debugger reads
them by using invocations to access their bytes and
eapabifities. The type of a typestore is simply the
typestore that contains its code.

Apart from the conceptual simplification, the new
scheme has a practical advantage. Typetype, as a
distinguished object that was an instance of itself, had to
be implemented by the kernel. In contrast, typestore is an
ordinary Edentype, and is implemented outside the kernel.
Moreover, because typestores are not distinguished by the
kernel, several implementations of typestore can co-exist.
This enables a programmer to create a new kind of
typestore, and to test it, without the risk of breaking the
translator.

3.3.3. Make Namespaces Large

The need for adequately sized global namespaces is
obvious; what was not obvious to us was that one strategy
for dealing with small namespaces - making them local -
is rather hard to apply.

Unlike Hydra, the rights in an Eden capability are not
interpreted by the system itself; that task is left to the
object, which is thus free to interpret each bit as it sees fit.
At first sight it might seem that sixteen different access
rights for each object is ample. In fact, the rights space is
inadequate; rights interact with the abstract type system so
that in the most general case there are only sixteen
different access rights for the whole system. Each abstract
Edentype defines its own set of access rights, but since any
two abstract types may be combined in a particular
concrete type, one abstract type is not free to re-use a right
that has been used by another type.

Returning to the mail system example, suppose that the
MailSink abstract type chose to use right five to represent
defivcry privilege, while DirectoryMap required right five
in order to add a new entry. So long as these two abstract
Edentypes are unrelated, all is well, but as soon as we
create the Mail Distribution List Edentype, which exports
the interfaces of both MailSink and DirectoryMap, it
becomes impossible to create a capability permitting
delivery to a fist without also permitting the addition of
n e w entries.

4 That is, the type of typetype would be typetype, whence the
nlllne,.

We do not have a solution to this problem. It is clearly
impractical to increase greatly the number of rights so long
as sets of rights are part of capabilities. The lesson is that
moving the responsibility for the interpretation of a
variable from a global agent (the kernel) to a local agent
(the object) does not necessarily make the variable's
meaning local.

3.3.4. One Object, One Capability?

In Eden, as in most other object-oriented systems, each
object is named by exactly one system-wide identifier. An
alternative is to allow each object to be named by several
identifiers. We have not been able to explore this
alternative directly, but some of our experiences indicate
that it might be a useful generalisation.

Consider a sequential file object that can be read
simultaneously by several cfients; for each of these clients
the file maintains a "current position" pointer. A client
cannot simply invoke the read operation on the file,
because the file would not know which current position
pointer should be used. There are two solutions to this
problem. The first is for clients to provide some kind of
channel identifier when making a read invocation. The
second is for the file object to create a sub-object for each
open channel, and for each client to read from these
channel objects rather than from the file itself. Each of
these solutions might be appropriate in different situations;
however, the interfaces that they present to the client are
different, so they cannot be freely mixed.

The Eden Transput protocol achieves a uniform
interface to these two different styles of implementation by
simulating multiple capabilities. Streams are always
represented by <capability, integer> pairs; objects that
implement a single stream ignore the integer.

Another application for multiple capabilities might be
to solve the problem of the small rights space mentioned
above. Suppose that instead of interpreting our sixteen
rights bits as a set of fights, we interpret them simply as an
integer counter that allows each object to have up to 216
capabilities, and that sensitive operations are protected by
requirirlg special capabilities. One of the consequences of
this is that a client presently holding a single capability
containing a set of rights would be required under the new
scheme to hold a set of capabilities, each of which would
confer slightly different rights. In practice this might turn
out to be intractable. If the application wanted to treat the
capability index as a set, it would have to provide
invocations to subset it.

Allowing several capabilities for each object
represents an interesting compromise between port
addressing and the usual kind of object addressing. In
systems like Accent [27], each process can receive
messages at a number of ports. The identity of the
receiving port is thus an implicit argument of every
request, and ports subsume the uses of multiple
capabilities. However, Accent ports are more general than
multiple capabilities, because the right to read from a port

188

can be passed from one process to another, whereas the
object corresponding to a given capability remains fixed.
Retaining the object (rather than the port) as the
addressable entity, but allowing several capabilities for
each object, may be a useful combination of facilities.

3.3.5. Checkpoint is Inadequate

The Eden checkpoint operation enables an object to write
its state to disk atomically ; in doing so any previous
checkpoint written by that object becomes inaccessible.
This mechanism is conceptually very simple, and fulfills
the goal of ensuring that the state of an object can survive
a crash, thus enabling Eden objects to exist indefinitely.
However, with the benefit of hindsight, it is easy to spot
the deficiencies of checkpoint: for many objects, it is
neither a primitive nor a solution.

The requirement that checkpoint be atomic with
respect to failures was motivated by the need to write
transaction systems, and other applications that recover a
consistent state after a crash. However, this same
requirement makes checkpoint very difficult to implement
efficiently in our UNDO-based prototype. This makes it
infeasible for applications to use checkpoint as a primitive,
that is, to build more sophisticated recovery schemes from
a collection of checkpointing objects. The requirement
that the whole state be written at once means that
checkpoint is not an appropriate solution when a small
change is made to a large object; a logging facility would
be more useful in such a case.

It may take as long as a second to perform a
checkpoint operation s . Most of the blame for this can be
attributed to our prototyping environment: updating the
disk atomically is not something for which the UNIX file
system is particularly well adapted. Indeed, in our initial
implementation under Berkeley 4.1 UNIX, it was
impossible. Berkeley 4.2 UNIX provides an atomic
rename system call and an operation that flushes the disk
cache for a particular file; these enable us to achieve
atomicity, but it remains very expensive. Over eighty per
cent of the CPU time of a checkpointing object is
consumed by five UNIX file system calls - and that does
not include the write calls! The overhead is in opening,
creating, and especially in linking and unlinking files in
the directory system. Similarly, over seventy per cent of
the time spent by the kernel process at the checksite is
consumed by link, unllnk, and open. Database
implernentors often have similar experiences with the
services of conventional operating systems, which turn out
either to do the wrong thing, or to have severe
performance problems [28].

Another way of looking at the deficiencies of our
checkpoint operation is to say that it hides the power of the

s If the amount of data is small (less than a few kilobytes), the
time taken for a checkpoint operation is more or less independent
of the size of the data.

disk. Object programmers know that disks are capable of
random access, and they resent being forced to treat the
disk as ff it were a magnetic tape. If the file is organised
as a list of pages, then a small atomic change can be made
simply by creating replacements for a few pages in the file
and changing some of the page references in the index. In
other words, the disk is capable of atomically changing a
small part of a large file, but we do not take advantage of
it. 6

One other attribute of the checkpoint operation comes
partially to our aid: it is private. By this we mean that only
the object that checkpoints data can read it. It would be
quite possible for Eden to provide more than one kind of
operation that writes to stable storage. For example, in
addition to our current "write everything" form of
checkpointing, one could also provide a "logging"
checkpoint that atomically adds records to the end of a log
file. If an object used a combination of these two methods
to maintain its data on stable storage, this complexity
would be hidden from the clients of that object. One could
envisage several alternative checkpoint implementations,
rather like the provision of many access methods in
conventional operating systems. But because of the
encapsulation provided by Eden objects, this proliferation
of methods would not be visible at the interfaces between
objects. In contrast, for example, it would not be feasible
for Eden to provide several different kinds of invocation.

3.4. Project Organisa t ion

The previous sections have described some of the
technical lessons of Eden; this section is concerned with
project management and implementation rather than with
research issues. Managing a large project is generally
recognised to be difficult, and we do not make any claim
to be experts. However, we feel that the sub-headings
below capture experiences that are interesting and useful
to other system builders.

3.4.1. Separate Research from Development

The first major lesson is that one should decide what
research one wants to do and to concentrate on doing it;
other research problems met along the way should be
scrupulously avoided, however interesting they may be.
This may sound rather obvious, but in practice it is easy to
dissipate a limited amount of manpower amongst too
many projects, or worse still, to have one piece of research
depend on the successful outcome of another piece of
research.

One of Eden's early mistakes was to base the
development of its prototype machines on research being
performed by the Intel Corporation on the iAPX-432

e Many of these problems could be avoided by using the raw
disk, rather than the UNIX file system, to implement checkpoint.
But this in turn would cause problems in the implementation of
object creation, when it is necessary to execute cheekpointed
data.

189

object-oriented processor. I suspect that neither we nor
Intel realised that the 432 represented research rather than
development. In relrospect, the non-performance of the
432 may have been fortunate: we were sometimes tempted
to take advantage of some enticing feature of the 432's
architecture to improve the functionality of Eden, and in so
doing we were sacrificing portability for efficiency, a
premature optimisation. In fact we have recovered well
from the non-delivery of the 432, but it probably cost us
nine months or more in lost momentum.

One place where we have learned and applied this
lesson is in the area of the Eden programming language.
After using the Newark prototype, it became clear that
some programming language support was necessary to
achieve our goal of making distributed programming easy.
We made a conscious decision to avoid language design
research by choosing an existing language and adding a
minimal set of distribution dependent features. Of course,
no existing language was entirely suitable. In the end we
chose Concurrent Euclid, which was available on a large
range of machines and had very good reports from users in
industry and academia, but lacked debugging facilities,
commercial support 7, and some basic language facilities
like union types, procedures as arguments, and garbage
collection.

In some places our goal of rninimising changes to
Concurrent Euclid and to its implementation has adversely
affected the programmer's view of EPL. For example, the
EPL programmer must explicitly enumerate those data
structures that he wishes to checkpoint, and must explicitly
manage the capability table to ensure that unused
capabilities are purged. However, because of our limited
objectives, we were able to implement EPL rapidly
without diverting a large number of people from the
implementation of Eden itself.

As a result of these compromises we were able to
produce a language and an implementation that have been
used heavily by Eden programmers. While EPL has its
deficiencies, we now have a much better idea of the way
programmers actually u s e a language in a distributed
environment. Some of the things we originally regarded
as research issues turn out to be unimportant, and some
necessary features that we had not previously considered
have been brought to our attention. Having gained this
experience, we are in a much better position to do research
in language design for distributed systems than we were at
the inception of the Eden project. This is indeed
something that we are now starting to do. However, over
the last three years we have been free to concentrate our
attention on the systems aspects of Eden.

7 Concurrent Euclid is distributed by the University of Toronto.
Although they were not committed to support the compiler, the
response to bug reports was always fast and helpful.

3.4.2. Don't Hide Power

A now famous lesson listed by Butler Lampson [19] is
"Don't hide power", and I don't think we did, although
this lesson sometimes conflicts with the principles of
information hiding and good modular structure.

The Eden kernel provides an asynchronous invocation
interface, in which a message is sent and the sender is free
to continue processing; the sender will receive an
interrupt when the reply arrives. However, the interface
that is normally used by a programmer is synchronous:
each invocation looks like a procedure call, and the
invoking process is blocked until the invocation
completes. To make this model feasible, multiple
processes are provided within each object. The
synchronous interface is implemented out of the
asynchronous one by a module called the Dispatcher,
which consists of a process that waits for invocation
messages and a monitor containing queues of waiting
processes.

It was suggested to us during the design of the current
implementation that perhaps we should hide the
asynchronous interface and present a programmer with
just the synchronous procedure-call interface. This of
course would give us more freedom for reimplementing
the underlying Eden kernel. In a production system this
might be the fight thing to do; however, in a prototype
system like Eden, we thought it best to expose the details
of the implementation so that programs could take
advantage of them. As mentioned above, the
asynchronous interface has rarely been used, and it would
be reasonable to hide it in a reimplementation of Eden.

In contrast, there are quite a number of places where
UNiX does hide power, and this has caused us a certain
amount of grief. One of these places has already been
alluded to above: the hiding of the page index in the UNIX
file system, which makes the atomic checkpoint of a large
file unnecessarily expensive. UNIX also hides the
hardware page map and dirty bits, which would otherwise
provide a most appropriate mechanism for automating the
selection of the appropriate pages to checkpoint. Another
example of power hiding occurs in the interprocess
communication system of Berkeley 4.2 UNIX.

Eden was initially implemented on Berkeley 4.1 UNIX,
which provides no real intetprocess communication
facilities. In order to build Eden, we adopted the UNIX
implementation of Accent IPC [26]. This mechanism is
restricted to a single machine, and is thus able to notify the
caller if a message cannot be delivered because of
congestion. In the absence of such notification the sender
can be sure that the message will be delivered.

The interprocess communication system of Berkeley
4.2 UNIX works both locally and remotely. Because of the
unreliability of the network, remote messages may be lost;
because the IPC interface attempts to hide the difference
between the ,local and remote cases, the message
primitives do not guarantee delivery in either case. In
other words, even in the local case, UNIX does not tell the

190

caller whether an IPC message has been delivered.

Our prototype of Eden uses IPC messages to
implement what would be simple kernel calls in a
production system. By "kernel calls" we mean requests
for service made from an Eden object to its Eden kernel,
which is always on the same machine; examples are
asking for the time of day, sending an invocation, or
performing a checkpoint. These requests must be reliable,
and yet the UNIX 4.2 IPC primitives are inherently
unreliable. This is a clear example of hidden power: the
UNIX kernel knows whether a local message can or cannot
be delivered, but it refuses to tell the client process. Our
solution here has been to incorporate the Accent IPC
mechanism into our UNIX 4.2 kernel, and to use Accent
IPC for all Eden "kernel call" communication. An
alternative would be to layer an acknowledgement
protocol on top of the bare IPC primitives, but the
primitives are slow enough that this would be unrealistic.

3.4.3. Use Prototypes

As Fred Brooks said, when building a large system: "Plan
to throw one away; you will, anyhow" [9]. We feel that in
developing a system of the complexity of Eden it is
essential to build prototypes that one can freely throw
away• We learned a great deal from the Newark
prototype, and the current implementation of Eden is much
the better for it. Similarly, the current prototype built on
top of Ut, r~x has told us a lot about what is and what is not
important in a system like Eden. It is now coming to the
end of its useful life, in the sense that some of the
improvements that clearly are necessary (like the
checkpoint mechanism) need access to the machine at a
level lower than that allowed by UNIX.

The use of prototypes also helps to reconcile the need
to not hiding power with the need to hide information. In
the earliest prototypes one should feel free to expose
everything. Later, as one gets a better feeling for which
implementation details should not be exposed, one can
increase information hiding. A final production version of
the system can be fully, encapsulated.

3.4.4. Provide Migration Paths

It is easy to underestimate the amount of effort required to
produce a system that other people would want to use for
their daily work in the way they use UNIX or TOPS-20.
Lampson and Sturgis [18] have claimed that a kernel is ten
per cent of an operating system. We have created a lot
more in Eden than the kernel: a file system, a mail system,
a calendar system, a self-hosting compiler for our own
programming language, a terminal handier, a command
language and an interpreter for it. We are working on
debuggers and performance monitors, a transaction
system, replication facilities, load sharing tools and a more
sophisticated screen-based user interface. In other words,
we have built quite a number of the tools and utilities one
would expect to find in a complete operating system.
Nevertheless, we still have far fewer tools than one finds

in a system like UNIx that has been around for fifteen
years and has accumulated software from all over the
world. It was naive for us to expect that people would
clamour to use the Eden system in their daily work, even if
distribution was an important part of that work.

We have mitigated this problem in two ways. First,
building Eden on top of UNLX, despite the technical
problems that have been hinted at above, had the great
advantage of providing an easy path by which users could
migrate from UNIX to Eden. It also provided an
environment in which it was possible to use UNIX tools to
accomplish Eden tasks. As an example, at a time when
there were no Eden facilities for input from and output to
the terminal, it was possible to demonstrate the Eden mail
system by using the Emacs editor and a filter process to
compose a mail message [2]. Similarly, we have an
interface that allows one to use Emacs to edit Eden
ByteStores as easily s as UNIX files. Second, we actively
sought out researchers who could use Eden and gave them
positive encouragement and support to do their
experiments on it. This was in our own interest: without
applications, there can be no experience with the use of the
system. And as this paper has tried to show, there is no
substitute for experience.

4. Conclusion

We have discussed many of the lessons arising from our
experience with Eden, concentrating on those that relate to
design choices in distributed systems and to the
organisation and management of a large systems project.

Our most significant successes have been the use of
abstract object typing and the design of the Eden
programming language, which recognises the importance
of fightweight processes, concurrency control primitives
and parameter packaging for invocations. Neither abstract
typing nor language support for distribution axe unique to
Eden; the Xerox RPC system, for example, has both
programming language support (from Lupine) and a
notion of "interface" inherited from the Cedar/Mesa
language that is similar to an Abstract Edentype.
However, our formulation of these ideas in terms of an
object-oriented system seems to ~be novel, and presents
research opportunities that we inWnd to pursue.

Eden's fundamental idea of basing a distributed
architecture on objects has been adopted widely. The
basic concepts of our particular notion of Eden object -

• • , •

locatton independent mvocaUon, abstract typing, mobility
and encapsulation - have proven to be remarkably
powerful and flexible. Nevertheless, some parts of our
object model need modification. In this paper I have
discussed the need for better primitives for maintaining
state on stable storage and the problems with access rights
(see Sections 3.3.5 and 3.3.3), and have mentioned the
possibility of allowing multiple capabilities for a single

s As easily, but not as rapidly.

191

object (Section 3.3.4).

One question that in our view remains open is the
provision to be made for atomicity. Eden provides an
atomic checkpoint primitive, but does not provide a
general-purpose atomic action system. Thus,
programmers who so desire can build robust and secure
applications, but to do so they must construct their own
transaction mechanism. This is a different approach from
that taken by, for example, the Argus system [22] and the
Clouds system [1], where atomic actions are among the
basic building blocks provided at the system level. In the
Eden Calendar system, which contains its own support for
a particular kind of atomic action, we estimate that about
ten per cent of the code is concerned with maintaining the
consistency of the distributed database of calendars. On
one hand, this is not a lot; on the other hand, the
transaction code is probably some of the most complicated
in the application. And yet, because transactions are built
as part of the calendar system, we are able to take
advantage of the semantics of the calendar and event
objects so as to reduce the number of writes to stable
storage, compared to the number that would be required
by a general purpose transaction system.

An obvious remaining question is where the Eden
project goes from here. We do not currently plan to re-
implement Eden on a bare machine; the cost of doing so
would be high, and the payoff in terms of new knowledge
about supporting distributed applications would be low.
Of course, it would be pleasant to have a "real"
implementation of Eden that could be used for our daily
work, but building one is probably a task for a company
rather than a university.

We do plan to continue with our experiments in load
sharing, repfication, transactions, concurrency control,
graphical interfaces, distributed programming languages,
type checking and checkpointing. Some of the personnel
involved with these projects are using the Eden system as
it now exists, some and are making experimental
modifications (for example to allow a limited form of
replication), and one group is constructing a new
distributed system [8] whose initial prototype is based on
parts of the Eden implementation.

5. Acknowledgements

Over fifty faculty, staff and students contributed to Eden
during its evolution. It is impractical to acknowledge the
contributions of these people individually, but collectively
they have been responsible for creating and using the Eden
system, and thus providing the experience that this paper
has tried to capture. Jan Sanislo deserves especial mention
for overseeing the maintenance and improvement of the
Eden implementation. Dick Watson provided constructive
criticism of a previous version of this paper. Guy Alines
and Ed Lazowska shared in and discussed some of the
experiences mentioned herein; nevertheless, responsibility
for the opinions expressed in this paper rests with the
author.

References
[1] Allchin, J.E. andMcKendry, M.S. "Synchruulzationand

Recovery of Act/ons". Proc. 2nd Syrup. Princ~les Distri.
bated Computing, August 1983, pp31-44.

[2] Alines, G. T., Black, A. P., Bunge, C. and Wiebe, D.
"FAmas: A Locally Distributed Mail System". Procs 7th
Int' l C onf S oftw. Eng., March 1984, pp56-66.

[3] Almes, G. T. and Holman, C. "Edmas: An Object-
Oriented, Locally Distributed Mail System". Technical
Report 84-08-03, University of Washington, Department of
Computer Science, August 1984.

Almes, G. T., Black, A. P., Lazowska, E. D. and Noe, J. D.
"The Eden System: A Techoical Review". IEEE Trans.
on Software Eng. SE-II, Nr I (January 1985), pp43-59.

Birrell, A. D. and Nelson, B. J. "lmplementin 8 Remote
Procedure Calls". Trans. Computer Systems 2, Nr 1
(February 1984), pp39-59. Presented at 9th ACM Syrup.
on Operating System Prin..

Black, A. P. "An Asymmetric Stream Communication
System". Proc. 9th ACM Syrup. on Operating $yston
Prin., October 1983, pp4-10.

Black, A. P., Brewer, J. P. and Korry, R. "The Abslract
Type STREAM in Eden". Eden Project Internal Docu-
ment, University of Washington, Computer Science Dept,
Seattle, WA, July 1984.

Black, A. P., Hutchinson, N., Jul, E., Levy, H. M. and Car-
ter, L. "Distribution and Abstrazt Types in Emerald".
Technical Report 85-08-05, University of Washington,
Computer Science Dept, August 1985.

Brooks, F.PJr. The Mythical Man-Month, Essays on
Software En&ineerin&. Addison-Wesley, 1975.

Bmwnbridge, D. R., Mal'shaII, L. F. and Randeli, B. "The
Newcastle Connection, or Unixes of the World Uniter".
Software--Practice & F..vperie.nce 12 (1982), pp1147-
1162.

Gifford, D. K. "Weighted Voting for Replicated Data".
Pro¢. 7th ACM Syrup. on Operatln& System Prin.,
December 1979, pp 150-159.

Goldberg, A. and Robson, D. Smalltalk-80: The
Lan&ua&e and/is Imp/onentat/on. Addison-Wesley, May
1983.

Holman, C. and Almes, G.T. "The Eden Shared Calendar
System". Tech. Rep. 85.05-02, University of Washington,
Computer Science Dept, May 1985.

Holt, R. C. "A Short Introduction to Concurrent Euclid".
$1GPLAN Notices 17, Nr 5 (May 1982), pp60-79.

Holt, R. C. Concurrent Euclid, The Uniz System, and
Tun/s. Addison-Wesiey, 1983.

Ingalls, D. "The Srnalltalk-76 prugramming System".
Conj~ Rec 5th ACM Syrup. on P r k of Pro&. Lan$., January
1978, pp9-16.

[4]

[51

[6]

[7]

[s]

[9]

[lO]

[11]

[12]

[13]

[14]

[15]

[16]

192

[17] Jones, M. B., Rashid, R. F. and Thompson, M.R. "Match-
maker: An Interface Specification Language for Distri-
buted Processing". Conf Rec. 12th ACM Syrup. on Prin.
of Prog. Long., January 1985, pp225-235.

[18] Lampson, B. W. and Sturgis, H. E. "Reflections on an
Operating System Design". Comm. ACM 19, Nr 5 (May
1976), pp251-265.

[19] Lampson, B. W. "Hints for Computer System Design".
Proc. 9th ACM Syrup. on Operating System Prin., October
1983, pp33-48.

[20] Lazowska, E., Levy, H., Alines, G., Fischer, M., Fowler,
R. and Vestal, S. "The Architecture of the Eden System".
Proe. 8th ACM Syrup. on Operating System Prin.,
December 1981, pp 148-159.

[21] Leach, P. J., Levine, P. H., Douros, B. P., Hamilton, J. A.,
Nelson, D. L. and Stumpf, B. L. "The Architecture of an
Integrated Local Network". IEEE J. Selected Areas Com-
,umications SAC-l, Nr 5 (November 1983), pp842-857.

[22] Liskov, B. and Scheiffer, R. "Guardians and Actions:
Linguistic Support for Robust, Distributed Programs".
Conf Rec. 9th ACM Syrup. on Prin. of Prog. Lang., 1982.

[23] Needham, R. Quoted on p 279 of [31].

[24] PoweU, M. L. and Miller, B. P. "Process Migration in
DEMos/MP". Proc. 9th ACM Syrup. on Operating System
Prin., October 1983, pp 1 lO-119.

[25] Pu, C., Noe, J. and Proudfoot, A. "Regeneration of Repli-
cated Objects: A Technique for Increased Availability".
Tech. Rep. 85-04-02, University of Washington, Computer
Science Dept, April 1985.

[26] Rashid, R. F. "An Inter-process Communication Facility
for Unix". CMU-CS-80-124, Computer Science Dept,
Carnegie-MeUon University, Pittsburgh, PA, February
1980.

[27] Rashid, R. F. and Robertson, G.G. "Accent: A communi-
cation oriented network operating system kernel". Proc.
8th ACM Syrup. on Operating System Prin., December
1981, pp64-75.

[28] Stonebraker, M. "Operating System Support for Database
Management". Comm. of the ACM 24, Nr 7 (July 1981),
pp412-418.

[29] Walker, B., Popek, G., English, R., Kline, C. andThiel, G.
"The LOCUS Distributed Operating System". Proc. 9th
ACM Syrup. on Operating System Prin., October 1983,
pp49-70.

[30] Wulf, W., Levin, R. and Pierson, C. "Overview of the
Hydra Operating System Developement". Proc. 5th ACM
Syrup. on Operating System Prin., 1975. Austin, TX.

[31] Wulf; W. A., Levin, R. and Harbison, S. P.
HYDRAIC.mmp: An Experimental Computer System.
McGraw-Hill, 1981.

193

