Edmas: A Locally Distributed Mail System

Guy Almes, Andrew Black, Carl Bunje and Douglas Wiebe

Department of Computer Science
University of Washington
Seattle, Washington 98193

Abstract

The Eden Project is a five-year effort to design. build
and test operating system structures for local area
networks. A specific goal is to allow users to obtain the
advantages of both physical distribution and logical in-
tegration. Since Eden is physically distributed, its
users can take advantage of personal workstations.
Since Eden is logically integrated, system resources
can be named and accessed in a location independent
way.

Edmas, the Eden mail system, was designed to be an
early test of Eden's usefulness. This paper describes
the design and implementation of Edmas, and presents
several of the lessons we have learned about construct-
ing location independent services and about the design
of mail systems.

1. Introduction

The Eden Project is a five-year effort to design, build
and test operating system structures for local area
networks [1, 2, 9]. A specific goal is to allow users to
obtain the advantages of both physical distribution and
logical integration. Since Eden is physically dis-
tributed, its users can take advantage of personal
workstations. Since Eden is logically integrated, sys-
tem resources can be named and accessed in a location

independent way.

The Fden Mail System, or Edmas, is an early attempt
to test Eden as a platform for building locally dis-
tributed applications.2 In undertaking our work on Ed-
mas, we adopted three goals:

. We wanted to determine whether Eden could be

1Eden is supported in part by the National Science Foundation
under Grant No. MCS-8004111. Computing equipment and technical
support for Eden are provided in part under a cooperative research
agreement with Digital Equipment Corporation.

2By “locally distributed”, we refer to applications that are dis-

tributed across a local area network. -We specifically do not address
applications that span long-haul networks or “internets'.

0270-5257/84/0000/0056801.00©1984 IEEE

56

used to build distributed applications in a short
amount of time.

.We also wanted to find out whether Eden would
encourage the clean structuring of these applica-
tions.

. Finally, we hoped that, in the course of building
Edmas, we would be able to use Eden to learn
some things about the structuring of mail sys-
tems.

This paper reports positively in all three areas.

The paper begins by providing a brief description of
the tools Eden provides for application designers, and
shows that the Eden kernel and the Eden Programming
Language (EPL) combine to allow the application desig-
ner to work at a high level. We then present the Edmas
design, stressing the clean approach Eden allows for
the transport/storage portion of the system. A discus-
sion of the implemeniation shows how the high-level
design was mapped onto EPL routines. Finally, a
separate section is devoted to reflecting on the insights
gained about Eden, distributed system design, and mail
system design.

2. An Overview of the Eden System

The basic unit of system construction in Eden is the
Fject (for Eden object). An Eden application consists of
a collection of Ejects; the mail system that forms the
subject of this paper is built from Ejects which
represent directories, mail boxes and mail messages.

In this paper we are concerned with the view of Eden
seen by a programmer creating an application in Eden;
this interface is an “Eden virtual machine" provided by
the Eden Programming Language (EPL) [10]. EPLis a
superset of Concurrent Euclid [7,8); the additional
functionality is provided at various levels. At the top,
there are a few grammatical constructions in EPL

e

S s e

which do not appear in Concurrent Euclid; these are
implemented by means of a preprocessor and two
source code generators. At the next level is quite a
large library of subroutines that are called by the
preprocessor outpui; underneath that is the Eden ker-
nel itself [3]. Ejects and the Eden kernel itself are
separate processes on our host operating system; Eden
“system calls" are implemented as a pair of inter-
process messages exchanged between a library routine
in the Eject and the kernel. Supporting the Eden ker-
nel is the Unix® operating system, and under that a
network of VAX-11/750 and VAX-11/730% processors.

From the point of view of the applications program-
mer, Eden has the following characteristics.

.Each Eject has a unique identifier. In order for
one Eject to communicate with another, the Eject
initiating the communication must have a
capability for the respondent. This capability
contains both the unique icentifier of the respon-
dent and a set of access rights. The integrity of
capabilities is guaranteed by the system; neither
rights nor identifiers can be forged. Possession
of a capability for an Eject does not imply any
knowledge of its location within the Eden system.

Ejects may receive and reply to invocations from
other Ejects. The EPL code of an Eject defines
and exports a number of invocation procedures
which may be called from other Ejects. For ex-
ample, if msy is a capability for a MailMsg Eject,
and if MailMsgs define the invocation procedure
named Deliver, then another Eject may make the
invocation msg. Deliver(<parameter list>).

Each Eject has a concrete type. that is, a code
segment that defines the set of invocations to
which the Eject will respond. Eden types are con-
ceptually similar to the collection of methods
that make up a Smalltalk Class. The type-code of
an Eject is actually a complete EPL program.

Each Eject also has a data part: this corresponds
to the set of variables and data structures
defined by the type-code. The data part contains
two kinds of data structures. Some make up the
“long term state”, the set of values maintained
between invocations that defines the state of the
Eject. Others, such as the local variables and
parameters of invocations, are genereally not sig-
nificant between invocations and are called the
“short term state".

.Each Eject typically consists of a number of
processes which communicate wie monitors [6].
When one process invokes another Eject, it blocks
until the invocation completes, but the other
processes within the Eject may continue to run.
Ejects may be thought of as active at all times; in
addition to processes that respond to invocations
and processes that make invocations of other

3Unix is a trademark of Bell Laboratories.

4V)x is a trademark of Digital Equipment Corporation.

57

Ejects, an Eject may contain processes that per-
form internal housekeeping operations. This
contrasts with Smalltalk, where sending a mes-
sage transfers control to the receiver, and reply-
ing to a message causes the receiver to quiesce.

An Eject may perform a Checkpoint operation.
The effect of Checkpointing is to create a Passive
Representation, & dala structure designed to en-
dure system crashes. The data in a passive
representation should be sufficient to enable the
Eject they represent to re-construct its long term
state. The checkpoint primitive is the only
mechanism provided by the Eden kernel whereby
an Eject may access permanent storage, Le. the
disk.

In practice, Ejects are not always active, either
because they {or their computers) have crashed,
or because they have explicitly deactivated them-
selves in order to economize on the use of system
resources. However, if a passive checkpointed
Bject is sent an invocation, it will be activated
automatically by the Eden kernel. When an Eject
is so activated it will normally attempt to read its
Passive Representation to put its internal data
structures into a consistent state.

3. Hail System Design

Electronic Mail Systems may be divided into two
parts. One is the interface seen by the user who sends
and reads mail. The other is the transport and storage
system that actually moves the messages around the
system.

Any complete mail system must, of course, include
both parts.
(Edmas) is innovative in the way in which it provides

The Eden demonstration mail system

the transport and storage layer. We were eager to con-
centrate our efforts in this area because the problems
encountered there are those directly addressed by
Eden. In contrast, the user interface of Edmas is a low-
cost adaptation of an existing Unix utility. This is be-
cause the prototype implementation of Eden on which
the mail system was built did not include any facilities
at all for communicating with a user terminal. Input
and output had to be performed by “escaping” to the
Unix system call interface.

3.1. Mail Transport and Storage

In most electronic mail systems, mail messages are
implemented as a sequence of characters. Each mes-
sage is either a text file or a segment of a larger file. In
fact, messages do have an internal structure; there ig a
Fromn field, a To field, a Subject field and so on. An
Eject of type MailMsg implements this abstraction.

An Edmas MailBoz is modelled on the receptacle at
the end of an American driveway; mail is delivered to it

and stays there until the owner picks it up. It does not
atternpt to be a filing system for old mail messages; we
view this as a separate utility (and part of the user
interface).

Both MailBoxes and MailMsgs are Ejects, and are thus
referred to by capabilities. In particular, the 7o and
From fields of a MailMsg are most naturally thought of
as capabilities for MailBoxes. Because capabilities can-
not be typed at a terminal, the user interface must
provide some other way of referring to them. The
mechanism we chose was the (already existing) type
Directory, which implements a mapping from strings to
capabilities.

Because capabilities refer to Ejects in a location in-
dependent way, and any Eject can be invoked by any
other, regardless of their physical locations, there is no
explicit transport mechanism in Edmas. We will now
describe the principal Edmas types in a little more

detail.

The MailMsg Eject

The MailMsg Eject implements & single mail message.
Jts long term state comprises the capability for the
MailBox of the creator of the message (conceptually,
the From field), a list of capabilities for the addressees’
MailBoxes (the To field), a subject description string
(the Subject field) and a message text string (the Text
field). There is no need to explicitly record the date
and time at which the message was sent because the
date of creation of the MailMsg eject itself serves this

purpose.’

Set and Append invocations allow calling Ejects to
compose the message by initializing the various con-
ceptual fields. Get invocations allow retrieval of these
fields. The end of the composition process i3 indicated
by the Deliver invocation, which has two effects. First,
the MailMsg freezes itself, meaning that any further re-
quests to alter the fields will be refused. Secondly, the
MailMsg attempts to deliver itself to all the MailBoxes.

The MailBox Eject

The MailBox Eject need not contain copies of unread
messages, merely capabilities for them. Its long term
state contains a queue of MailMsg capabilities in order
of delivery. Each Eden user has a personal MailBox to
which capabilities for incoming MailMsgs are delivered.

5Given a capability for any Eject, the Eden kernel will provide its
creation time on request.

58

The MailBoz. Deliver invocation places an incoming
MailMsg capability in the queue. MailBoxes allow their
owner to retrieve the oldest MailMsg capability using
the operation Pickup. A separate operation Remove is
used to remove a MailMsg capability from the MailBox.

MailBoxes also maintain a "printable’ name for their
owners, and two Eden time stamps, one marking the
last time that a MailMsg was delivered to the MailBox
and the other the last time that a MailMsg was picked
up or removed from the MailBox. Invocations allow
calling Ejects to set the value of the name field and to
retrieve the name, time stamps and a count of the
The printable
name is used to construct the Prom and To fields when
messages are displayed to the user.

number of messages in the MailBox.

Only DeliverRts are needed to deliver a message to a
MailBox; ordinarily, capabilities for MailBoxes with
DeliverRts would be available in a public directory. In
order to pick up mail and remove mail, Pickupkts are
needed; ordinarily, the owner of a MailBox would retain
these rights. Setting the name of a MailBox requires
administrator rights; this is to prevent the owner of the

MailBox from impersonating someone else.

3.2. User Interface

From the above descriptions, the “natural” interface
to the mail system ejects is a set of invocations. Given
a command language interpreter that permitted the
user to create and invoke Ejects, mail messages could
be sent without further work.

There are two problems with such an interface.
First, it is very inconvenient; an editor-like interface is
much easier to use. Secondly, at the time that Edmas
was written, there was no command language inter-
preter for Eden.

The solution we adopted was to build editor inter-
faces to send and receive mail, and a special purpose
command interpreter (the MailBoz Manaoger) to create
MailBoxes and enter them in the mail box directory.
The editor interfaces are built on top of the Unix
Emacs editor [4], which provides some quite general
mechanism for starting Unix processes and sending
them input collected from the editor's buffers. Of
course, Emacs is incapable: of making invocations, so
two very primitive command language interpreter
Ejects were built. We call these Ejects interfaces not
because they are the part of Edmas seen by the user
(they are not) but because they interface Eden to Unix.
They accept Unix standard input, perform the ap-

NE——

¢ e A B T

propriate Eden invocations, and then generate Unix

standard output.

The Send Mnterface accepts a sequence of characters
its action is to
The
the
ized by these interfaces are very

which describe the fields of a message;
create the message and tell it to deliver itself.
[nterface

“languages’’ recogn

Receive works similarly. Because

simple, and because the editor macros ensure that
their inputs are syntactically correct, the interfaces

are simple Ejects.

3.3. A Session with Edmas

In order to clarify the way the various pieces of the
mail system fit together, this section outlines the way
Edmas is actually used.

Suppose that Carl Bunje wishes to send mail to Doug
Wiebe. he
edmas-send-mail by touching the appropriate key. A

Within Emacs, calls the editor macro

window appears on his screen which contains blank To
e of the

locates

and Subject fields. At the same time, an instanc
Send Interface Eject
capability for Bunje's

is created which a

own MailBox. Bunje composes his

satisfied with the content of the message, he touches
the send key on his terminal; this causes the text of the
message to be piped to the Send Interface, and the win-
dow containing the message to disappear.

The Send Interface takes each name in the To field
and looks it up in the mail box directory. In our case
there is only one name, wiebe. Providing all the names
are found, Send fnterface creates a new MailMsg Eject
and sets the various fields appropriately. If any name
is not found, Send fterface does not create a message;
it outputs a warning which is returned to the user in a

Send Errors window of the editor.

The situation is now as shown in Figure 3-1. Each
solid-headed the
capability. A is the capability held by the send inter-
b, is the
capability for Bunje's own MailBox held by the Send

arrow in figures represents a

face for the mail message it has created.
mnterface, and B, is the same capability once it has

C, is the Send
Interface’s capability for the mail box directory,

been installed in the mail message.

wherein it looks up wigbe to obtain Coi @ capability for
Wiebe's MailBox. This is installed in the message as Cy.

MAIL BOX DIRECTORY
"bunje’
R o — S Bz 4
g EMACS
MAIL BOX N j SEND INTERFACE - -
‘Carl Bunje' B "0 CurrentMessage S(\)ibjié’éi: ZEDMAS
LastRead: G =) SendersMailBox
C LastWritten: MailBoxDirectory
Al i

MAIL BOX Cs MAIL MESSAGE
'‘Doug Wiebe’ =0 To:
LastRead: M0 From:
LastWritten: @ . Subject: 'EDMAS’
OldestMessage QOspomzs Text: "..text.. '

Figure 3-1: A MailMsg being Delivered

message, filling in the To field with Doug Wiebe's lookup
name, i.e. the name under which Wiebe's MailBox is en-

tered in the mail box directory.® When Bunje is

80ur convention is to use Unix login names for this
there is nothing that prevents the same
once in thne mail box directory, and
iookup name.

purpose, but
MailBox appearing more than
thus having more than one

59

Once the message has been created, the Send
Interface invokes A, Deliver. This causes the message to
invoke Deliver on each of the MailBoxes in its To field;
in this case, just Cg. Deliver. This invocation gives
Wiebe's MailBox capability D in Figure 3-1: mail delivery

is comnplete.

MAIL BOX MAIL MESSAGE

‘Doug Wiebe’ < QO To:

LastRead: -0 From:

LastWritten: | subject: mDMAS’

OldestMessage © ${ Text: ".text..’

A Ky ;
‘ EMACS

MAIL BOX RECEIVE INTERFACE

. R ; Mail for Doug Wiebe

Carl Bunje - . Mail last arrived ...

LastRead: () RecipientsMailBox Mail last read ...

LastWritten:

Figure 3-2: A MailBox Show Occurs

At some later time Doug Wiebe calls the editor macro FReceive Interface to pickup and remove the oldest mes-
edmas-pickup-mail. This creates an instance of the sage from his MailBox. This is represented by
Receive Interface, which obtains a capability for Wiebe's capability 4, in Figure 3-3, which becomes A, when it is
own MailBox with PickupRts (capability 4 in Figure 3-2). returned to the Receive Rhierface. The Receive
Emacs asks it to performs a Show invocation on the Interface then invokes A4 to obtain the fields of the
MailBox, and displays the results in a window. message, and pipes the resulting text to Emacs, which

displays it in a window. Note that the name in the from

Wiebe sees that he has new mail, and touches the field is the print name of Bunje's MailBox (obtained by
pickup key on his terminal. Emacs requests the invocation via BJ), not Bunje's lookup name.

MAIL BOX Ba HAIL MESSAGE
'Doug Wiebe' Grommswmms Q) To:
LastRead: @ =0 From:
LastWritten: Subject: 'EDMAS’
OldestMessage O= Text: "..tezt..'
At
Bi ¢
e EMACS
BO i IVE J I":
, . BECK INTERFACH Date: 15 March 1984 \
Carl Bunje CurrentMessage From : Carl Bunje
LastRead: O RecipientsMailBox To: Doug Wiebe
LastWritten: - Subject: EDMAS
text...

Figure 3-3: A MailBox Pickup Occurs

4. Mail System Implementation

In this section, we will describe how the Edmas
design was translated into a working system. We first
set the context for the implementation effort, then ex-
plore one of the five Eden types in detail to give the
reader a feel for what programming in Eden is like.
Finally, we discuss issues of productivity and bug his-

tories.

4.1. Context

During the first week of May 1983, two of us?
developed the design to the point where we felt that we
could turn it over to the implement,ors.6 In addition to
discussions of the design ideas, we were able to use two
more formal tools for conveying the design:

.a context-free description of the language ac-
cepted by the interface types, and

. an EPL module that defined the syntax of the in-
vocations to be implemented by the MailBox and
MailMsg types.

4.2. Implementing the HailBox Type

In this section we will carefully examine the im-
plementation of the MailBox type, one of the five types
produced for Edmas. Particular attention will be paid
to the use of processes and monitors at the language
level, and to the extensions to Concurrent Euclid
provided by EPL. The reader may want to refer to Sec-
tion 3.1 for specific aspects of the MailBox design.

Specifying an Invocation

The specification for the MailBox type included a
description of the invocations available to users of the
type. One of these is Pickup, whose specification is
shown in Figure 4-1. The syntactic construct of the in-
vocation procedure is an EPL feature not present in
Concurrent Euclid. In every invocation procedure, the
first (in) parameter is the set of access rights to the
MailBox provided by the invoker; these can be checked
by the MailBox to verify that the invoker is allowed to
perform the invocation. Similarly, the final {out)
parameter of each invocation procedure is a status to
be returned to the invoker; one example of an error
status that applies to all invocations is the
InsufficientRights status. The more interesting
parameters are VWasPresent and Missive, (out)
parameters through which the MailBox communicates
to the invoker whether an unread MailMsg was present

7GA and A8,

8¢3 and DW.

and, if so, a capability for one.

invecation procedure PickUp(
CallersRights : EdenRights,
var WasPresent : Boolean,
var Missive : Capability for MailMsg,
var Status : EdenStatus) =
external
{ Requires: Pick Up Ris.

Effect: If @ MailMsg is in the boz, then the oldest one is
returned to the caller along with @ trus WasPresent.

If no MailMsg is present, then ¢ false FesPresent velue und @
null Missive are returned.

Fn, either case, the LastRead time stamp is updated.

Special Error Statuses: none. {

Figure 4-1: Specification of the Pickup Operation

Representation

Together with specifying the set of operations to be
supported, the designer describes the abstract long
term state of the MailBox. Two parts of the state of a
MailBox that relate to the Pickup invocation are the
queue of (capabilities for) unread MailMsgs and the
tirme stamp of the most recent Pickup operation.

Recall that an Eject's long term state takes on two
forms: the data part of the executing Eject, and a pas-
sive representation for use in checkpointing to per-
manent storage. For both of these forms, the time
stamp of the most recent Pickup is implemented as the
kernel-defined type Kernel. Timestamp.

The queue of capabilities for unread MailMsgs,
however, is implemented differently in the two forms.
In the active representation of a MailBox, the queue is
implemented as a doubly linked list of records; each
record contains a capability for a single MailMsg. In
the passive representation of a MailBox, the queue of
MailMsgs is implemented as a contiguous sequence of
records. This use of different concrete structures has
two particular advantages:

. The active representation of the queue makes in-
sertions and deletions efficient, while the passive
representation conserves on storage space.

.The passive representation is very robust with
respect to likely changes in the implementation
of the MailBox type. Consequently, new versions
of the MailBox type code can be installed, even if
the new version differs from the old version in
the concrete structures used for the active
representation. This avoids the replugging dif-
ficulties described by Goullon et al. [5].

B R

[

Use of Processes and Monitors

Each active form in Eden executes within a single
operating-system-level process with a conventional ad-
dress space. The Concurrent Euclid language, however,
provides multiple language-level processes for use by
the programmer of Eden types. The MailBox type, for
example, has several processes, some of which respond
to invocations directed to the MailBox. This allows the
MailBox to continue to respond to incoming invocations
even if one invocation takes a long time or blocks on a
logical condition.

var TimeStamps : monitor
imports({ mods| var Kernel)
exports({ procs] UpdatePickup, GetPickup,
UpdateDelivery, GetDelivery, Checkpoint,
Restore, [nitialize)

var TimeOfLastPickup : Kernel.TimeStamp
var TimeOfLastDelivery : Kernel.TimeStamp

procedure UpdatePickup = ...

procedure GetPickup(var TS : Kernel.TimeStamp) = ...
procedure UpdateDelivery = ...

procedure GetDelivery(var TS: Kernel.TimeStamp) = ...
procedure Checkpoint = ...

procedure Restore = ...

procedure [nitialize = ...

end { TimeStamps{ monitor

Figure 4-2: Sketch of the MailBox Timestamp Monitor

In order to ensure that concurrent activity of these
multiple processes does not corrupt the represen-
tation, each part of a MailBox's representation is
protected by a monitor. More generally, each invariant
defined on the data part is protected by a monitor. As
a simple example, there is a monitor that surrounds
the declarations for the Timestamps used in a MailBox.
This monitor is sketched in Figure 4-2. In addition to
controlling concurrency, monitors function as modules.
Thus all knowledge of the concrete data structures
used to implement Timestamps is localized within this
monitor.

Implementing the Invocations

Once the Eject’s representation is defined with these
monitors, the invocations can be implemented
procedurally. In Figure 4-3, the Pickup invocation pro-
Since the MailMsg queue and time

stamps are implemented as separate monitors, the

cedure is shown.

code consists principally of checking the invoker's ac-
cess rights, then calling the appropriate monitor

procedures.

62

invocation procedure PickUp(
CallersRights : EdenRights,
var WasPresent : Boolean,
var Missive : Capability for MailMsg,
var Status : EdenStatus) =
imports({ mods] var Kernel, var StatusDefs,
{ mons{ var TimeStamps, var Messages)
begin
if (PickUpRts not in CallersRights) then
StatusDefs.SetStatusCode(Status,
StatusDefs.EPLInsufficientRights)
WasPresent := False
Kernel.CapaMakeNull(Missive)
else
TimeStamps.UpdatePickUp
Messages.GetOldestMessage(Missive, WasPresent)
end if
end PickUp

Figure 4-3: Implementation of the Pickup Invocation

4.3. Experiences in Implementing the Hail System

One of the most pleasing aspects of our experience
with the mail system was the consistent productivity
experienced during its construction. During a four-
week period, two students used a new system and a new
language to build a nontrivial application of moderate

size.

This productivity was achieved despite a very hostile
debugging environment caused by instabilities in the
new Eden kernel and undebugged Directory system. In
fact, in the two weeks between the first attempts to run
the mail system and the demonstration of the system
to outside reviewers, more time was spent using the
mail system to debug the kernel and the Directory sys-
tem than was used to debug the mail system itself.
Apart from the skill of the implementors, we feel there
are several reasons for this experience:

« Concurrent Euclid’'s strong typing caused many
bugs to be exposed at compile time.

.The EPL extensions to Concurrent FEuclid
provided linguistic support at precisely those
areas, such as operating system interfaces, where
most languages leave the programmer in an
error-prone situation.

« The interfaces between Eject types was precisely
specified at the syntactic level vie EPL. While the
semantics of these interfaces were described in
English, they were quite clean.

« There were very few places where the mail system
programmers had to circumvent misfeatures of
the Eden kernel or of EPL. The worst case of
such circumvention we did experience relates to
an invocation of the MailBox type which passes
Timestamps as parameters, Due to restrictions
on the types of parameters which can be passed
in EPL invocation procedures, these Timestamps
parameters had to be explicitly converted to/

from byte sequences. This was, however, the
worst case of kludgery required in the system.

5. Insights Gained

The Eden mail system is one of the first applications
to be built on the Eden system. We feel that it il-
lustrates a number of things about Eden, which will be
referred to under the following headings:

. Location Independence

. The Power of Capabilities
. Extensibility

. Programmability

5.1. Location Independence

Location independence was always one of the design
goals of Eden: a user need not know the location of an
Eject in order to use its services. In the context of the
Eden mail system, this means that the space of mail ad-
dresses is system-wide, that a user can read mail from
any computer in the Eden system, and that no distine-
tion is made at mail delivery time between local and

remote rnail.

Conventional electronic mail systems achieve some
of this functionality, but in less convenient ways. Mail
can be re-directed to a fixed site, but only by creating
a mail alias on every other machine in the network.
Mail can be read from a remote site only by performing
a remote login. Mail delivery typically requires the use
of many different programs which understand compli-
cated addressing schemes, know about the network
topology, and engage in conversations with remote

nodes.

In Eden, location-independence is achieved without
any effort on the part of the mail-system designers.
Nowhere in the code of the mail system is the existence
of the network even mentioned. As a consequence, the
size and complexity of the Eden mail system is much
less than that of a conventional network mail systerm, a
point we return to in Section 5.4.

5.2. Power of Capabilities

The use of capabilities is central to the Eden mail
system. The MailMsg itself is referred to by capability.
MailMsgs are addressed to capabilities, and contain the
capability of the sender. One of the conseguences of
this arrangement is that there must be a single registry
in which one can look up the capabilities for all the ad-
dressees mailboxes. Within our own local area network,
this is an advantage; it is certainly preferable to having

a mail re-direction file on every machine me::tioning

63

every user. In a larger network, the use of a single
registry would seem to be unworkable. On reflection,
however, one realises that although the registry is con-
ceptually a single service, it can be implemented as a
collection of communicating Ejects distributed across
the network, and using replication io achieve a high de-
gree of availability.

Within the mail system, the use of capabilities as ad-
dresses has several advantages over the strings used
for this purposes by conventional mail systems:

. There is no need to parse strings like To: Andrew
P. Black <black®uw-wally> in order to decide
what to do with a MailMsg.

.The translation from mnemonic names to
capabilities is performed by a directory lookup.
The directory is a perfectly ordinary Eden type
specialized for this task. It was actually designed
and built for use in the Eden file system, but its
function is so general and useful that we expect
it to be re-used in many applications.

.In order to reply to a MailMsg, one simply ex-
tracts the From field of the incoming MailMsg and
males it the To field of the reply. There is no
need to edit a string to add or remove environ-
ment dependencies.

Of course, these advantages apply only within Eden,
and if at some future time we wish to extend Edmas so
that it can be used to communicate with non-Eden
sites, say over the Arpanet or via uucp, some modifica-
tions would be necessary.

Because the MailMsg itself is uniquely identified by a
capability, the reply can contain a field called
In-reply-to that has as its value a Capability for the
original MailMsg. An Eden mail interface would typi-
cally enable the reader to ask to see the MailMsg
named by the fn-reply-to field; the implementation of
this mechanism would be independent of any directory
of old mail that the user might or might not keep.

Additionally, Eden capabilities provide protected ac-
cess rights, and Edmas benefits from this facility. As a
consequence, there are no places where Edmas needs
to exercise special privileges not available to other
Eden types. This contrasts with most mail systems,
where the protection needs of the mail system conflict
with the facilities provided by the underlying operating
system.

5.3. Extensibilily

We believe that the Eden mail system achieves a high
degree of modifiability and extensibility. Since it has
existed for only a few weeks, there has so far been no
opportunity to test this belief. Nevertheless, we feel

that there are convincing arguments on our side; as an
example, let us consider how mail distribution lists and
confidential mail could each be added to the Eden mail
system.

Distribution Lists

Let us hypothesize the addition of ancther type of
Eject to the mail system: let us call it a distribution list
type. One essential characteristic of a distribution list
is that mail can be addressed to it. Edmas uses direc-
tory lookup to perform the translation between the ad-
dresses that the user enters at the keyboard and the
capabilities that form the 7o field of the MailMsg.
Provided that the required distribution list is entered
in the MailBox directory under a suitable name, no
changes will be necessary to the MailMsg type or to the
user interface.

Another essential characteristic of a distribution list
is that mail can be delivered to it. In Edmas, this
means that it understands the invocation Deliver, and
respond appropriately. The appropriate response is, of
course, to Deliver the MailMsg to all the MailBoxes on
the list. In addition to Deliver, the distribution list
would respond to invocations for constructing and dis-
playing the persons on the list.

In essence, then, the role of a distribution list is two-
fold. From the point of view of a MailMsg, it has to sup-
port the MailBoz. Deliver invocation as would a MailBox.
From the point of view of a MailBox, it has to invoke
this MailBox. Deliver invocation as would a MailMsg.
Both of these things are easy to do because the only at-
tributes of an Eject that can be observed from outside
are whether a particular invocation is implemented,
and the results of employing it if it is.

One ground rule that has helped us to achieve this
sort of modularity is that the effect of an invocation
should not depend on the identity of the invoker. Al-
though invocation messages do contain a capability for
the invoker, we have adopted the convention that the
invokee should not look at it. A parallel may be drawn
with programming languages: the effect of a particular
procedure call should not depend on who makes it.
Even though the return address is on the execution
stack and could easily be accessed, procedural pro-
gramming languages do not provide a primitive to do
so. The semantics of procedure call would be greatly
complicated by such a provision.9

e do not take steps to conceal the capability of the Invoker,
however; the parallel with programming languages convinces us that
it may be very useful in debugging.

As a concrete example, the MailBoz. Deliver invoca-
tion requires as one of its arguments the capability for
the MailMsg which is to be inserted into the MailBox. In
the existing mail system the only Eject which makes
this invocation is the MailMsg itself; nevertheless, we
chose the general invocation in preference to a more
restricted DeliverMyself operation. Because of this, it
is easy for distribution lists to deliver MailMsgs to Mail-
Boxes.

Confidential Mail

Another possible extension, the provision of con-
fidential mail, makes use of the access rights fields in
Eden capabilities. As the mail system currently stands,
it is possible for a user ‘to give her secretary a
capability for her MailBox. This will enable the
secretary to read all of the user's mail. An attractive
extension would be for senders to be able to designate
certain MailMsgs as “confidential"; the secretary would
be able to read only the non-confidential MailMsgs.

Implementing this extension would involve:
1. Augmenting the send interface so that MailMsgs
can be marked as confidential;

2. Augmenting the MailMsg type to remember
whether or not it is confidential, up until the
time it delivers itself;

3. Adding an argument to MailBox.Deliver so that a
MailMsg can tell a MailBox whether or not it is
confidential;

4. Changing MailBox.Pickup so that it checks the
access rights of its invoker, and returns the
capability for a confidential MailMsg only if the
invoker has OwnerRts in addition to PickupRts.

This example illustrates how capabilities and access
rights help us to resolve the tension between
modularity and protection. In a modular system the ef-
fect of a particular operation depends only on its ar-
guments, and not on who makes the request;
modularity is essential if one hopes to be able to re-use
components. In a protected system only particular
users and/or programs are allowed to perform sen-
sitive operations. There is clearly a conflict between
these two desiderata; Eden (and other capability-based
systems) resolve it by putting all protection into the
part of the system which distributes capabi'ities, and
making all other cperations work for any caller with
sufficient rights.

5.4. Programmability

The final topic in this section is the programmability
of Eden. By this we mean the ease (or otherwise) with
which a complicated service can be built within the

Eden system. Our experience here has been very posi-
tive. Edmas was constructed over a period of four
weeks by two graduate students, who were also taking a
full load of courses. At the end of that time the system
was well-enough developed and stable enough to be
demonstrated to visitors from outside the department.
Neither of the students had previously been involved
with Eden,
familiarization with the system. Furthermore, Edmas
was one of the first applications to be constructed on

so this time includes the overhead of

top of Eden; as a result, many latent bugs in the Eden
system kernel were discovered during its development.
The resolution of these problems inevitably slowed
down development of the mail system itself.

It should also be mentioned that of the six types
which form part of the prototype mail system, only two
Of the others, one is
which was constructed as part of

have very much to do with mail!
the directory type,
the Eden file system.
purpose command language interpreters: one for in-

The other three are special-
voking directories and initializing MailBoxes, one for
creating MailMsgs, and one for invoking MailBoxes and
reading mail. Our plans for the further development of
Eden include the design and construction of a general
purpose command language interpreter; if this had ex-
isted at the time that the mail system was written, the
first of these (the MailBox Manager) would probably
never have been written. The send and receive inter-
faces that we have implemented, integrated as they are
with a text editor, are of course substantially better
than would be provided by a general purpose command
language. Nevertheless, the need to construct a com-
mand interface before the crudest prototype MailMsg
could even be tested hardly accelerated the develop-

ment of the system.

In spite of all these handicaps, the code of the mail
system types is well structured and readable: it was
sufficiently clear for us to distribute it to external
reviewers as an example of an Eden application
program. We feel that these early experiences tend to
vindicate our belief that the model of computation that
underlies Eden is simple enough to permit distributed
applications to be built easily. We also believe that it
possesses enough generality for the construction of
fully functional designs. However, the current mail sys-
tem is clearly a “toy" application, and full substantia-
tion of this belief will involve further experiments.

65

6. Conclusion
The Eden Mail System has accomplished the goals we
set for it:

. First, it has shown that it is possible to use Eden
to construct distributed applications rapidly and
systematically.

.Second, these applications can be easy to build
. and can exhibit clean structure.

. Finally, the structure of Edmas cleanly reflected
the abstractions that are natural to mail: Mail-
Boxes and MailMsgs, rather than files and user-
ids that are the only tools available to designers
on more conventional systems. This structuring
advantage has allowed us to develop insights in
the area of mail system design that might have
been obscured to designers on other systems.

Acknowledgements
The Eden project currently includes about six faculty

members, fifteen students, and five staff members.

They have all contributed to the system that made this
research possible. We would specifically like to mention
Cara Holman, who now maintains and is extending the
system. Also, we would like to recognize Jan Sanislo for
his leadership in the construction of the Eden kernel
and Norm Hutchinson and Barry McCord for their con-
tributions to the EPL programming environment.

References

[1] Guy T. Almes.

Integration and Distribution in Eden.

In Proc. International Workshop on Computer
Systems Organization. IEEE Computer
Society, New Orleans, March, 1983.

[2] Guy T. Almes, Andrew P. Black, Edward

D. Lazowska, and Jerre D. Noe.

The Eden System. A Technical Review.

Technical Report, Dept. of Computer Science,
Univ. of Washington, October, 1983.

(3] guy Almes, David Jacobson, Leif Nielsen, and Jim

ees.

Kernel-Eject Interface Specification.

1983.

Eden Project Internal Document.

[4] James Gosling.

Uniz EFmacs.

Technical Report, Carnegie-Mellon University,
May, 1982.

(5]

(6]

(7]

Hannes Goullon, Rainer Isle, and Klaus-Peter

Loehr.

Dynamic Restructuring in an Experimental
Operating System.

In Prac. Third lternational Conference on
Software Fngineering, pages 295-304. IELE
Computer Society, NBS, and ACM, Atlanta,
May, 1978.

C. A. R. Hoare.)

Monitors: An Operating System Structuring Con-
cept.]

Comm. of the Assoc. for Computing Machinery
17(10):549-557, October, 1974,

R. C. Holt.
A Short Introduction to Concurrent Euclid.
SIGPLAN Notices 17(5):60-79, May, 1962,

(8]

(o]

(10]

R. C. Holt.

Concurrent Puclid, The Uniz System, and Tunis.
Addison-Wesley, 1983.

Edward D. Lazowska, Henry M. Levy, Guy

T. Almes, Michael J. Fischer, Robert J. Fowler,

and Stephen C. Vestal.

The Architecture of the Eden Systern.

In Proc. Fighth Symposium on Operating Sys-
tems Principles, pages 148-159. Assoc. for
Computing Machinery, Pacific Grove, Decem-
ber, 1981.

Barry C. McCord and Andrew P. Black.
EPL Programmer’s Guide.

1983.

Eden Project Internal Document.

sty e e g 40 DRI SRR S S T

e R B

