
Foundations of Object-Oriented Languages�
Workshop Report

Andrew Blacky Jens Palsbergz

1 Introduction

This paper reports on the workshop on foundations of object-oriented languages that was held
17{18 October 1993 at Stanford University, California, USA. The workshop was organized by
Kim Bruce and Giuseppe Longo, and sponsored by ESPRIT and NSF. Local arrangements
were done by Dinesh Katiyar and John Mitchell. Participation was by invitation only; the
participants are listed in the appendix of this paper.

The purpose of the workshop was both to understand and compare the many models of
object-oriented languages, and to create better language constructs and models. The workshop
consisted both of presentations and lively discussions about such topics as challenge problems for
type systems, relative merits of di�erent language designs and type systems, and encapsulation
and modularity.

In the following section we brie
y report on the talks given at the workshop. In Section 3
we present a dictionary of object-oriented terminology that was created during the discussions.
Finally, in Section 4 we report on the discussions by listing the open problems and benchmarks
for type systems that were suggested at the workshop.

2 Presentations

Fifteen of the participants presented recent work or commented on the state of the �eld. Here
follow brief summaries of their talks.

Luca Cardelli and Mart��n Abadi: A theory of primitive objects.

Cardelli and Abadi jointly presented a new formal system that supports both subsumption
and override. Subsumption is the ability to use a \more powerful" or \more complete" object

�To appear in ACM SIGPLAN Notices.
yDigital Equipment Corporation, Cambridge Research Laboratory, 1 Kendall Square, Building 700, Cam-

bridge, Massachusetts 02139, Internet: black@crl.dec.com.
zComputer Science Department, Aarhus University, Ny Munkegade, DK{8000 Aarhus C, Denmark; currently

visiting 161 Cullinane Hall, College of Computer Science, Northeastern University, 360 Huntington Avenue,

Boston, Massachusetts 02115, Internet: palsberg@ccs.neu.edu.



in place of a less powerful or less complete object. Override is the ability to replace one method
implementation by another. These features are both essential to object-oriented languages, but
often they are combined in ways that are unsound, unclear, confused, or ad hoc, or they are
not combined at all.

The system described in this talk departed from the authors' previous work by starting not
from the �-calculus, but from a new object calculus. Just as objects subsume functions, this
new object calculus subsumes the �-calculus. The system does not support a notion of state.

The system supports shallow subtyping: an object of a subtype can have more methods than
objects of its supertype, but the types of the arguments and results of the common methods
must be identical. Encoding the object calculus in a recognized typed �-calculus in a way that
preserves the subtypings remains an open problem.

A draft of a 90+ page paper presenting this theory can be obtained by electronic mail from
the authors [1]. Shorter versions are to appear as [3, 2].

Giorgio Ghelli: Objects with rôles.

Ghelli described rôles, a concept from the Fibonacci database programming language. The
language has a notion of state and a concept of object identity; it also allows existing objects
to be extended. For example, if John is an object (representing a person), when John enrolls
as a student the object might be extended to support new behavior, such as a method Number

that returns his student number. Let us call this extended object JohnAsStudent .
In Fibonacci, John and JohnAsStudent are considered to be the same object by the ob-

ject identity test. Nevertheless, JohnAsStudent and John have di�erent behaviors: the �rst
understands the Number message while the second does not.

It is also possible for John to take a part time job, requiring that the object that represents
him be extended in another direction, creating JohnAsEmployee. Worse, JohnAsEmployee

might also understand a Number method, which returns John's employee number.
Fibonacci deals with these complexities by treating an object as a DAG of rôles; messages

are sent to a receiving role, which �rst tries delegating to subrôles, and then inheriting from
superrôles. Thus, the meaning of p.Number depends on the rôle type of the identi�er p.

Jens Palsberg: Object-oriented type systems.

Palsberg presented an overview of the theory of types that he has developed jointly with
Michael Schwartzbach. The goal of the theory is to to explain and improve existing type
systems, not to overthrow them. The work provides a common theory that can be used as a
basis for comparisons between languages.

The theory deals with object-oriented languages directly, rather than via the �-calculus. It
follows the traditions of languages like SIMULA, C++, Ei�el, and BETA. Types are treated as
sets of classes. Thus, the theory can deal with \class types" (the set of subclasses of a particular
class) as well as with more abstract notions of type (the set of classes whose objects support a
particular interface.)

The theory and its implications are presented in Palsberg and Schwartzbach's recently
published book [14].



Ole Agesen: Type inference for Self { why and how?

Agesen described an application [4] of Palsberg and Schwartzbach's theory to the untyped
programming language Self. Although Self does not have classes, a similar classi�cation of
objects can be created by the transitive closure of the \cloned" relation.

Agesen's system solves a number of practical problems faced by object-oriented program-
mers, including �nding all of the places a particular message is sent to a particular object and
its clones, and \tree shaking" (extracting an application from the programming environment).

Giuseppe Castagna: Second order ad hoc polymorphism.

Castagna presented joint work with Giorgio Ghelli and Giuseppe Longo dealing with generic
function languages [7, 8]. Such languages treat messages as functions, and message sending as
function application. Castagna, Ghelli, and Longo have developed a model for this approach
called �&.

In �&, each function has many branches, each corresponding to a method in an object-
oriented language. The branch chosen in response to an application depends on the class of the
arguments. The binding is dynamic: it depends on the dynamic class of the argument objects,
not the syntactic class of the argument expressions.

The class of a generic function is the set of the classes of the branches that constitute it. To
ensure that there is always a \best �tting" branch for a particular invocation, there are some
restrictions on the methods that can be combined in a generic function.

Benjamin Pierce: Concurrent OO language design.

Pierce described work in progress in Edinburgh to design an object-oriented concurrent
language based on �rm formal foundations [15, 16]. He is starting with the �-calculus, because
this work is going on at Edinburgh, because the �-calculus is small and relatively simple,
because it is theoretically well understood, and because it is computationally complete.

To this base he plans to add values, typing, higher-order programming, results and objects.
Values are structured collections of behaviors. Typing applies to channels; each channel has

a type describing the shape of the values that it carries.
An object is a record of request channels for some server process. This approach provides

selective enabling of methods via the guarded choice command of the �-calculus. Pierce believes
that typing, subtyping and polymorphism should yield to standard techniques. Inheritance is
more problematic, and is a topic for future work. Because there is no method body as such,
just fragments of the process body that execute in response to a message, it is not clear what
to inherit.

Robert van Gent: TOIL: a type-safe object-oriented imperative language.

Van Gent presented joint work with Kim Bruce on TOIL, an imperative object-oriented
language that is provably type safe [6, 17]. In TOIL, methods in a subtype can have any
subtype of the corresponding method of the supertype; this is deep subtyping (compare with
Cardelli and Abadi's shallow subtyping). TOIL can be type-checked in a modular fashion, and
inherited methods are type-safe.



TOIL adds several features to Bruce's previous work: references, nil, an identity test, and
eager evaluation of values imported into objects.

Andrew Black: What a language designer wants to know about types.

Black took the position that the language designer is a consumer (of ideas), and the type
theorist is a vendor (of type systems). A question of obvious importance is then: do the vendors
understand the consumers? He also made the point that being in the type theory business is
like being in the dog-food business: the consumer is not the same as the customer, and care
must be taken to satisfy the needs of both.

Black emphasized that the designer of object-oriented languages wants the type theorists to
work on objects right from the beginning. Objects subsume records, not the other way round.
Similarly, although bounded polymorphism may be theoretically complex, it re
ects the need
of real programs to adapt to new objects.

Black also mentioned some practical solutions to real problems, such as �nding the union
of two types that contain methods with the same name but di�erent numbers of arguments
(by treating the number of arguments and results as part of the method name), and �nding
a typing for nil. He posed the question: if subtyping is undecidable in all interesting type
systems, is there any reason to avoid type:type?

William Cook: ADTs vs OOLs.

Cook contrasted the concepts of Abstract Data Types (ADTs) and objects in Object-
Oriented Languages (OOLs) [9]. He argued that although both are based on the idea of data
abstraction, they are fundamentally di�erent. In short, an ADT may be understood as a set
with operations, whereas objects are sets of operations.

In an ADT, abstraction is achieved by hiding the type of the representation. This hiding is
often modeled using an existential quanti�er. In OOLs, abstraction is achieved by letting the
operations themselves represent the data. The interfaces of the operations need not have any
direct relation to the underlying representation at all.

One of the consequences of the above is that in an ADT, recursion is seldomly needed in
the interface (although it may well be used in the representation). In OOLs, recursion is often
essential to the interface. Thus, recursion should be central in models of OOLs.

Dinesh Katiyar: Interfaces and typed OOP.

Katiyar presented a type system featuring bounded existential quanti�cation [10, 5, 13]. His
experience with modeling systems con�rmed the need for such types.

A bounded existential quanti�cation may be understood as both hiding a type, and at the
same time stating requirements on of what form the hidden type should be.

Roberto di Cosmo: Which types for the objects?

di Cosmo presented and criticized the idea of using a type as the search key for �nding
methods in a class library. The idea is that the search should return only those methods
that have the given type. This would be helpful if we don't know the name of the method



we are searching for. He had analyzed a commercially available class library containing 2349
methods. Most methods required 0{2 arguments, and it appeared that insu�cient functionality
was expressed in the interfaces to e�ectively distinguish them. Thus, to provide e�cient method
retrieval tools, we may need to reconsider the notion of type for objects and methods.

Francois Bouladoux: Inheritance and subtyping: Some problems and possible approaches.

Bouladoux presented a re�ned approach to subtyping in a framework where objects are
modeled as recursive records. In that framework, F-bounded quanti�cation is a well-known
approach to typing methods.

Bouladoux showed how to de�ne a pre-order between methods, based on the F-bounds, and
used that to re�ne the subtype ordering. With the re�ned subtyping relation, a method can be
applied in more contexts than before.

Gary Leavens and K. Kishore Dhara: A model theory for subtyping in imperative OOLs.

Leavens and Dhara jointly presented work on speci�cation and veri�cation of object-oriented
programs [12, 11]. The emphasis was on incomplete speci�cations and model theory. Once one
considers speci�cations, the meaning of subtyping must be changed to include not just the
existence the of corresponding methods, but also their behavior.

The general idea is that a type is described by an incomplete speci�cation; a subtype may
have a more complete speci�cation, but it must not contradict any of the properties of the
supertype. Leavens' previous work on subtyping uses explicit simulation to show that this
property holds. The work presented here focused on subtyping in the presence of aliasing.

3 Terminology

Here follows the dictionary of object-oriented terminology that was created at the workshop.
The explanations are not de�nitive; there were substantial disagreements during their creation.

� object. A primitive term.

� message. A name, a member of a countable set. In the invocation x.f , f is a message.

� method. A procedure inside an object. It is associated with a message (it has a name).
It can be called by invoking the enclosing object with the corresponding name.

� dynamic lookup. A term expressing the idea that the method that executes in response
to the invocation x.f depends on the current value of x .

� class. A function returning objects; an object constructor.

� inheritance. A mechanism for making one class or type from another, in which self is
late-bound.

� delegation. A mechanism for one thing to call another, in which self is late-bound. Like
inheritance, but between objects directly, rather than between their classes.



� subtyping (or conformance). A relationship between types such that if S is a subtype
of T , then S s are substitutable for T s, i.e., a value of type S may be used in any context
that expects a value of type T.

� matching. The relationship that holds between two types when one is derived from the
other by type inheritance; it is Bruce's �meth. Also, it is the relation required to de�ne
F-bounded parameters.

4 Discussions

The following ways of using a type system were listed during the discussions:

� Partial documentation during program design.

� Checking for errors.

� Maintenance; \understanding what you've got".

� E�ciency; provides information for an optimizing compiler.

It is unlikely that one single type system will be equally useful for all four purposes.
The following benchmark problems emerged. The idea is that a type system should be able

to type the programs suggested in this list.

� Point and ColorPoint, including equality methods.

� Church numerals.

� Calculators.

� Encoding of �-calculus.

� Overriding of methods that return modi�ed versions of self.

� Expression evaluators.

� Binary tree with search tree as subclass.

� Sorting of arbitrary (but homogeneous) objects, under the constraint that all the objects
have a comparison method.

� Generic sort, in which < is part of the argument list.

� A class for nodes in a singly linked list, and a subclass for nodes in a doubly linked list.

The many models of object-oriented languages focus on a wide variety of aspects of object-
oriented programming. Often, two given models focus on rather di�erent aspects and even when
they focus on the same aspect, they may model di�erent design choices. To guide comparison
of various models, the following extremes in some design dimensions were identi�ed:



� Speci�cation types versus implementation types. Types may contain more or
less implementation information. At one extreme we �nd types that only specify such
information as type checking interfaces (speci�cation types), and at the other extreme
we �nd types that give the full implementation of the objects of a type (implementation
types). Commonly used object-oriented languages such as C++ tend to use implementation
types.

� Structural subtyping versus subtyping by name. In some languages, all subtyping
relationships must be explicitly declared (subtyping by name). The alternative is to
enable the compiler to deduce if two types are in the subtyping relationship (structural
subtyping). The latter choice requires the subtyping relationship to be decidable. If so,
it is more 
exible, but perhaps less transparent for programmers.

� Shallow versus deep subtyping. In many type systems, types can be arbitrarily
nested, and, in the presence of recursive types, in�nite. When de�ning the subtyping
relation A � B, we may for example want to allow A to have more components than B.
Given this, the following question emerges: should common components be of the same

type (shallow subtyping), or should we for example allow the one in A to be a subtype
of the one in B, or perhaps the other way round (deep subtyping)? In most models, care
is needed to ensure the soundness of the type system.

� Single versus many implementations for each interface. Some models separate the
class hierarchy and the type hierarchy. If we consider a type as specifying an interface for
objects, then classes provides the implementation of the objects. A basic design question
is whether there can be only a single or several implementations for each interface.

� Type inference versus type annotation. With any type discipline comes the question
of type inference. It is only partially understood how powerful type systems we can get
and at the same time have computable type inference.

� Closed world assumption versus open world assumption. Type-checking of pro-
grams can happen under various assumptions. If the compiler can assume that all parts
of the program is known (closed world assumption), then it might do a better a job than
if di�erent units are to be compiled separately (open world assumption). The open world
assumption is especially useful when compiling libraries, and the closed world assumption
appears to be most useful towards the end of program development where global analysis
techniques may be helpful. The system-level type-checking that has been announced for
Ei�el uses the closed world assumption.

� Extension versus overriding. Inheritance can be used both for extending classes with
more instance variables and methods, and it can be used for method override. In some
models, these two uses put rather di�erent requirements on type systems.

� Delegation versus inheritance. Some models include both objects and classes, others
just objects. As a consequence, the former models involve inheritance, while the latter



involve delegation. It is unclear if the same style of type systems can be used in both
cases.

� Object identity. A key feature of many object-oriented languages is that objects retain
their identity even when their local state changes, when they are put into secondary
storage, and when they migrate to other computers. Only a few models so far faithfully
model this.

� Multi-methods: encapsulation, compositionality, extensibility, abstract types.
Most object-oriented languages are based on single dispatch. This means that the code
to be executed in response to a message send is chosen on the basis of one object, the re-
ceiver. Other languages feature multi-methods and multiple dispatch. In such languages,
the multi-method to be executed in response to a message send is determined on the basis
of several objects. Languages with multi-methods tend to identify types with classes, and
the employed lookup strategies seem to expose instance variables. It appears that the type
systems required for single dispatch and multiple dispatch are rather di�erent. Moreover,
the models of multi-methods may help clarify the issues of encapsulation, composition-
ality, extensibility, and abstract types that are the subject of much experimentation in
current object systems with multi-methods.

� Meta-object protocols. In recent years, some object systems have pioneered the idea of
having a meta-object protocol. Only few models have attempted to model this construct,
and it is unclear how well it can be integrated with a type system.

� Concurrency. Although there has been a plethora of work on concurrent object-oriented
programming, no consensus has emerged on how to integrate objects, processes, and types
in one framework.

Finally, the following list of open problems was compiled:

� ADT's versus objects. Can we translate back and forth? Issues: Extensibility versus
hiding; abstraction versus e�ciency; and subtyping and reuse.

� How can types be used in a programming-support methodology? How can they help one
to clean up messy programs?

� Can we reduce objects to records? What basic record operations would be needed?

� Can and should we unify objects and processes?

� How can we extend ML with object-oriented features?

� Can we give an adjoint characterization of functions and objects?

In conclusion, the workshop helped clarify many issues and provided plenty of input for
further research.



Acknowledgements

The authors thank Kim Bruce, Guiseppe Longo, and Mitchell Wand for helpful comments on
drafts of the report.

Appendix: Participants

Mart��n Abadi DEC, SRC ma@src.dec.com
Ole Agesen Stanford University/SUN agesen@cs.stanford.edu
Roberto Bellucci ENS, Paris bellucci@dmi.ens.fr
Andrew Black DEC, CRL black@crl.dec.com
Francois Bouladoux ENS, Paris bouladou@dmi.ens.fr
Kim Bruce Williams College kim@cs.williams.edu
Luca Cardelli DEC, SRC luca@src.dec.com
Giuseppe Castagna ENS, Paris castagna@dmi.ens.fr
William Cook Apple william@applelink.apple.com
Roberto di Cosmo ENS, Paris dicosmo@dmi.ens.fr
K. Kishore Dhara Iowa State University dhara@cs.iastate.edu
Kathleen Fisher Stanford University k�sher@theory.stanford.edu
Robert van Gent Stanford University vangent@cs.stanford.edu
Giorgio Ghelli University of Pisa ghelli@di.unipi.it
Dinesh Katiyar Stanford University katiyar@theory.stanford.edu
Gary Leavens Iowa State University leavens@cs.iastate.edu
Giuseppe Longo ENS, Paris longo@dmi.ens.fr
John Mitchell Stanford University jcm@theory.stanford.edu
Eugenio Moggi University of Genova moggi%igecuniv@vm.cnuce.cnr.it
Jens Palsberg Aarhus Univ./Northeastern Univ. palsberg@ccs.neu.edu
Benjamin Pierce Edinburgh bcp@dcs.ed.ac.uk
Mitchell Wand Northeastern University wand@ccs.neu.edu
Phil Yelland ParcPlace yelland@parcplace.com

References

[1] Mart��n Abadi and Luca Cardelli. A theory of primitive objects. Manuscript, October 1993.

[2] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems. In Proc.
ESOP'94, European Symposium on Programming. Springer-Verlag, 1994. To appear.

[3] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Untyped and �rst-order systems.
In Proc. TACS'94, Theoretical Aspects of Computing Sofware. Springer-Verlag, 1994. To appear.

[4] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type inference of Self: Analysis of ob-
jects with dynamic and multiple inheritance. In Proc. ECOOP'93, Seventh European Conference
on Object-Oriented Programming, pages 247{267, Kaiserslautern, Germany, July 1993.



[5] Kim Bruce and John C. Mitchell. PER models of subtyping, recursive types and higher-order
polymorphism. In Nineteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. Albuquerque, New Mexico, pages 316{327, January 1992.

[6] Kim B. Bruce and Robert van Gent. TOIL: A new type-safe object-oriented imperative language.
To appear, 1993.

[7] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. Information and Computation. To appear.

[8] Guiseppe Castagna. F&� : Integrating parametric and \ad hoc" second order polymorphism. In
Proc. 4th International Workshop on Database Programming Languages, pages 335{355. Springer-
Verlag, 1993.

[9] William Cook. Object-oriented programming versus abstract data types. In Proc. REX Work-

shop/School on the Foundations of Object-Oriented Languages. Springer-Verlag (LNCS 489),
1990.

[10] Dinesh Katiyar, David Luckham, and John Mitchell. A type system for prototyping languages.
In Proc. POPL'94, 21st Annual Symposium on Principles of Programming Languages, 1994. To
appear. Available by anonymous ftp from theory.stanford.edu:pub/katiyar/papers/popl-94.dvi.Z.

[11] Gary T. Leavens and Krishna Kishore Dhara. A model theory for abstract data types with
mutable objects (extended abstract). Technical Report 93-21, Department of Computer Science,
Iowa State University, September 1993. Available by anonymous ftp from ftp.cs.iastate.edu, and
by e-mail from almanac@cs.iastate.edu.

[12] Gary T. Leavens and William E. Weihl. Subtyping, modular speci�cation, and modular veri�ca-
tion for applicative object-oriented programs. Technical Report 92-28b, Department of Computer
Science, Iowa State University, October 1993. Available by anonymous ftp from ftp.cs.iastate.edu,
and by e-mail from almanac@cs.iastate.edu.

[13] J. C. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML modules with subtyping
and inheritance. In Eighteenth Symposium on Principles of Programming Languages, pages 316{
327. ACM Press, January 1991.

[14] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. John Wiley & Sons,
1993.

[15] Benjamin C. Pierce, Didier R�emy, and David N. Turner. A typed higher-order programming
language based on the pi-calculus. Draft report; an earlier version was presented as an invited
lecture at the Workshop on Type Theory and its Application to Computer Systems, Kyoto
University, July 1993, July 1993.

[16] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-oriented
programming. Journal of Functional Programming. To appear. A preliminary version appeared
in Principles of Programming Languages, 1993, and as University of Edinburgh technical report
ECS-LFCS-92-225, under the title \Object-Oriented Programming Without Recursive Types".

[17] Robert van Gent. TOIL: An imperative type-safe object-oriented language. Williams College
Senior Honors Thesis, 1993.


