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Abstract

Location independent invocation is a mechanism that allows
operations to be invoked on application-level objects, even
though those objects may move from node to node in a
distributed system. It is independent of any particular
application, operating system, or programming language, and is
applicable to many applications that are constructed from
collections of named entities. Our implementation is layered on
top of an existing RPC system, and is designed to operate in a
network that links thousands or tens of thousands of nodes in the
wide area.

This paper sketches our work on building a highly
distributed office application based on mobile objects, elaborates
on the techniques used to find the target of an invocation, and
describes how our technique is implemented.

I. Introduction

The motivation behind RPC [18] is to make distributed
applications easier to construct. Procedure call is a well
known and well understood mechanism for the transfer of
control and data within a single address space. Remote
procedure call represents an extension of this mechanism
to provide for transfers between address spaces. It is
generally a goal of an RPC implementation to make the
semantics of a remote call as close as possible to those of
an equivalent local call [4]. This enables programmers to
write distributed applications without having to be aware
of network protocols or external data representations.
Thus, anything that narrows the conceptual distance
between local and remote calls is considered to be
desirable.

Nevertheless, there remain some intrinsic differences
between the semantics of remote and local calls. For
example, since a remote procedure executes in a different
address space from the caller, passing parameters by
reference is difficult, and the caller and callee may fail
independently.

Of these intrinsic differences, the most fundamental is
that a remote call must somehow indicate to which other
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address space it is directed. The caller discharges this
responsibility by binding to the appropriate address space
before the first call can proceed. The action of binding
results in a data structure (also called a binding) that
identifies the callee and must be passed as an implicit or
explicit argument to every remote procedure call.

Choosing the correct server can be difficult. Various
techniques have evolved to lift this burden from the
programmer of the calling code — in other words, to
automate to some extent the choice of the callee. Two
commonly used methods are:

* default binding, where the RPC system chooses the
callee, either non-deterministically, or in a way that
depends on factors that are normally hidden from the
caller, such as network distance; and

* using a clerk, in which an application dependent
subroutine package uses its knowledge of the call
semantics to choose the callee. For example, in an
environment in which a file name indirectly identifies
the file server that stores a file, a file system clerk
might be used to direct an open call to the appropriate
server.

Location Independent Invocation (LII) is another way
of eliminating the binding step; it completely removes
RPC bindings from the view of the application
programmer. This technique is applicable to a wide
variety of applications; it requires only that the application
operate on a set of named entities, and that the whole of
each entity be located in a single address space.

LIT should be thought of as a service at a level of
abstraction above RPC. Our particular implementation is
layered on RPC, but this is by no means essential. LIT has
previously been implemented at the operating system level
(the Eden system [1,5] incorporates a similar concept)
and as part of a programming langauge (Emerald [13]).
LII can also be implemented at the application level; the
file system clerk mentioned above may be regarded as an
example. The contribution of this paper is to present LII
as a conceptual service that is independent of any
particular application, operating system, or programming
language, and to show how it can be implemented without
language or system support in any environment that
provides reliable inter-process communication.



The remainder of this paper is organized as follows.
In Section 1I we study the “indications” for location
independent invocation, i.., under what circumstances the
abstraction we are proposing is beneficial. Section III
describes the context of our work: an application domain
in which we believe LII will be useful and the core
services that support it. In Section IV we describe our
object-finding algorithm, and in Section V we present our
implementation. Section VI deals with the relationship of
LII to earlier work on object finding and location
independence. Section VII summarizes the current state
of our work, and reports some early conclusions.

II. When is LII Useful?

Before examining the situations in which LII is useful, it
is necessary to introduce some terminology. An address
space that is willing to accept RPC calls is conventionally
known as a server, and one that makes calls is known as a
client. Note that these terms are meaningful only with
respect to a particular call; a given address space may
function as both a client and a server simultaneously. The
set of legal calls that are acceptable to a given server
characterizes its interface, and is therefore known as the
service type. A particular server that implements that type
is known as a service instance.

If the RPC interface provides a computational service,
e.g., Fast Fourier Transform, all the service instances may
be semantically equivalent. In this case the necessity of
choosing a service instance may be an opportunity rather
than a problem; the binding process may provide a way
of sharing load amongst the various servers, or of
selecting a server that provides the required precision.

However, if the RPC interface provides access to
application data, then the services available from different
servers may be distinct, even though they share the same
service type. Consider, for example, a service type that
defines the interface to a directory of a company’s
employees. Different instances of this service might
provide information about the employees of Digital,
General Motors, or IBM: clearly, it is important to select
the correct service instance. Having done so, one might
then find that there are several server instances that
implement the whole of the Digital employee directory;
the choice amongst them may influence performance, but
not correctness. In general, the application domain
(directory services) will be concerned with some number
of application dependent objects (specific directories of
employees); there will be a mapping from application
entity to service instance that enables a client to choose
the correct instance.

In the case that this mapping is constant, or changes
very occasionally, it is easy to arrange that every client of
the interface has a copy of a function that computes the
map. A trivial implementation of such a function would

encode the location of the application object in its name.

Once the mapping changes more than very
occasionally, it becomes difficult to implement the
function that computes it. A distributed giobal name
service such as the DNA Naming Service [9] can be used;
such a service trades off consistency in favor of
availability. Updates can take a significant amount of
time to propagate through the name service, and during
this time the function implementing the mapping is wrong.
The severity of this problem increases with the frequency

of updates.

When the mapping changes frequently in a large
system, computing it becomes a distributed task, as well
as a significant burden to the application programmer.
Location independent invocation as described in this
paper relieves the programmer of this task by automating
it. LII is appropriate when the application entities move
frequently enough to make the implementation of a static
mapping function impractical.

Why should the application objects move? The
advantages of mobile objects include those of process
migration: the ability to share load between processors,
reduced communication cost, increased availability,
reconfigurability, and the ability to utilize the special
capabilities of a particular machine. In addition, object
mobility provides a convenient way for application data to
be moved to the point where it is needed without the
necessity of making a copy and keeping it consistent with
the original [13].

Any mechanism for moving objects that allows them
to be found again afterwards, and to be recovered in the
event of a failure, is bound to impose some overhead.
However, the benefit of mobility can be increased
responsiveness at other times. Imagine an application that
spans a network of machines installed in offices,
manufacturing plants, or hospitals and which is dispersed
over a large geographic area. In such an application
forms, production plans, or patients’ files can be
implemented as objects, each with a substantial data
content. These objects might be intensively updated or
accessed in real time in one place, and then at some future
time updated again in another place. If the time interval
between interactive sessions is relatively long (say,
minutes or tens of minutes) and the interactive response
for the update sessions is important, it may make sense to
move the objects in between sessions almost regardless of
the cost of migration. In contrast, if the major
requirement is, for example, to minimize network traffic,
then a simpler design in which objects are held at a central
server and updated remotely might be more appropriate.

III. The Hermes System

To investigate the use of mobile objects we are trying to
automate a corporation-wide, real-life office application.



The application we have chosen deals with expense
vouchers  circulating within Digital Equipment
Corporation. A form is filled-in by an employee and
signed by different managers, who approve or reject the
expense reimbursement represented by the form. If
appropriate, a petty cash disbursement is made, and then
the form is archived for tax and audit purposes. The
people acting on the form may all be located in one
building, spread across the country, or situated in different
continents. The interval between update sessions may
vary from minutes to days, but the interactive response is
important to the person acting on the form. Other
important functions of the system include translation of
organizational titles to employee names, and
authentication; these topics are beyond the scope of this
paper. In this section we detail those characteristics of the
system that are relevant to the discussion of finding
objects and making invocations location independent.

Our application must be able to span thousands of
machines: Digital’s internal network is world-wide and
currently interconnects over 30000 nodes. Although the
processing of most forms will be geographically localized,
some may require the attention of two people on opposite
sides of the globe. These requirements make it infeasible
to store all the forms in a single centralized database, or
even in a number of geographically dispersed databases.

Instead, we represent forms as objects that can move
around the network as the application demands.

Objects are named entities that perform operations on
each other by invoking well-defined interfaces. An object
consists of some state and a set of operations that
manipulate it; the operations are invoked by one or more
threads of control. Using system services, an object can
control its own persistence, recovery and placement, and
can invoke operations on remote objects without concem
for their location. Likewise, the application programmer,
although in control of the placement of objects, need not
be concemed with the mechanisms used to move objects
and to handle remote invocations.

The Hermes system provides infrastructure necessary
to support such objects. It is composed of Hermes nodes,
each consisting of a number of components (see Figure 1):
a Hermes Supervisor, a collection of application objects,
and an inter-object communication layer. The supervisor
provides services for object creation, finding, and
relocation; the inter-object communication layer consists
of an LII package built upon an RPC system. An
application is implemented by a collection of cooperating
objects. All of the components share a threads package
that provides for concurrency and cooperation.

Application

Application

Inter-Object Communication

Hermes Supervisor

Threads Package

Figure 1: A Hermes Node — Internal View
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Each Hermes node is equipped with all the code and
structures necessary to support all the different types of
objects defined by all the applications in the Hermes
system. Any instance of an object of any type can migrate
to, or be created at, any Hermes node.

Hermes also provides a storage service that is used to
make objects persistent; it is implemented by a distributed
collection of storesites. We assume that each storesite has
local access to stable storage, and that there are fewer
storesites than Hermes nodes. An object can write its
entire state to a storesite periodically (a checkpoint), and
can log changes to its state between checkpoints; the
storesite is then said to support that object. After a crash,
an object can be recovered up to the last logged change.
To prevent the inadvertent “recovery” of objects that are
still functioning but on inaccessible nodes, the storesite
also records the current location of every object that it
supports. It will not permit an object to be recovered until
it is sure that the object in question has really crashed.
The LII mechanism also uses the location information
held in stable storage to find objects in certain
circumstances; this is discussed in Section IV.

The Hermes system assumes the existence of two
generic distributed services: a name service and an
authentication service. The fommer is needed for a
Hemmes supervisor to find other supervisors and storesites.
The authentication service is needed for Hermes
supervisors to authenticate each other, as well as for
objects to authenticate each other.

Hermes nodes are implemented as ordinary processes
distributed across the network. The components of a
Hermes node all share the same address space, making
local invocation simple and fast. Users interact with
Hermes using a window-based interface; each user has his
or her own interface process, which communicates with
some convenient Hermes node using RPC. Hermes uses
ordinary operating system services and the RPC system
developed at Digital’s Systems Research Center. We
chose to implement Hermes in Modula-2+ [20] because of
its provision of threads and because of the integration of
the multithreading facilities with the RPC system.

IV. Finding objects in Hermes

This section commences by introducing some
terminology, and then offers an overview of the finding
algorithm. A more detailed description of the finding
process appears in the following three sub-sections.

Every object is assigned at creation and keeps forever
a globally unique identifier (gUId). Each object also has
a location (the name of the Hermes node that contains the
volatile copy of the object) and an age, which is initially
zero and is incremented whenever the object moves to
another location. If object o is at node n after its a™
move, then the pair <n,a> is a temporal address
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descriptor (tad) for o. A tad <n,, a > is newer than a
tad <n,, a,> for the same object if and only if a;>a,.
References to objects are essentially gUId s, but whenever
a reference is passed from one Hermes node to another, or
written to stable storage, the newest available tad is
passed in addition to the gUId. Each Hermes supervisor
contains a stash of tads; there is a tad for every object
local to the supervisor’s node, a tad for every object
reference contained in a local object, and, in addition,
some collection of rads for other objects that are not
currently referenced, but which have been referenced in
the past and might be referenced in the future.

Our location scheme employs a succession of
increasingly expensive but increasingly reliable
techniques to locate an object. Invocation and location are
combined, both to save messages and to prevent an object
from moving after it has been found but before it has been
invoked. First, an attempt is made to invoke the operation
on the object locally; this will fail if the object is not local.
In this case the operation is attempted again, but this time
remotely at the node named in the tad. This process is
repeated unti] it succeeds or there is no newer tad. In
effect, we are using the information in the tads as
forwarding addresses; this is inexpensive, since a newer
tad is normally obtained as a side effect of a failed
invocation.

If we run out of good forwarding addresses the
algorithm resorts to finding the object in stable storage,
consulting the storesite that currently supports that object.
The storesite keeps current information as to which
Hermes node the object occupies. If necessary, the global
name service is consulted to ascertain the appropriate
storesite for the sought object. One might ask: why not
use the name service to store the object’s current location
in the first place? This would certainly simplify the
finding algorithm. However, the high availability of a
name server is obtained at the cost of some consistency:
the information it provides is possibly out of date. Thus it
would still be necessary to follow forwarding addresses,
and to determine which of two pointers is the newer.
Moreover, the information obtained from a tad when an
invocation fails is essentially free, whereas a name server
enquiry must cost at least a network round trip, and
usually more. Furthermore, the cost of updates in the
name service is probably high, since name services are
usually engineered for a high ratio of enquiries to updates.
We expect to have to tune our finding algorithm
depending on the actual costs of lookups and updates in
the name server and at the storesite.

Usin’g Temporal Address Descriptors

When an object o is created at a Hermes node n, the
supervisor creates a descriptor that includes the object’s
fresh gUId and the tad <n, 0>, as well as other essential
information. This tad is obviously current. If o later
migrates to m, its descriptor on n is updated to include the



new tad <m,1>. Assuming that objects do not migrate
too often, this zad represents a forwarding address that is
likely to remain correct for some time.

When another object ¢ in n wants to invoke an
operation on o, the LII mechanism (discussed in Section
5) uses the information in o’s descriptor to find o and
perform the operation. If o is still local, the invocation
becomes a local procedure call. Otherwise, a binding to
the appropriate interface in m is acquired, and the RPC
system is used to make the invocation.

If o is no longer at m, then m will normally have a
newer tad for o. What should m do? There are two
altematives: (1) return a failure indication along with its
stashed tad , or (2) propagate the invocation to the location
indicated in its tad. In Hermes we chose a hybrid of the
two approaches. If the invoked node does not have the
object, the invocation is propagated to the location
indicated in the tad; this continues up to some small
number of hops. This number is a tunable parameter;
setting it to zero reduces the hybrid approach to the first
one. Based on Fowler’s work on object finding [11, 12],
which analyzes the use of forwarding addresses under a
wide variety of circumstances, we believe that chains of
forwarding addresses will usually be short, Hence, the
location algorithm will frequently succeed at this stage,
with the side effect of updating all the tads for o along
the forwarding chain. Otherwise, a failure with a newer
tad is retumed to the originator of the search, n in this
example, which starts afresh with the new forwarding
pointer.

A tad is also obtained when an object is used in an
invocation; whenever an object reference is passed as an
argument to or as a result of a remote invocation, or even
as a field buried in a structured argument or result, the LII
mechanism piggybacks the newest tad that is locally
available onto the object’s gUId. This is done
automatically by a customized RPC marshaling routine.

It is obvious that a tad received in either way might
not be current when it arrives, even if it were current
when it was sent: the object might migrate while a tad is
traversing the network. If a Hermes supervisor that
receives a tad for object o has no other tad for o, it might
as well add that tad to its stash. Otherwise, it should keep
the newer of the tad it holds and the tad just received.

Since a tad for an object becomes outdated only when
that object moves, it is appropriate to measure the
currency of a tad by its age field. It would be possible to
measure fad currency with real time stamps, but this
would require synchronized clocks. Notice that tads are
not hints: every tad is a true statement about the location
of the corresponding object at some time in the past or
present. Consequently, a Hermes supervisor can safely
replace an old tad by a newer one. The result of this
method is that, ignoring crashes, a Hermes supervisor’s
location information “is getting better, all the time” [17].
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Provided that no node is unavailable and that no
information is lost in a crash, every object in the system
can be found by following forwarding pointers. However,
real systems are subject to both of these problems. One
disadvantage of the forwarding address technique is that
not only must the object itself be available, but so must all
the nodes along the forwarding chain. Thus, although
long chains reduce performance only linearly, they reduce
availability exponentially. Fowler’s work encourages us
to believe that chains will usually be short, and one of the
objectives of our implementation is to verify his
assumptions experimentally. Nevertheless, when a
forwarding pointer is not available, we must have an
alternative strategy.

Using Storesites and the Name Service to Find
Objects

When the object-finding algorithm reaches a point where
there are no more tads to chase (i.e., no tad was returned
with a failed invocation or the tad retuned is older than
one that has already failed), it has to revert to another
method. Using a broadcast or a multicast to locate the
object or obtain a newer forwarding address, although
justifiable in a small research network such as has been
used for Emerald [13], is inappropriate in a global
network with a complex topology and tens of thousands of
nodes. Moreover, when using an unreliable multicast, the
absence of a response provides no information.

Instead we use the location information stored with the
stable storage service to help find the object. As
mentioned previously, when an object o is created it is
assigned to a storesite. The location of o along with its
initially checkpointed state is recorded in stable storage at
that storesite. When o moves to another Hermes node, its
new location is recorded at the storesite using a two-phase
commit protocol. Thus, if one can find the storesite that
supports a given object, then one can find the object in
volatile memory.

Notice that although the tad at the storesite is current,
by the time it reaches the requesting Hermes node the
object may have moved, and it may therefore be
necessary to follow a forwarding addresses. Nevertheless,
this process will terminate so long as invocation is faster
than migration.

Crashes impact the finding algorithm because they
cause a Hermes node to lose its entire stash of location
information. Naturally, the node will also lose all its local
objects, which will need to be recovered from stable
storage. They may be recovered onto another node, or
onto the crashed node after it has rebooted; in either case
they take with them tad's for all of their object references.
Whether these tad's are useful depends on how long the
object has been “idle” at the storesite.

Rather than letting a Hermes node’s stash of tad's be
lost in a crash, the supervisor might write the fads to



stable storage at intervals, or even after every update to its
stash. A crash would then result in little or no loss of
location information. However, this is expensive, and may
be of little benefit: if the node stays down for any length
of time many of the fads will be of purely historic
interest. We have not yet chosen a policy for committing
tads to stable storage; some compromise seems
inevitable.

If a node n does lose its tads in a crash, or even if it
recovers historic tads from stable storage, after n has
come back up some invocations for an object o directed to
n will fail without retuming a newer fad to the invoker.
Then the storesite supporting o will be found (see below),
and queried, and will retum o’s current location.
However, it may be that o was itself at n, and that the
storesite has not learned that n has crashed, along with all
the objects that it contained. The location of o will
therefore still be recorded as n. In this case, o needs to be
recovered and reactivated. To distinguish this case from
that in which o migrated to n after it had recovered, it is
necessary for the storesite to know the time (by »’s real-
time clock) at which n last rebooted, and also the time at
which 0 moved ton.

Notice that stable storage alone does not always help
in the case where a machine in the chain of forwarding
addresses does not respond to an RPC. If we can be sure
that the invocation did not take place, then we can treat
the lack of response as if it were a failure message.
However, if it were possible that the invocation completed
and that the node crashed just before sending the reply,
then trying to locate the object through stable storage and
reactivating it might cause the invocation to be performed
twice. To prevent this we need another mechanism, such
as an invocation sequencer, and a higher-level protocol to
decide whether to repeat the invocation once the object is
found. Alternatively, the application may decide that it is
always safe to repeat certain operations (e.g., because they
are idempotent).

Changing and Finding StoreSites

If objects can move in volatile memory, why should they
be fixed in stable storage? Indeed, if a form is sent for
approval to a manager on the opposite coast, and the
object consequently migrates to a machine there, it makes
sense that the object be supported by a nearby storesite.
Hemmes therefore lets objects change storesite. However,
the former storesite of an object keeps a forwarding
pointer (in stable storage) to its successor. Now it is
possible to find the current storesite for an object by a
process similar to the one already described for Hermes
nodes. Since by definition stable storage does not lose
information in a crash and storesites are highly available,
the search is likely to succeed at this stage.

Provided that all storesites are always available and
that they keep all the forwarding addresses forever, every
object in the system can be found in this way. But these
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conditions are not always true storesites  will
occasionally be unavailable. Moreover, a storesite does
not need to keep the checkpoint and log records of an
object that migrates to another storesite once the object
has checkpointed at the new storesite, so it would be
convenient if it were eventually possible to purge the
forwarding pointer too. We also need to provide a
mechanism whereby the initial storesite for an object can
be found.

One possible solution is to register each object with
the name service, with an attribute indicating its current
storesite. Once the name service has propagated this
information and can guarantee that an enquiry will no
longer be answered with old data, a storesite is free to
delete its forwarding pointer.

It seems likely that many objects, particularly short-
lived ones, might remain at their original storesite for as
long as they live; hence, registering them with the name
service could be wasteful. We therefore include an
object’s initial storesite as a component of its gUId. This
makes it easy to find an object’s initial storesite, and also
means that there is no need to make a nameserver entry
for an object until it has moved its storesite for the first
time. Moreover, assuming that most objects choose a
nearby storesite, structuring gUId's from storesite names
gives them geographic locality, thereby making them
suitable for efficient lookup and update in a global but
geographically clustered name service [15].

Starting with a gUId and no other information, there
are thus two ways of starting the finding process: derive
the name of the initial storesite from the gUld, or lookup
the gUId s storesite in the name service. The first method
will be most efficient if the object has never moved its
storesite; the second will be most efficient if it moved long
ago. Which situation is more likely depends on the
application. One can also seek to minimize elapsed time
by making both enquiries in parallel. We plan to
experiment with the trade-offs in this area and to defer our
choice until the behavior of objects is better understood.

V. Implementing the LII mechanism

Strategy

We considered three approaches for the implementation of
location independent invocation.

(1) The system-service approach: the service both locates
the object and performs the invocation. For example,
suppose that this service is implemented by the
procedure Invoke; to perform the operation P of an
object named by o, instead of calling o.P(params) one
calls Invokefo, P, params). This is similar to the
approach taken by Kalet and Jacky [14].

(2) The integrated-mechanism approach: extend the RPC
system to support LII, that is, to find objects and



perform the invocations.

(3) The interface-layer approach: provide a separate
mechanism above RPC. Every invocation must then
pass through this layer.

We used the following criteria to evaluate these strategies.

+ The mechanism should preserve type information and
be modular, in the sense that a change in the interface
of one object should not affect the entire system.
These requirements clash with the system-service
approach, unless the service interface is polymorphic.

It should not require changes to the underlying tools
and language, which should be generic and supported
by others. This criterion effectively rules out the
integrated-mechanism approach.

o Search and invocation should be combined, as
motivated in Section IV.

« The existence of LII should not change the interface
seen by the programer, who should be able to write
location-indpendent invocations as simply as local
procedure calls (modulo possible inaccessibility
problems). Extra information needed for LI should
be provided automatically.

» It should be easy to change the finding algorithm as
well as the way in which location information is
managed, without changing application code.

* The overhead imposed by the mechanism should be
minimal, beyond that inherent in locating an object .

The first two criteria effectively rule out all but the
interface-layer approach. Except for systematically
renaming procedures to include class names, our
implementation preserves the object interface seen by the
user. Below we first describe the implementation
conceptually and then give some details.

Conceptual view

Figure 2 illustrates our approach. The LII layer is the
intermediary in every invocation, directing it to the correct
node and object. In the first case (dotted line), object o,
invokes operation P of 0,. The LII layer discovers that
0, is local and calls 0,.P locally. In the second case
(dashed line), o, invokes operation Q on 0;. The LII
layer issues an RPC to its peer on node m, which then
calls 03.Q locally.

How is this redirection of invocations achieved?
Imagine that for every object in the Hermes system there
is a proxy object on every Hermes node. Both the real
object and its proxies export the same interface, which
consists of operations P ,, P,, and P,. However, whereas
the real object’s operations are bound to “real” procedures

Xy, -+, X5 that perform the operations on the object, a
proxy object’s operations are bound to “stub” procedures
X'y, -+ , X5 that merely locate the real object and

invoke the respective X; procedure. Notice that because
of our requirement for strong typing and because the
operation name is not a parameter, we need one stub for
each operation.

When the invoker makes an invocation, it neither
knows nor cares if it is operating on a real object or a
proxy. In Figure 2, when o, invokes 0,.Q, it actually
calls the stub Q’ in the local proxy for 0, The proxy
ascertains from the supervisor that o 5 is remote and calls
03.Q on the remote machine.

Implementation details

We implement our proxies using machine generated
procedures called LII stubs, one for each procedure in the
interface of an object’s type. The only state required by
the proxy is the location information stored in the
supervisor’s tad for the invoked object, so proxies are

Node n
LI layer '
RPC system v .

Node m

Figure 2: Invocations through the Li] layer
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inexpensive in terms of data space.
An LII stub is a three-way switch.

(1) If the object is local, the stub calls the object’s
operation directly, and returns whatever result or
exception that operation returns. While the call is in
progress the stub ensures that the object is fixed at the
local node.

(2) If the descriptor contains a “better” tad for the object,
the stub issues a remote procedure call to an identical
LII stub on the node named by the tad. If the call is
successful, the stub retumns to the caller whatever
result or exception is returned from the RPC together
with the current tad. Otherwise, this step can be
repeated; at each iteration the Hermes supervisor’s tad
for this object is updated with the newer information.

(3) If a good forwarding address is not available, the stub
executes the “full” finding algorithm using storesites
and the name service. This involves repeating steps
(1) and (2) as appropriate.

A time-space trade-off is involved in deciding how much
of the stub is inline code and how much is implemented
by calling procedures. Only the call to the real object and
the RPC to the remote LII stub are different from stub to
stub; the other sections of the stub can be replaced by calls
to standard procedures.

Since stubs are almost identical, it is easy to generate
them automatically. Notice that this is different from an
RPC stub, where almost everything in the body of the stub
depends on the types of the parameters. Our stb
generator scans the Modula-2+ interface definitions using

the Unix™ tool lex, and is itself written in awk.

VI. Related Work

The notion of location independent invocation appears in
the Eden distributed object-oriented operating system
[1,5]. Eden supports objects at the system level and it
provides invocation as a system service. Eden uses hints
to find objects, and is quite cavalier about timing out hints
when they have been unused for a few minutes. If it is
necessary to find an object for which there is no hint, or
after a hint has failed, the object’s capability is used as a
hint to find a stable storage server, called a checksite. If
this turns out not to be the current checksite for the object,
the invoking system uses an ethemet broadcast to
interrogate all Eden kemels and all checksites in the Eden
network. This is a reasonable approach for a research
prototype of a dozen machines, but is inappropriate for a
world-wide distributed system.

™ Unix is a trademark of AT&T Bell Laboratories.
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Eden deals with the problem of type-checking
invocations in the same way as an RPC system: it
generates a stub for each operation, which marshals the
arguments into a uniform data structure. The system
invocation interface takes this structure as its argument,

Emerald [6,13] is a programming language that
supports location-independent operations on mobile
objects. The Emerald compiler packages invocation
parameters directly, so there is no need for stubs. Emerald
also uses forwarding addresses for location, but falls back
on a broadcast enquiry (a shout) should the forwarding
chain be broken. If there is no response to the shout, the
invoking node performs an exhaustive search of every
Emerald node, first by broadcasting a search message that
requires a response from every node, and then by
following up with reliable point-to-point messages to
those nodes that have not responded.

Emerald is more advanced than Hermes in several
respects. Emerald objects can move at any time, even
while invocations are executing inside them. New code
can be injected into a running Emerald system, and will
migrate around the system as necessary to support
migrating objects. Emerald has an innovative object type
system to ensure that invocations on newly-created
objects can still be type-checked. These facilities are only
feasible because Emerald is a programming language as
well as a run-time system. While an attractive paradigm
for the future, we judged that we were unlikely to
successfully introduce a new programming language for
commercial distributed applications. Moreover, Emerald
currently has no provision for making objects persistent.

The problem of finding objects in Hermes also
resembles that of finding an interprocess communication
channel in a system that supports process migration.
There are various ways to redirect these channels after a
process has migrated [2], depending on whether the IPC
mechanism treats channels as hints (as in Demos/MP [19])
or as absolutes. Our use of tads is similar to the uni-
directional links used in Demos/MP. However, unlike
tads in Hermes, forwarding addresses in Demos/MP are
not updated when used, and they are discarded only if the
process returns to the same machine.

Locus [7], MOS [3] and R* [16] use the “home”
approach to record where an entity is located. In the
distributed systems Locus and MOS the entities of interest
are processes; in R* they are database objects. Each
entity is assigned a home machine at birth; this machine is
notified whenever the entity migrates. Sprite [10] extends
this approach to direct location-dependent kemel calls to
the home machine of a process, regardless of where the
process is located. Hermes borrows from this approach by
using an object’s current storesite as a temporary “home”.

The layering in Hermes and the support for LII
resemble a method used to achieve location-independent
resource access in the MOS system. The MOS kemel is a



modified Unix kemel divided into three layers. The
lower-kernel provides low-level, location-dependent
kemel services, such as disk access. The wupper-kernel
provides user-level and location-independent services,
using the lower-kemnel when necessary. Between these
layers is the linker, which decides whether a call from the
upper- to the lower-kemel should be executed locally or
remotely. The Hermes LII layer is analogous to the
upper-kernel, the object operations to the lower-kemel,
and the RPC system to the linker. Notice, however, that
the targets of invocations in MOS (i.e., resources) do not
migrate, so finding them is much simpler than in Hermes,

The system-service approach to implement
invocations without language support has been used in a
large (but centralized) object-oriented application for
radiation therapy [14]. This application was written in
Pascal, with records representing objects. A “system”
function Invoke is used to initiate all operations; it uses a
case statement to select the right operation, and enqueues
a “work request” to be performed by the system at some
convenient time. To circumvent typing, arguments are
Ppassed as a record that has one variant per object interface
and per operation. The operation name and target object
are arguments too. This approach suffers from poor
maintainability and readability: with every interface added
to the system, the system administrator has to modify the
Invoke function and the structures it uses. Invocation
arguments must be correctly packaged into a record rather
than being written as a list.

VII. Conclusion

This paper presented some of the problems of finding an
object in large and dynamic networks, where objects may
change their location in volatile as well as stable storage.
We have discussed possible solutions and shown those
adopted in the Hermes system. We designed and
developed a location-independent-invocation mechanism
that combines finding with invocation, using some
temporal location information. The mechanism also
updates this information as a side effect of invocations.
Based on our assumptions of object mobility and
opportunities to update such information, objects are
likely to be found within a few propagations of an
invocation. If they cannot be found in this way, stable-
storage and name services are used to locate the object.
The major contribution of this paper is to show how LI
can be achieved in a large and dynamic environment,
where objects are supported by neither the operating
system nor the programming language.

Our complete separation of the LII layer from the RPC
system is practical rather than conceptual. In fact, we
believe that much of the support for LII might migrate
into the RPC systems of the future. In particular, the RPC
system should allow control over the granularity of the
target of a binding, instead of dictating the grain to be an
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address space or module. The RPC system that we are
using supports binding to separate modules, not merely to
an address space. It does not facilitate combining the
interfaces of several modules that share the same address
space: every remotely-callable interface must be called via
a separate binding. Used naively, this mechanism would
necessitate constructing and keeping to hand a dozen or
more bindings to every other supervisor. To eliminate
these extra bindings we have designed an automatic
translator that, given a list of object interfaces, produces a
single “umbrella” interface by systematic renaming.
Fortunately, the Modula-2+ language enables this to be
done without incurring the cost of extra procedure calls.

Our experience with writing a distributed object-
oriented system with a language that is not geared towards
object-oriented programming taught us that several
language features are necessary to facilitate writing
distributed applications and services.

* Concurrency is endemic in a distributed system; such
a system includes multiple processors and possibly
multiple users, and concurrent activity is the norm.
The programming language should provide integrated
support for multithreading, including synchronization
primitives for the access of shared data.

 Parameter lists should be first-class data objects. This
would greatly simplify the kind of procedure call
redirection that is performed by the LII layer, while
maintaining strong typing. Ideally, a procedure should
be able to call another procedure by
Module MyName(MyParams), where MyName is
dynamically bound to the caller’s name for the
procedure, and MyParams is a parameter list data
object. (MyName is similar to the argc[0] notion of
Unix.)

* Polymorphic procedures, as in Russell [8], and
implicit parameterization by types would allow us to
write a single stub that could be used for every
operation.

Major parts of the Hermes system have been designed
and implemented. The LII mechanism has been tested,
and we expect a prototype system to be complete within
the next few months.
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