

s than
 and
e, and
 engi-
uch as
main
tware.

e ap-
 have
arket,
edded
at em-
unc-

ited
 con-

ty

A Component Model

for Field Devices *

Oscar Nierstrasz,† Gabriela Arévalo,* Stéphane Ducasse,* Roel Wuyts,* Andrew Black‡,
Peter Müller,** Christian Zeidler,‡ Thomas Genssler,†† and Reinier van den Born‡‡

Abstract. Component-based software development is becoming mainstream
for conventional applications. However, components can be difficult to deploy
in embedded systems because of non-functional requirements. PECOS is a col-
laborative project between industrial and research partners that seeks to enable
component-based technology for a class of embedded systems known as “field
devices”. In this paper we introduce a component model for field devices that
captures a range of non-functional properties and constraints. We report on the
current status of PECOS, including the PECOS composition language, language
mappings to Java and C++, and industrial case studies.

1 Introduction

The software engineering landscape is far less developed for embedded system
for other application areas. Software for embedded systems is typically monolithic
platform-dependent. These systems are hard to maintain, upgrade and customiz
they are almost impossible to port to other platforms. Component-based software
neering would bring a number of advantages to the embedded systems world s
faster development times, the reuse of existing components, and the ability for do
experts to interactively compose and adapt sophisticated embedded systems sof

Unfortunately component-based software development (CBSD) cannot yet b
plied to embedded systems development. Until now, the mainstream IT players
not paid very much attention to the (so far) relatively small embedded systems m
and consequently there exists little component-based technology or tools for emb
systems. This situation is understandable if we consider the technical obstacles th
bedded systems pose for CBSD: their software must typically fulfil stringent non-f
tional requirements imposed by the run-time environment, such as severely lim
CPU power, and memory, and by the application domain, such as hard real-time

* This is an extended version of a paper presented at CD 2002, Berlin.
† Software Composition Group, Institut für Informatik und Angewandte Mathematik,

University of Bern, Switzerland — {oscar,ducasse,wuyts}@iam.unibe.ch —
www.iam.unibe.ch/~scg/.

‡ Department of Computer Science & Engineering, Oregon Health & Science Universi
— black@cse.ogi.edu — www.cse.ogi.edu/~black/. Visiting SCG.

**ABB Research Center, Germany — {peter.o.mueller, christian.zeidler}@de.abb.com
— www.abb.com.

††FZI Research Center for Information Technologies, Germany — genssler@fzi.de —
www.fzi.de.

‡‡OTI, The Netherlands — Reinier_van_den_Born@oti.com — www.oti.com.

http://www.iam.unibe.ch/%7escg/
http://www.cse.ogi.edu/%7eblack/
http://www.abb.com
http://www.fzi.de/
http://www.oti.com/

A Component Model for Field Devices 2

ments

D for
m in-
 to de-
ors of
hose

 The

ort

n-

dded

em-

d sec-

ral
del, by
e in-
ched-

ts. Fi-
ill in

ield de-
ness

 soft-
s.

 for
velop-
ell as

straints. Current CBSD approaches typically assume generous run-time environ
and all but ignore non-functional requirements such as timing.

The rapidly expanding market in embedded systems, however, makes CBS
such systems not only viable but also essential. In order for industry to benefit fro
creasingly powerful and less expensive hardware, there is a great need to be able
velop and port embedded software more quickly and at acceptable costs. Vend
embedded devices would benefit by being able to offer scalable product families, w
functionality could be tailored by replacing or reconfiguring software components.
key technical questions remain:

• Component models: What kind of component models are needed to supp
CBSD for embedded systems software?

• Non-functional requirements: How can we reason about non-functional co
straints of systems based on properties of their constituent components?

• Tools: What tools are need to specify, compose, validate and compile embe
systems applications built from components?

The PECOS project* aims to enable component-based software development for
bedded systems. In order to achieve concrete results within a limited frame, PECOS is
driven by a case study in the domain of field devices, which are field deployable control
devices further described in section 2. Section 3 presents a running example, an
tion 4 introduces the PECOS field device component model, focusing on the structu
aspects. In section 5 we present the execution semantics of the component mo
translation to Petri nets. By extending this interpretation to time Petri nets [13], w
tend to reason about real-time constraints and automatically generate real-time s
ules. Section 6 illustrates how the component model will be applied by means of CoCo,
a composition language [8] that can be used to configure and compose componen
nally, in section 7, we summarize the current state of the project, which is st
progress.

2 P ECOS

ABB’s Instruments business unit develops a large number of different field devices,
such as temperature, pressure, and flow sensors, actuators, and positioners. As f
vices turn into commodities, the software increasingly determines the competitive
of the devices. As the market demands new functionality in shorter time cycles,
ware begins to dominate the development and maintenance costs of field device

Software for field devices is currently monolithic, and does not exploit CBSD
the reasons outlined above. The high cost of developing the software, the long de
ment cycles, the high degree of architectural and implementation duplication, as w

* Funded by the European Commission as project IST-1999-20398 and by the Swiss
government as BBW 00.0170. The partners are Asea Brown Boveri AG (ABB,
Germany), Forschungzentrum Informatik an der Universität Karlsruhe (FZI,
Germany), Object Technology International AG (OTI Netherlands), Institut für
Informatik und Angewandte Mathematik, University of Bern (UNIBE, Switzerland).

A Component Model for Field Devices 3

ply

o con-
se this
 de-

ask. A
and

n-

tch
 long

re a
s that

ly

hi-

ich
 data.

cy-

ral-
g.
the inflexibility of current systems, offer a compelling case for attempting to ap
CBSD to field devices.

2.1 Field devices
A field device is a reactive, embedded system. Field devices make use of sensors t
tinuously gather data, such as temperature, pressure or rate of flow. They analy
data, and react by controlling actuators, valves or motors. To minimize cost, field
vices are implemented using the cheapest available hardware that is up to the t
typical field device may contain a 16-bit microprocessor with only 256kB of ROM
40kB of RAM.

The software for a typical field device,
such as the TZID pneumatic positioner
shown in figure 1, is monolithic, and is sep-
arately developed for each kind of field de-
vice. This results in a number of problems.

• Duplicated functionality: the same
functionality (e.g., Nonvolatile Mem-
ory-Manager, Fieldbus Driver, or
FFT-algorithm) is re-implemented at
different development locations in different ways for different field devices.

• Plug-incompatibility: functions and modules are implemented for a specific e
vironment without standardized interfaces (e.g., Interrupt-Driven, Port I/O)

• Long development times: the software for each project is developed from scra
without reuse of standardized architectures or components. This takes far too.

• Inflexibility: monolithic software is hard to maintain, extend or customize.

When considering how to apply CBSD to the software for field devices, there a
number of requirements, resource constraints and current implementation practice
must be considered.

• Limited power: the available power is very limited. For some devices on
100mW is available; this limits the choice of CPU.

• Limited memory: field devices typically have about 40 kilobytes of RAM.

• Standard architecture: the software architecture is driven by the fieldbus arc
tecture, which is based on function blocks.

• Cooperating tasks: the software is implemented as a set of tasks, most of wh
run sequentially, although some are logically concurrent. Some tasks share

• Cyclic Executive: the software in the device runs according to a pre-defined
clic schedule; events are also handled within the cycle.

• Real-time constraints: Parts of the software (e.g., control loops, and fieldbus
function blocks) must complete within real-time deadlines.

• Operating System: The operating systems used in field devices are not gene
purpose, but completely dedicated. They typically offer only basic schedulin

Figure 1 Pneumatic positioner TZID

A Component Model for Field Devices 4

-
low-

lly

 as
s.

on-
ploy-

r

es,

s

 style

of

-

ion

style;

ng

-level
ust:

• Programming language: the implementation language today is C. C++ or Em
bedded C++ [2] may become an option if compilers become available for the
power micro-controllers used in the devices.

• Static configuration: the device has a static software configuration, i.e., the
firmware can only be replaced in its entirety. Functionality is not dynamica
downloadable (though this may need to change in the future).

• Certification: many field devices are used in safety-critical applications, such
chemical plants. Costly certification procedures are required for such device

• Long lifetime: the typical lifetime of a field device is about 10 years.

2.2 P ECOS goals
The goal of PECOS is to enable CBSD for embedded systems by providing an envir
ment that supports the specification, composition, configuration checking, and de
ment of embedded systems built from software components.

By focusing on the field device case study, PECOS intends to deliver a demonstrato
that validates CBSD for embedded systems. Specifically, PECOS intends to deliver both
a component model suitable for characterizing software components for field devic
and a composition environment for expressing, validating and compiling composition
of components conforming to the model.

Component model
The field device component model presupposes an architectural style for field device
software. The model must therefore characterize components that conform to this
in terms of their interfaces and properties. Furthermore, the model must be capable
expressing how components are composed (or “connected”), and provide ways of rea
soning about properties of compositions.

Specifically, the field device component model must:

• express functional interfaces (e.g., procedural interfaces);

• express non-functional properties and constraints such as worst-case execut
time and memory consumption;

• specify component connections and containment relations, as an architectural

• express compositions of components conforming to a style;

• support reasoning about the behaviour of compositions, specifically concerni
plug-compatibility, concurrency and synchronization, real-time schedules, and
code generation.

Composition Environment
The composition environment enables engineers to express and validate high
compositions of components conforming to the component model. Specifically, it m

• support specification of high-level compositions (textually or visually);

• check that compositions conform to the constraints of an architectural style (i.e.,
the composition rules) or of a specific application (e.g., real-time constraints);

A Component Model for Field Devices 5

ust

otor is

sing
ection

ith
tegrat-

ition

mpo-
ontrol

are

e-

rt-

• generate adaptation and wiring code from the high-level specification: it m
“compile” the specification into executable code.

3 P ECOS Case Study

In order to validate CBSD for embedded systems, the PECOS project is developing the
hardware and software for a demonstration field device. The task of the PECOS field de-
vice is to control a three-phase motor connected to a valve (see figure 2). The m
driven by a frequency converter which can be controlled over Modbus from the field
device. The motor can be coupled to a valve either directly via a worm shaft or u
additional gearing (4). A pulse sensor on the shaft (5) detects its speed and the dir
of rotation. The PECOS board (1) is equipped with a web-based control panel (7) w
some basic elements for local operation and display. The demonstrator can be in
ed in a control system via the fieldbus communication protocol Profibus PA (6). The
device is compliant to the profibus specification for Actuators [5][6].

3.1 Running Example
We will use the following example to illustrate the PECOS component model and com-
position language.

Part of the PECOS case study is concerned with setting a valve at a specific pos
between open and closed. Figure 3 illustrates three connected PECOS components that
collaborate to set the valve position; the desired position is determined by other co
nents not shown here. In order to set and keep the valve at a certain position, a c
loop is used to continuously monitor and adjust the valve.

• The ModBus component is responsible for interfacing to a piece of hardw
called the frequency converter, which determines the speed of the motor. The fr
quency to which the motor should be set is obtained from the ProcessApplication
component. ModBus outputs this value over a serial line to the frequency conve
er using the ModBus protocol (hence its name). The ModBus component runs in

Figure 2 Pecos demonstrator field device

A Component Model for Field Devices 6

ency

ring
dule

r has
, the
 con-

.

 re-

ed

ad of

he

of field
d sys-
its own thread, because it blocks waiting for a (slow) response from the frequ
converter.

• The FQD (Fast Quadrature Decoder [9]) component is responsible for captu
events from the motor. This component abstracts from a micro-controller mo
that does FQD in hardware. It provides the ProcessApplication with both the ve-
locity and the position of the valve.

• The component ProcessApplication obtains the desired position of the valve (set-
Point) and reads the current state of the valve from the FQD component. This in-
formation is then used to compute a frequency for the motor. Once the moto
opened the valve sufficiently, ascertained by the next reading from the FQD
motor must be slowed or stopped. This repeated adjustment and monitoring
stituted the control loop.

This example illustrates several key points concerning the field device domain

• Cyclic behaviour: each component is responsible for a single task, which is
peatedly executed.

• Information flow through ports: components communicate by means of shar
data. The interface of a component consists of a set of shared data ports.

• Threading: some components are passive, while others have their own thre
control.

• Separate scheduler: control flow is separately specified by a scheduler for t
composite component.

4 A Component Model for Field Devices

The component model presented here has been especially tailored to the domain
devices. Although it may have broader implications for other classes of embedde
tems, we do not make that claim here.

FQD

ModBus

actualPosition

velocity

setFrequency

setPoint

actualPosition

velocity

setFrequency

ProcessApplicationsetPoint

Figure 3 FQD Control loop example

A Component Model for Field Devices 7

a

ects in

tly
 a set

orts

 are
e the

pos-
lled as
m-

o-
tor in
ically
 com-
The PECOS field device component
model has been defined to reflect an ar-
chitectural style for field devices [10].
As such, we define a vocabulary of
components, ports and connectors and
the rules governing their composition.
As in related approaches, components
may only be connected if their provided
and required ports are compatible [12].

In figure 4 we see an overview of
the component model. Components
may contain one or more subcompo-
nents. There are three kinds of compo-
nents: passive, active and event. Each
component has three property bundles
(for scheduling, memory and initialisation), and a set of ports. Connectors can be used
to connect the ports of a component.

We now consider each of these elements in detail.

4.1 Elements of the Component Model

Components. A component is a computational element with a name, a number of
property bundles and ports, and a behaviour. The ports of a component represent dat
that may be shared with other components. The behaviour of a component consists of
a procedure that reads and writes data available at its ports, and may produce eff
the physical world.

A leaf component is a “black-box” not further defined by model, but instead direc
implemented in the host programming language. It has an interface consisting of
of ports, and properties specified by its property bundles.

A composite component contains a number of connected subcomponents, the p
of which form the internal ports of the composite. A composite component also has ex-
ternal ports, which are the only ones that are externally visible. The external ports
connected to appropriate internal ports. The subcomponents are not visible outsid
composite that contains them.

From the point of view of a client, there is no visible difference between a com
ite component and a leaf component. The software of a field device can be mode
a component hierarchy, i.e., a tree of components, with a single active composite co
ponent at its root.

The field device domain requires three kinds of components.

• Passive Components do not have their own thread of control. A passive comp
nent is explicitly scheduled by the active component that is its nearest ances
the component hierarchy (its active ancestor). Passive components are typ
used to encapsulate a piece of behaviour that executes synchronously and
pletes in a short time-cycle.

Figure 4 The PECOS Component Model

A Component Model for Field Devices 8

del

 are
rs that
ead-

iately.

ther

ssed

,
r uni-

heir

d
nnect

. It
-

e is

ty
ory us-

-

. It is
• Active Components do have their own thread of control; they are used to mo
ongoing or longer-lived activities that do not complete in a short time-cycle.

• Event Components are those whose behaviour is triggered by an event. They
used to model pieces of hardware that frequently emit events, such as moto
give their rotation speed, or timers that emit a timing event when a certain d
line has passed. Whenever the event fires, the behaviour is executed immed

Ports. A port is a shared variable that allows a component to communicate with o
components; connected ports represent the same shared variable. A port specifies:

• a name, which has to be unique within the component;

• a type, characterizing the data that it holds;

• a range of values (defined by a minimum and maximum value) that can be pa
on this port; and

• a direction (“in”, “out” or “inout”) indicating whether the component reads
writes, or reads and writes the data. An inout port behaves exactly like a pai
directional ports, one in, and the other out.

Ports of peer components can only be connected if they have the same type and t
direction is complementary, i.e., an in port can only be connected to an out port. Internal
ports of a composite component can only be connected to the external ports if they have
the same type and their direction is compatible, e.g., an internal in port can be connecte
to an external in port. Internal ports may be left unconnected, so it is allowed to co
an internal inout port to an external out port.

Connectors. A connector specifies a data-sharing relationship between ports
has a name, a type, and a list of ports it connects. (Here we consider only binary con
nectors.)

Properties. A property is a tagged value. The tag is an identifier, and the valu
typed. Properties characterise components.

Property bundles. A property bundle is a named group of properties. Proper
bundles are used to characterize aspects of components, such as timing or mem
age.

4.2 Example revisited
Returning to the example of figure 3, we see that FQD is an event component, Proces-
sApplication is a passive component and ModBus is an active component. The compo
sition will be modelled as a composite component.

FQD has “out” ports actualPosition and velocity, connected to “in” ports of the same
name belonging to ProcessApplication. The in port setPoint belonging to ProcessAppli-
cation is shared with the composite component that encapsulates this composition
not yet connected to a compatible “out” port. Finally, the “out” port setFrequency is
connected to the “in” port of the same name belonging to ModBus.

What is not yet specified is how the threads of FQD and ModBus synchronize their
access to the shared ports. That is the topic of the next section.

A Component Model for Field Devices 9

write/
nents

lain
uling
sona-
aints,

e dif-
in-

subnet

d-

ust
nly
po-
ata
is

ts
5 Synchronization and Timing

Two issues must be addressed to complete the model: first, how read/write and
write conflicts are avoided on the (shared) external ports, and second, how compo
are scheduled to meet deadlines.

We will do this using a Petri net interpretation of valid compositions. Using p
Petri nets we can model concurrent activities of component compositions, sched
of components, and synchronization of shared ports. This part of the model is rea
bly well-understood. Using time Petri nets we hope to reason about timing constr
and generate real-time schedules; this topic is still under investigation.

5.1 Synchronization
Our Petri net procedures of the field device component model makes use of thre
ferent kinds of places and tokens. (i) Data places model ports; each data place has a s
gle token representing the shared data available at that port. (ii) Control places are used
to schedule components. Each active component has its own independent control
to model its schedule; there is exactly one token in each control subnet. (iii) Event plac-
es model the generation of an event.

A component is modelled as a Petri net
fragment with a single control place that can
be used to start it, and a single end place to
signal that it has terminated (figure 5). When
components are composed, a schedule must
be generated that somehow moves the token
from the end place of a component to the start
place of the next one to be scheduled.

The behaviour of the component is a sub-
net that has read and write access to its data
ports. The nature of these subnets depends on
the kind of component.

Passive leaf components are particularly simple to mo
el. Their behaviour consists of a single exec transition
that reads or write the data places (figure 6).

Because two passive components that share a port m
be serialized, synchronization problems can arise o
when active components are connected to other com
nents. Active components compete for their external d
ports with their surrounding environment. To address th
problem, we split the external ports of active componen
into two parts: an outer port, to which the outside world
has free access, and an inner port, to which the active
component has access.

Figure 5 Components as nets

data places

control places

A Component

start end

Figure 6 Passive leaf
components

Passive
exec

A Component Model for Field Devices 10

 acces-
en.

ubnet
ec-
ol to-

e
et
al

-

-

n-
s
r

di-
ct
st one
These two ports are synchronized by copy-
ing the data from one to the other (depending
on the direction of the port) in a special syn-
chronization method (or “sync method”). This
method may be generated or specially tailored.
We model this by a sync transition that reads
and writes the inner and outer ports and is trig-
gered by the start control place.

It is important to realize that the inner ports
are actually the shared resources, since they are
the only ones exposed to concurrent accesses
(i.e., from the sync transition and from the in-
ternal behaviour of the active components).
The outer ports are never exposed to concurrent accesses, because they are only
sible from the transitions of the outer control net, which contains only a single tok

The behaviour of an active leaf component is modelled as a separate control s
consisting of a critical section, which may access the inner ports, and a non-critical s
tion. The control subnet of an active component is a loop containing a single contr
ken.

An event component is similar to an activ
component, except that its control subn
does not cycle, but is triggered by an extern
event. To model this, we introduce an event
place which is the target of a special transi
tion that is fired when the event occurs.

The behaviour of an event component is im
plemented by its handler. The consequences
of handling an event must, of course, be sy
chronized with its enclosing environment, a
with active components. The event handle
consumes and restores a token from a de
cated control place. This represents the fa

that an event component runs in its own thread when an event is handled. At mo
instance of a given handler is running at any time.

To model composite components, we simply
coalesce all the connected data places, and we
connect the start and end control places of the sub-
components according to the required schedule. In
figure 10 we see that a schedule is represented by
a separate control subnet. If the composition is ac-
tive, this subnet will take the form of a loop with
its own token; if it is passive, the subnet will have
start and end control places, through which it will
acquire a token when it is scheduled.

Figure 7 Synchronization of
inner and outer ports

outer ports

Active
sync

inner ports

Figure 8 Active schedule with
critical section

Active

CS

Figure 9 Event components

Event

event

event place

handler

A Component Model for Field Devices 11

nt
rt

e
o
d

a-

t-
p-
his

er

. The

 is re-

vative,
 finite
s.

imul-
l sec-
 data

rise.

rma-
cution
t, this

s in a

ired
ery ef-

e can
ace of

twork,
on the
 sched-
Data ports may be connected to represe
data flow, or to represent the fact that a po
of a composite component is exported from
one of its constituent components. For th
Petri net procedures, there is n
distinction—in both cases, the connecte
ports represent the same shared variable and
are therefore modelled by the same, co
lesced data place.

We can see this in figure 11. Connected ou
er ports of all the components are each re
resented by a single, shared data place. T

holds not only for the dataflow of velocity and actualPosition from FQD to ProcessAp-
plication but also for the setPoint port which is visible from the outside. Inner and out
ports of active and event components, on the other hand, are not coalesced, since they
must be explicitly synchronized.

The figure also illustrates how composite components schedule their parts
schedule, which is triggered by the start place of the composite, first fires FQD, then
ProcessApplication, and finally ModBus. Since FQD and ModBus have independent be-
haviour (i.e., triggered by an event or running in a separate thread), the schedule
sponsible only for synchronizing the data ports.

Note that, aside from event places, the generated Petri net is always conser
i.e., the number of tokens remains constant. This means that it is equivalent to a
state automaton. (We could make the net strictly conservative by recycling event token)

The constructed net is also clearly deadlock-free: the only conflicts between s
taneously enabled transitions occur where sync transitions compete with critica
tions of active components. Since each of these transitions lock all the required
ports simultaneously, no waits-for cycles are possible, and hence no deadlock can a

5.2 Timing
To construct a schedule for a composition of components, certain scheduling info
tion must be associated with each subcomponent; this includes the worst-case exe
time of the subcomponent and the desired cycle time. For an active subcomponen
information must be provided separately for the sync and exec methods. It is also be
necessary to specify a (partial) ordering for the execution of the subcomponent
composition.

The simplest form of schedule is a cyclic executive, in which components are w
together directly, such that each passes control to the next. Such schedules are v
ficient, but are feasible only for the very simplest of compositions. Such a schedul
be represented in the Petri net model by inserting transitions between the end pl
one component and the start place of the next.

If a more complex schedule is desired, we introduce a separate scheduler ne
which makes scheduling decisions and then implements them by placing tokens
start places of the components. This arrangement also has the advantage that the

Figure 10 Composing components

schedule subnet

A Component Model for Field Devices 12

nents
tly the

 to ex-
 im-

er, it
nves-
tri net

o been
 cap-
sibil-
uler is factored out of the design; it is a subnet separate from that of the compo
themselves, and with a standard interface, as shown in figure 10. These are exac
conditions that promote reuse.

So long as the schedule can be computed entirely statically, there is no need
plicitly represent the scheduling information for the components: it is represented
plicitly in the schedule itself, but that schedule can be calculated off-line. Howev
may still be desirable to verify the scheduler produced in this way. We have been i
tigating the use of time Petri nets [14] to represent the schedulers, and various Pe
tools such as Poses++ [3] and TPTPN [11] to assist in their analysis. We have als
investigating the use of hierarchical constraint solvers (such as Cassowary [1]), to
ture the timing requirements and partial ordering of components and check the fea
ity of schedules, or even to generate them when this is possible.

setPoint

synch

synch

exec

CS

FQD event

handle

velocity

actualPosition

setFrequency

velocity

ModBus

ProcessApplication

FQD

Figure 11 Petri net model of control loop example

start end

start

start

start

end

end

end

schedule
subnet

exec

A Component Model for Field Devices 13

av-
e nec-
 appli-
 all of

infor-
nent is
so re-
r; this
twork,
. This
same
tion,
s not
uch a
rma-

ulers
If static scheduling is infeasible, as it often will be in applications in which the
erage case is very much better than the worst case, then dynamic scheduling will b
essary. This means that the scheduler must make scheduling decisions while the
cation is running, in real time. As a consequence, the scheduling parameters for
the components that must also be available in real time.

In his PhD thesis [4], Naedele proposes a modular approach to capturing this
mation. Associated with the Petri net that represents the structure of each compo
a timing subnet that represents the scheduling information. The timing subnet is al
sponsible for mediating communication between the component and the schedule
allows the scheduler to communicate with the components using a broadcast ne
rather than requiring separate communication channels with each component
greatly simplifies the wiring between the scheduler and the components, in the
way that a broadcast network like Ethernet simplifies inter-computer communica
compared to point-to-point wiring. In particular, the structure of the scheduler doe
have to be modified when an additional component is added to the application; s
change is instead captured by adding additional tokens containing scheduling info
tion. This arrangement promotes modularity, and permits different kinds of sched
to be plugged in.

6 The Composition Language CoCo

CoCo [8] is the syntactic representation of
the model described in section 4. The lan-
guage is intended to be used for both the
specification of components and the specifi-
cation of field device applications built as
compositions. These specifications are then
used as a basis for reasoning about applica-
tions and their constraints, computing sched-
ulers that meet these constraints, and gener-
ating code.

Although a complete description of
CoCo is beyond the scope of this paper, a
brief summary will help us to explain how
the field device component model is applied
to develop applications.

CoCo supports the key elements of the
component model introduced earlier: com-
ponents, properties and ports. In addition,
instances and connectors are used to build
composite components.

event component FQD
{

out float actualPosition;
out float velocity;
property cycleTime = 100;
property execTime = 10;

}
active component ModBus
{

in float setFrequency;
property cycleTime =100;
property execTime =50;

}
component ProcessApplication
{

in float setPoint;
in float actualPosition;
in float velocity;
property cycleTime =100;
property execTime =20;
out float setFrequency

}
Figure 12 FQD control loop in CoCo

A Component Model for Field Devices 14

nents
. Com-

t with a

s.
nents

g com-

e; this
n.

nly
 com-
 a cer-
s and/
s not
y in-
ation

nnec-

ur-
ances

ages
an be
func-
imply
ctors

nd get-
 by the
In figure 12 we
see our running exam-
ple as it would be im-
plemented in CoCo.
CoCo distinguishes
the same component
types as component
model does. In our ex-
ample we see an ac-
tive component
(marked with the key-
word active) an event
component (keyword
event) and two pas-
sive components.
Components model units of computation. In analogy to the object model, compo
play the role of classes. A component defines a scope in the same way as a class
ponents can be instantiated, that is, one can create an instance of a componen
unique identity.

Composite components like PositionValve contain instances of other component
An entire application is modelled as a composite component. Instances of compo
have a component type and a name that is unique within the scope of the enclosin
ponent. All instances are created at system start-up, that is, there is no new statement to
dynamically create new instances. Hence all instances are known at compile tim
allows for a number of static checks as well as for automatic scheduler generatio

Ports, such as setPoint) denote data flow into or out of a component and are the o
means to interact with a particular component. On can think of the set of ports of a
ponent as the interface to a procedure that is executed cyclically or in response to
tain event in order to compute output values depending on the current input value
or the internal state of the component. The actual behaviour of this “procedure” i
specified by CoCo but is hidden in the implementation of the component; the onl
formation available about it is the worst-case time taken to perform the comput
(property execTime) and the interval between these computations (property cycleTime).
Ports are assigned both a data flow direction (in, out, or inout) and a data type. Co
tion of components is achieved through the use of connectors (e.g., connector c1 in
component PositionValve). Connectors connect a list of ports defined either in the c
rent component (like port setPoint in connector c1) or by one of the contained inst
(that is, instances in the same scope).

A system specified in CoCo can relatively easily be translated into target langu
such as C++ or Java. The component structure from the CoCo specification c
mapped directly to an identical class structure in the target language. Any local
tionality of components, as specified by the user in the target language, can be s
incorporated. Instances map to statically initialized instance variables, and conne
represent shared instance variables in the enclosing object. Ports map to set- a
methods that read from or write to these shared instance variables, as determined

component PositionValve
{

in float setPoint;
ModBus modbus;
FQD fqd;
ProcessApplication processapplication;
connector c1 (setPoint,
 processapplication.setPoint);
connector c2 (fqd.actualPosition,

processapplication.actualPosition);
connector c3 (fqd.velocity,

processapplication.velocity);
connector c4 (processapplication.setFrequency,

modbus.setFrequency);
}
Figure 13 A composite component in CoCo

A Component Model for Field Devices 15

here is

e giv-
, be-
n on

eld
 actua-
 move
el of
 for
nance

ain-
es to
l as lo-
f field

-

 way

urage
 and

he
po-

ierar-
com-
n-
onent

ing
rt
connectors. Every read/write operation to the same data location is serialized so t
no need for locking.

When generating code from a CoCo specification, special attention needs to b
en to the efficiency, measured both in execution time and in memory consumption
cause of the requirements imposed by the field device domain. More informatio
these issues can be found in the relevant Pecos deliverable[7].

7 Status and Future Work

ABB’s Business Unit “Instruments” (BUI) develops a large number of different fi
devices, such as transmitters for measuring temperature, pressure and flow, and
tors and positioners for transmitting a torque to a valve. There is a general trend to
more and more intelligence from the higher levels of the control system to the lev
the individual field devices. Such intelligent field devices provide built-in features
measuring, tracking and reacting to instrument performance, status and mainte
history. For example, the new Asset Optimization approach supports preventive m
tenance through early detection of degrading functionality. Furthermore, featur
support configuration, maintenance and rapid set-up, using remote access as wel
cal user interfaces, are becoming increasingly important for the market success o
devices.

By using the PECOS CBSD approach for developing field-devices ABB’s BUI ex
pects to:

• serve the field device market with value-added features in a cost-effective
(i.e., by adding new features like advanced maintenance triggers);

• break up the close link between hardware and software and therefore enco
the reuse of components, not only within but across families of field-devices;

• drastically reduce the testing phase when modifying devices (i.e., when adding a
new component or exchanging an existing one).

In this paper we have presented some intermediate results of the PECOS project. The
component model developed for PECOS addresses the requirements identified for t
case study outlined above. Ongoing activities include: (i) formalization of the com
nent model, (ii) investigation of various techniques, such as time Petri nets and h
chical constraint solvers, to generate real-time schedules, (iii) implementation of
ponents to support the PECOS case study demonstrator, (iv) implementation of the la
guage mapping to generate executable code from CoCo specifications of comp
compositions.

8 References

[1] Greg J. Badros and Alan Borning, “The Cassowary Linear Arithmetic Constraint Solv
Algorithm: Interface and Implementation,” Technical Report, no. UW Technical Repo
98-06-04, University of Washington, 1998.

[2] Embedded C++ home page, www.caravan.net/ec2plus

[3] Gesellschaft für Prozeßautomation & Consulting bH home page, www.gpc.de.

http://www.caravan.net/ec2plus
http://www.gpc.de/

A Component Model for Field Devices 16

sis,

)

, Pe-

ents

n

s-

um-

ing
91.
[4] Martin Naedele, “On the Modeling and Evaluation of Real-Time Systems,” Ph.D. the
Swiss Federal Institute of Technology (ETHZ), 2000.

[5] PROFIBUS International, PA General Requirements, Version 3.0 (www.profibus.org

[6] PROFIBUS International, Device Data Sheet for Actuators, Version 3.0

[7] Bastiaan Schönhage, “Model mapping to C++ or Java-based ultra-light environment”
cos Deliverable D2.2.9-1, www.pecos-project.org

[8] Benedikt Schulz, Thomas Genssler, Alexander Christoph, Michael Winter, “Requirem
for the Composition Environment”, Pecos Deliverable D3.1, www.pecos-project.org

[9] Semiconductor Motorola Programming Note, Fast Quadrature Decode TPU Functio
(FQD), TPUPN02/D.

[10] Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging Di
cipline, Prentice-Hall, 1996.

[11] TPTPN home page, www.diit.unict.it/users/scava/tptpn.html.

[12] Rob van Ommering, Jeff Kramer, Jeff Magee, “The Koala Component Model for Cons
er Electronics Software”, IEEE Computer, March 2000, Vol. 33, No. 3, pp. 78-85.

[13] Jiacun Wang, Timed Petri Nets, Kluwer Academic Publishers, 1998.

[14] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems us
time Petri nets. IEEE Transactions on Software Engineering, 17(3), pp. 259–273, 19

http://www.profibus.org/
http://www.pecos-project.org/
http://www.pecos-project.org/
http://www.diit.unict.it/users/scava/tptpn.html

	A Component Model for Field Devices
	1 Introduction
	2 Pecos
	2.1 Field devices
	2.2 Pecos goals

	3 Pecos Case Study
	3.1 Running Example

	4 A Component Model for Field Devices
	4.1 Elements of the Component Model
	4.2 Example revisited

	5 Synchronization and Timing
	5.1 Synchronization
	5.2 Timing

	6 The Composition Language CoCo
	7 Status and Future Work
	8 References

