Semantics for Parameter Passing in a Type-Complete Persistent RPC

M. Mira da Silva and M. P. Atkinson

Dept of Computing Science
University of Glasgow
Glasgow G12 8QQ, Scotland

Abstract

Current RPC mechanisms for persistent languages are
either pass by reference — in which case they do not scale —
or pass by copy — in which case they duplicate objects and
destroy sharing relationships. In this paper we argue that to
build very large distributed persistent applications a com-
promise between these two mechanisms is needed. The ul-
timate goal of our research is to build a scalable persistent
RPC while still maintaining object sharing, type safety, type
completeness and semantics that are readily understood by
application programmers.

1 Introduction

_ This research concerns the construction and maintenance
of long-lived, large-scale, persistent applications that store
and manipulate large quantities of complex inter-related
data. An example is a health-care information system man-
aging data for hospitals, patients and doctors, and their re-
lationships with funding and regulatory agencies. These ap-
plications can be characterised by two attributes.

Persistence. They need to store both complex structured
data and the algorithms to manipulate them, together,
for years or decades. The applications grow by evo-
lution; they cannot be shutdown and restarted.

Distribution. They are constructed by connecting a num-
ber of component applications, which may run on sep-
arate systems. This is because a single system can-
not cope with all the data or processing needed, and
because data location must respect autonomy, geo-
graphic distribution and ownership requirements.

Persistent programming languages [1, 2] integrate those fea-
tures traditionally delegated to a database management sys-

1063-6927/96 $5.00 © 1996 IEEE
Proceedings of the 16th ICDCS

A. P. Black

Dept of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

Portland, OR 97291, USA

tem into the programming language itself. This significantly
simplifies the construction of persistent applications.

To provide distribution, persistent programming lan-
guages must be augmented by an inter-process communi-
cation (IPC) mechanism that provides a means of passing
information between stores,! and a means of synchronising
activities in different stores.

These stores may be executing on different machines that
are autonomously managed, subject to independent failure,
geographically separated and linked by relatively slow and
unreliable networks. The component applications must con-
tinue to operate when parts of the system fail. As larger
or longer-lived applications are considered, the IPC model
must take into account stores dynamically joining and leav-
ing the system. This context imposes a further requirement
on the IPC facility, to report subsystem failures.

An IPC mechanism and a persistent programming lan-
guage is an appealing combination for programming the
class of applications described above. We propose that the
design of such a “persistent IPC” should be guided by three
principles.

Generality. A large number of distributed persistent appli-
cations should be implementable with the same IPC.
Instead of offering a number of specific features, the
IPC should be small and flexible enough to support a
variety of communication models.

Simplicity. The existing persistent programming model
should be disturbed as little as possible, so that code
and techniques that worked locally still work locally.
New distributed techniques should maintain the local
programming model; but where that is infeasible, the
differences should be easily understood by program-
mers.

L 'we usc the word “store” in the rest of the paper to mean an application
and the data it stores and manages; others have used address space, pro-
gram, process, node or machine with the same or similar sense.

Realism. The properties of real networks and computers
supporting the application— such as bandwidth lim-
itations, latency and failure—must be accommo-
dated. Requirements evolving over time will in-
evitably make some parts of the application inconsis-
tent with other parts, especially in a distributed envi-
ronment with a (large) number of geographically dis-
persed programmers. As the number of stores grows,
algorithms must scale so that all the required actions
can be performed in reasonable time.

Many models of providing IPC have been proposed for con-
structing such applications, for example: message passing
[12], remote procedure call (RPC) [4], and asynchronous
RPC [20]. We choose to conduct our discussion in the con-
text of RPC, but similar issues arise with the other mecha-
nisms.

RPC mechanisms have been built with many different
objectives. For example, there are RPC mechanisms de-
signed for heterogeneity [7], performance {3, 28, 18], flexi-
bility [9], or simplicity [5].

Adding persistence to RPC introduces new issues, many
of which have been addressed elsewhere [30, 23, 24]. In this
paper we concentrate on the semantics for parameter passing
in a type-complete persistent RPC. We use this term to refer
to an RPC for a persistent programming language.

The next section discusses the problem raised by passing
parameters and returning results? in a type-complete persis-
tent RPC. Sections 3 and 4 discuss existing parameter pass-
ing semantics, and why they do not solve the problem. We
then present our model for parameter passing and our expe-
rience with it in section 5. A summary and future work can
be found in section 6.

2 Parameters in a persistent RPC

RPC is a well-understood inter-process communication
mechanism, but high-level persistent languages introduce
new potential and expectations.

2.1 Persistent programming languages

Our research concerns a class of programming languages
that exhibit the following properties.

Orthogonal persistence. Objects of any type may persist,
i.e., the type of an object does not determine whether
it is persistent or transient.

Data type completeness. There are no restrictions on con-
structing types; all manipulable values can be stored.

2The issues for returning results are identical with those for passing pa-
rameters. Throughout the rest of the paper we use “passing parameters” to
denote both activities.

412

Strong type checking. All operations are type-checked to
protect long-term valuable data from invalid code.
This increases the reliability of the store.

Higher-order. Procedures or objects are first-class citizens
and have the same rights as values of any other type,
including the right to persist and be passed as argu-
ments to, or returned as results from, other proce-
dures.

This class of languages is more fully defined in references
[11 and [2]. We choose to work with them based on their
long-term potential and because virtually all other languages
can then be supported by the same mechanisms.

In our research we use Napier88 [25, 16]. Persistence
in Napier88 is defined by reachability from a persistent
root and referential integrity is maintained automatically.
Napier88 also enjoys a rich type system with parametric
polymorphism, abstract data types, infinite unions, and lin-
guistic reflection, whereby a callable compiler permits ap-
plications to change or extend their own behaviour at exe-
cution time.

2.2 Combining persistence and RPC

Now let us examine some of the consequences of com-
bining the above properties of persistence with the princi-
ples for RPC design listed in section 1.

1. Generality and simplicity combine with orthogonal
persistence to require that the RPC permit values of
any type as parameters or results in remote calls; this
includes procedures, objects, and values of abstract
and infinite union types.

. Many RPC systems ignore the problem of distributed
type checking. However, strong type checking is
even more important for safety in a distributed persis-
tent system because sub-applications are created and
changed independently, and procedures may execute
in remote stores.

. To retain simplicity, object sharing and referential in-
tegrity need to be maintained across the distributed
application. For example, an object in one store
should be able to refer to an object in another store just
as if it were local.

. Realism dictates that we cannot ignore failures; it is
not acceptable to stop the entire application whenever
one of its components breaks. Thus, whenever a pro-
gram operates on a remote reference, the programmer
must indicate what to do if the referent is unreachable.
This conflicts with the previous observation.

5. We have observed that most of the contents of the
store can be reachable from some objects. Deep
copying® of parameters in these circumstances is in-
feasible. However, a partial copy creates remote ref-
erences, which, as we have just seen, is undesirable
from the point of view of reliability. It also results in
a semantics that is hard to define, and hence conflicts
with the goal of simplicity.

Thus, we see that it is impossible to maintain all the at-
tributes of persistence in a realistic distributed environment.
A compromise is necessary, but any relaxation of persistent
features must be carefully considered. The new semantics
should be close to the original (local) persistent semantics.
The perturbations introduced should be easily understood
and accepted by persistent programmers, and any techniques
and tools designed for a local environment should still work
locally. Adaptation of existing software and methods from
local to distributed processing should be as simple as possi-
ble, without ignoring the requirement for realism.

Our research goal is to identify such a compromise. This
paper presents our current understanding of the space in
which this compromise will be found.

2.3 Basic models for parameter passing

Many parameter passing schemes have been proposed in
the literature. They can be classified into two models.

Passing by reference. Instead of sending the argument it-
self to the remote procedure, some RPC mechanisms
send only a (remote) reference to the argument, which
remains at the call site. Call by reference is also
what many persistent languages do for local proce-
dure calls, since it is efficient at call time, especially
if the argument value is large.

Passing by copy. Most RPC mechanisms pass parameters
by copying the value of the arguments to the callee.
Call by copy is generally more efficient if the value is
relatively small because it avoids further callbacks to
fetch components of the parameter or to request oper-
ations on it.

Call by copy is usually the mechanism of choice when the
application must cope with partial failure and recovery, be-
cause communication occurs only at call and return time.
However, passing parameters by copy forces application
programmers to keep the data being copied to a minimum
by restricting the uses that they make of references. They

3 A deep copy is a copy of all of the reachable data. Conversely, a partial
copy copies only a part of the reachable data, including the references that it
contains, so that the copy shares sub-structure with the original. A shallow
copy is a partial copy in which only the top-level structure is replicated, and
all deeper sub-structure is shared.

413

are also required to manage the consistency and identity is-
sues arising from the creation of multiple copies of the same
object.

2.4 The need for a compromise

We have seen that an RPC mechanism that passes param-
eters by reference would be ideal because remote references
are invisible and maintain the local semantics, techniques
and tools. But, as we will see in section 3, call by reference
saturates the network and amplifies the effects of partial fail-
ures, creating difficulties in scaling the distributed applica-
tion beyond a few tens of stores.

The reader may ask whether it is appropriate to apply the
doctrine of separation of concerns. For example, is it not
possible to first apply well-known techniques for masking
failures, and then to employ reference semantics in the re-
sulting failure-free system?

We believe the answer to be that this is a worthwhile en-
terprise, but that it can never be completely successful. By
increasing failure resilience, it is possible to reduce the fre-
quency with which an operation on a remote reference fails.
But the probability can never be reduced to zero. So long
as it is non-zero, the programmer must write a failure han-
dler— which is exactly the conceptual burden that we were
seeking to avoid. Without such a handler, the only way
in which we can preserve the illusion of a failure-free sys-
tem is to force the calling store to fail too. Failures will
now cascade from one store to the next without any contain-
ment, causing failures in all of the other threads executing in
those stores and raising the overall frequency of failure once
again.

It is also possible to ameliorate the disadvantages of call
by copy by automatically maintaining coherence between
the copy and the original. However, the coherence proto-
col will fail if replicas become unavailable, so this attempt
to simplify the programmer’s life in one area will complicate
it in another: it will create a new kind of failure that must in
turn be handled.

The problem is like a balloon: we can squeeze it any-
where we want, but the consequence is that it just bulges out
somewhere ¢lse.

3 Call by reference

When a parameter is passed by reference, the RPC mech-
anism sends only a token for the argument to the callee. That
token may already exist or it may be created for the pur-
pose; in either case it has to uniquely identify the argument
throughout the application.

3.1 Examples

DPS-algol [30] is an upwardly-compatible distributed
version of the persistent programming language PS-algol
[1]. DPS-algol offers a basic model of transparent distribu-
tion with an RPC mechanism that gives programmers some
control over the placement of computations. Objects them-
selves cannot move; instead, the RPC mechanism always
passes objects by reference. If the computation needs to ac-
cess the value of an object, it has to migrate to the store
where the object resides. However, if the object is of a built-
in immutable type, it is instead copied to the computation.

Emerald [6, 14] is an object-based language and system
for building distributed applications. Emerald uses call by
reference in all invocations, local or remote; the semantics
are the same in both cases. However, it is possible in Emer-
ald to move the parameter objects to the remote site (in the
same network message as the call) in order to increase per-
formance.

More recently, the research work by Kato and others on
HiRPC [15] and its follow-up [17] has demonstrated how
to achieve efficiency in an RPC with call by reference se-
mantics. As in Emerald, they employ a language construct
to choose between call by reference or call by move. In
addition, the RPC system also maintains a cache for fre-
quently accessed remote data (coherency is automatically
maintained). HIRPC employs variable depth copy into the
cache.

3.2 Advantages

The main advantage of passing parameters by reference
is its simplicity, as it offers the well-known local parameter
semantics in a distributed environment.

Because mutable values are not copied, update and shar-
ing semantics are automatically preserved. The implemen-
tation can invisibly copy immutable values. This guarantees
that a distributed object has a well defined (in fact, unique)
value, and its state is correctly shared by all its users at any
one time.

3.3 Challenges

Network traffic. Passing by reference gives the illusion
that only a small amount of data (i.c., the object identifier) is
shipped between the two address spaces. However, sooner
or later the computation may need to access the object, and
either the object or the computation (and a sufficient part of
its context) has to migrate so that both reside in the same ad-
dress space for the computation to proceed.

The consequence is that call by reference will generate
less traffic than call by copy only when the argument is never
examined by the callee or when it is moved and sharing is

414

sequential rather than concurrent. Furthermore, the resultant
traffic is decoupled from the call; this makes failure handling
more difficult.

Inter-store dependencies. A reference, once shipped to
another store, may be assigned to local variables or object
components, or dispatched to a third store. In practice, we
have found that the objects that form a distributed applica-
tion become strongly interconnected, increasing the depen-
dency between parts of the application.

Such dependencies can be acceptable in a tightly-coupled
distributed application running on a reliable local-area net-
work, but they prevent scaling the application to a level
where autonomy between stores is required. Autonomy is
needed for availability, i.e., to cope with partial failures. Per-
sistence implies that the application will run long enough for
partial failures to be significant.

Dealing with failures. Ideally the RPC system would
try to hide all failures from the application. This is unrealis-
tic because some failures may persist indefinitely, and unde-
sirable because users of the application may need to be in-
formed. It is also impossible to foresee all kinds of failures
in advance; unexpected system conditions are presented to
the application as failures.

In some cases application programmers may be well pre-
pared to deal with failures due to their knowledge of the ap-
plication. However, they should not be asked to deal with
transient or low-level failures (e.g., network congestion) as
it unnecessarily complicates their work; it is unreasonable
to ask application programmers to deal with failures below
their domain.

A persistent RPC with call by reference has to provide
mechanisms to deal with failures when accessing remote ob-
jects. This is in contrast with local references in a persistent
environment.

4 Call by copy

‘When an RPC passes an argument by copy, the value
of the argument is duplicated at the destination of the call.
Passing by copy makes stores more autonomous because
each has now a local copy of the object and does not depend
on the network or the other store to access its value.

4,1 Examples

Most RPC systems pass parameters by copy, including
the first RPC mechanism implemented by Birrel and Nelson
[4], Hamilton’s RPC {10], Argus [19], the RPC product from
Sun [29] and OSF {27}, XEROX’s ILU [13], and our RPC
described below.

Napier88/RPC [24] is a type-safe RPC mechanism for
Napier88. Based on Sun/RPC [29], Napier88/RPC supports
only arestricted number of type constructors as arguments to

remote procedures, and passes parameters by copying them
to the target program.

However, Napier88/RPC differs from Sun/RPC in a
number of aspects. The implementation uses techniques
made possible by Napier88, such as creating new stubs at
run-time using reflection and storing them for later use.
Napier88/RPC also supports a binding service based ¢n type
sessions. These are pairwise agreements between a client
and a server stub that permit type-checking to occur only
once per session.

Tycoon/RPC [23] is a type-complete RPC built for the
persistent language Tycoon [21]. Tycoon/RPC uses an ex-
isting pair of procedures that flatten (and un-flatten) an ob-
ject to (and from) a byte array. Flattening and un-flattening
an object of arbitrary type is possible with access to the ob-
ject’s implementation, but great care is needed to comply
with the language’s type-checking. Because any type can be
passed as an argument to the remote procedure, a variety of
distributed techniques is possible with Tycoon/RPC, includ-
ing migrating threads [22].

4.2 Advantages

If the value of the argument is copied to the target, the
source store is free to proceed autonomously until the target
finishes its computation and sends the result back. This is
appropriate in large systems where the computation may be
of a long duration or the source and the target are not guar-
anteed to be available all the time.

More importantly, in the absence of updates, with a local
copy of the full transitive closure the computation in the tar-
get on the copy is identical to the same computation on the
original object in the original source program.

4.3 Challenges

Large reachability graphs. Call by copy duplicates all
the objects reachable from the parameters; the entire transi-
tive closure of the reference graph must be copied, preserv-
ing any shared and cyclic data structures [11]. This closure
can be large, and is limited only by the size of the address
space of the source program.

In a persistent language the transitive closure of the pa-
rameters may include objects in the persistent store. Proce-
dures that are first-class citizens may have very large tran-
sitive closures — potentially as large as the entire store —
because the “address space” in a persistent program is the
persistent store. The transitive closure may also include
many objects that already exist in the target store, either be-
cause they are standard (e.g., a procedure (o write a string on
the screen) or because they have been copied as arguments
to a previous call. ,

415

Destroying the semantics of object sharing. Loss of
object sharing happens because, when a mutable object is
passed as a parameter, the new copy of the object that is cre-
ated remotely is a different object (the original object and the
copy have the same value but different identities). If either
the copy or the original is updated, inconsistent copies now
exist for what is conceptually a single object. Worse, if the
same object is passed as a parameter again, or returned as
a result in a remote procedure, different copies of the same
object may be created in the same store.

As an object may be copied repeatedly between stores, it
may arrive at a store by several different routes. This further
increases the complexity and the cost of verifying identity
and achieving coherent update.

5 Call by substitution

In this section we propose a model for parameter passing
that tries to incorporate the benefits — and avoid the prob-
lems — of both call by reference and call by copy. The fun-
damental requirements for our new model of call by substi-
tution may be summarised as follows.

1. Exclude remote references that unnecessarily de-
crease store autonomy, create message traffic and ag-
gravate the effect of partial failures.

2. Avoid duplicating objects that already exist in the tar-
get store.

3. Provide a well-defined, easily understood semantics
with a simple application programming interface.

The essence of our model is to use different parameter pass-
ing semantics for different classes of values.

5.1 Partitioned parameter spaces

In each store computation proceeds in a value space V.
We partition V' into three sets, although in principle there
could be further partitions. The sets establish semantics for
passing parameters and are defined as follows.

Immutable set (/). Immutable values (such as integers, re-
als, booleans and strings) are simply copied; the se-
mantics of computation is unperturbed by their repli-
cation.

Substituted set (S). These objects are not copied; instead,
they are replaced by equivalent objects in the target
store. This set is explicitly defined by system man-
agers or programiners using mechanisms outside the
scope of this paper.

Copied set (C'). These objects are deep copied on transmis-
sion, and are identified by set difference (values that
are notin [or in S must be in C).

In Napier88 we have [= intU real U bool U string U pixel U
null. The procedures that form the standard library [16] are
good candidates for .S partition. The implementation must
keep a database maintaining an enumeration of the S. Al-
though S may be the same between all pairs of stores, we
treat it as a pairwise agreement so that .5 may be changed
without global collaboration.

Note that remote references do not appear in this scheme,
and duplication is kept to a minimum.

5.2 Passing parameters by substitution

Before replacing a parameter object by its equivalent in
the target store, application programmers in the source and
target need to agree on which objects are substitutable and
register them in a pair of tables. An initial set may be com-
posed of all “standard” objects, i.e., those guaranteed to exist
in any store.

However, what is “standard” may depend on many fac-
tors. For example, in Glasgow a programmer may under-
stand “standard” to mean objects that belong to the Glas-
gow Libraries [31]. In addition, some programmers may
also agree between themselves what is “standard” for an ap-
plication.

Note that the substitution tables are needed only at call
time. This permits the programmer to extend and/or reduce
these databases at run-time. We can envisage some interest-
ing uses of this flexibility by extending the range of “stan-
dard objects” at run-time.

After the RPC system has been set-up with substitutable
objects in both the source and target stores, the algorithm for
passing a parameter by substitution works as follows.

1. If the parameter value is in [(determined from its
type) its value is copied to the target store.

2. If the parameter objects belongs to the substitutable
set, only a unique identifier for it is sent to the tar-
get store. When the identifier is received in the target
store, it is used as a key to the local substitution table
and is replaced by the equivalent local object.

. Otherwise, the parameter is copied to the target store.
This algorithm is applied recursively to embedded
references.

There are a number of potential difficulties with call by sub-
stitution. If the substitutable object has mutable state, the
state may not be consistent in the other store. Hence the ab-
sence of mutable state is a requirement for library objects.

416

It should also be noted that even though call by substitu-
tion can drastically reduce the amount of data being passed
for many objects, it cannot guarantee that large closures will
not be copied.

5.3 Implementation status

We have built three RPC prototypes in Napier88.

Release 1. Described in reference [24], the first release is
based on Sun/RPC [29] and as such supports only a
restricted set of constructor types. The parameters are
deep copied to the target store, including shared and
cyclic data structures [11]. Sharing is lost between the
arguments or in successive remote calls.

Release 2. This second release supports any type as an ar-
gument to a remote procedure because it uses two pro-
cedures that write an object of any type to (and read
from) the stable store [26]. When using this system,
we encountered many arguments with large transitive
closures that had to be copied to another store.

Release 3. This third and latest release performs call by
substitution as described above. Programmers spec-
ify in the source and target stores which objects are
substitutable. These specifications are maintained in
a pair of substitution tables, but at present no attempt
is made to verify the coherence of these tables.

5.4 Example application

The Library Explorer [8] is a persistent application that
uses information retrieval techniques to find relevant proce-
dures in the Glasgow Libraries [31]. The Explorer builds
indexes over the contents of the library. These indexes are
quite large in absolute terms (500 kB) but small compared
to the library itself (approximately 11 MB).

An initial version of the Remote Explorer using release

1 of Napier88/RPC was built by dividing the Explorer into

a client (mainly for user interface purposes) running at the

programmer’s store and a server (where the indexes are

stored and the main processing takes place). Release 1 was
adequate because only simple data types were exchanged
between the client and the server.

The need to access the index remotely can be avoided if

a copy of the index is cached at the client. Release 1 could

not be used to copy the index because it is implemented

as a complex data structure that contains two procedures

(isEqual and lessThan). However, our first attempt to

migrate the index using release 2 of Napier/RPC was unsuc-

cessful; the procedures refer to their context, which happens
to include the persistent root. Thus each attempt to copy the
index would try to copy the entire store.

Using release 3 and call by substitution we succeeded in
copying the index. The two procedures are now registered
as substitutable at both the source and the target, and they do
not actually migrate. A “definitive library server” holds the
library and generates the index, which can then be copied to
anumber of clients. As a result, this latest version of the Re-
mote Explorer has the advantages of centralisation (library
maintenance at the server) and distribution (fast and reliable
access to the index at the client).

6 Summary and future work

The contributions of this paper are as follows.

1. We have presented the major issues involved in the
design of a type-complete persistent RPC that will
help us to build the large-scale, long-lived applica-
tions of the future (sections 1 and 2).

. We have shown that existing semantics for parame-
ter passing — call by copy and call by reference — are
not suitable for building the class of distributed per-
sistent applications that we want to support (sections
3 and 4).

3. We have proposed a compromise for parameter pass-
ing semantics based on call by substitution(section 5).

This is a first step towards our ultimate goal of a generic,
simple, realistic mechanism for inter-process communica-
tion in a persistent environment.

In order to further address these issues, we are currently
instrumenting the use of our prototype in the Library Ex-
plorer (see section 5.4 above). Even though the explorer
may not represent one of the large-scale applications that we
want to support in the future, it is sufficiently long-lived to
validate our claim for realism and to stress our design.

A number of distributed applications will also be built to
test our claims of simplicity and generality. Both experi-
enced and novice persistent programmers will be involved
in this experiment.

Acknowledgements

We would like to acknowledge Bernd Mathiske for shar-
ing with us his experiences with Tycoon/RPC. Kazuhiko
Kato’s hospitality and insight into issues for this class of
RPC mechanisms was highly appreciated. The research
environment in Glasgow is partially supported by projects
FIDE;, IMIS and DRASTIC. Miguel Mira da Silva is sup-
ported by JNICT. Andrew Black is partially supported by
ARPA contract number N0O0014-94-1-0845.

417

References

[1] M. Atkinson, P. Bailey, K. Chisholm, W. Cockshott, and

R. Morrison. An approach to persistent programming. The

Computer Journal, 26(4):360-365, Nov. 1983.

M. Atkinson and R. Morrison. Orthogonal persistent object

systems. VLDB Journal, 4(3):319-401, 1995.

B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.

Levy. Lightweight remote procedure call. Operating Sys-

tems Review, 23(5):102—-113, Dec. 1989.

A. Birrel and B. Nelson. Implementing remote procedure

calls. ACM Trans. Comput. Syst., 2(1):39-59, Feb. 1984.

[5] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network

objects. In Proceedings of the 14th ACM Symposium on Op-

erating Systems Principles, pages 217-230, Dec. 1993.

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Dis-

tribution and abstract types in Emerald. /EEE Transactions

on Software Engineering, SE-13(1):65-76, Jan. 1987.

A. Black, E. Lazowska, H. Levy, D. Notkin, J. Sanislo, and

J. Zahorjan. Interconnecting heterogeneous computer sys-

tems. Commun. ACM, Mar. 1988.

J. Brown. A library explorer for the Napier88 GlasgowLi-

braries. Master’s thesis, Department of Computing Science,

University of Glasgow, Sept. 1993.

G. Hamilton, M. Powell, and J. Mitchell. Subcontract: A

flexible base for distributed programming. Technical Report

SMLI TR-93-13, Sun Microsystems Laboratories, 1993.

K. Hamilton. A Remote Procedure Call System. PhD thesis,

University of Cambridge Computer Laboratory, 1984.

M. Herlihy and B. Liskov. A value transmission method for

abstractdata types. ACM Trans. Prog. Lang. Syst., 4(4):527—

551, Oct. 1982.

C. A. R. Hoare. Communicating sequential processes. Com-

mun. ACM, 21(8):666-678, 1978.

[13] B.Janssen,D. Severson, and M. Spreitzer. ILU 1.6.4 Refer-
ence Manual. Xerox Corporation, May 1994.

[14] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained

mobility in the Emerald system. ACM Trans. Comput. Syst.,

6(1), Feb. 1988.

K. Kato, A. Ohori, T. Murakami, and T. Masuda. Distributed

C language based on a higher-order RPC technique. Com-

puter Software, 9(3), 1993. (in Japanese, also published

in English by Iwanamim Shoten, Publishers and Academic

Press, Inc.).

G. Kirby, A. Brown, R. Connor, Q. Cutts, A. Dearle,

V. Moore, R. Morrison, and D. Munro. The Napier88 stan-

dard library reference manual version 2.2. Technical Report

FIDE/94/105, ESPRIT Basic Research Action, Project Num-

ber 6309—FIDE;, 1994.

K. Kono, K. Kato, and T. Masuda. Smart remote proce-

dure calls: Transparent treatment of remote pointers. In Pro-

ceedings of the 14th International Conference on Distributed

Computing Systems (Poznan, Poland, June 21-24, 1994).

IEEE Computer Society Press, 1994.

J. Liedtke. Improving IPC by kernel design. In Proceedings

of the 14th ACM Symposium on Operating Systems Princi-

ples, pages 175-188, Dec. 1993.

[19] B. Liskov. Distributed programming in Argus. Commun.
ACM, 31(3):300-312, Mar. 1988.

(2]
B3]

[4]

{6

—

[7

—

[8

—

9]

[10]

(1]

{12]

[15]

[16]

(17]

(18]

{20

f21]

[22]

[23

—

[24]

[25]

[26]

[27]

(28]
[291

[30]

[31]

B. Liskov and L.. Shrira. Promises: Linguistic support for ef-
ficient asynchronous procedure calls in distributed systems.
In Proceedingsof the SIGPLAN’88 Conference on Program-
ming Lnaguage Design and Implementation, pages 260-267,
1988.

B. Mathiske, F. Matthes, and S. Mussig. The Tycoon system
and library manual. Technical Report DBIS Tycoon Report
212-93, Computer Science Department, University of Ham-
burg, Dec. 1993.

B. Mathiske, F. Matthes, and J. W. Schmidt. On migrating
threads. In Proceedings of the Second International Work-
shop on Next Generation Information Technologies and Sys-
tems (Naharia, Israel, June 1995), 1995.

B. Mathiske, F. Matthes, and J. W. Schmidt. Scaling database
languages to higher-order distributed programming. In Pro-
ceedings of the Fifth International Workshop on Database
Programming Languages (Gubbio, Umbria, ltaly, 6th-8th
September 1995), 1995,

M. Mira da Silva. Automating type-safe RPC. In Proceed-
ings of The Fifth International Workshop on Research Is-
sues on Data Engineering: Distributed Object Management
(Taipei, Taiwan, 6th-7th March 1995), pages 100-107.1EEE
Computer Society Press, 1995.

R. Morrison, A. Brown, R. Connor, Q. Cutts, A. Dearle,
G. Kirby, and D. Munro. The Napier88 reference manual
release 2.0. Technical Report FIDE/94/104, ESPRIT Basic
Research Action, Project Number 6309—FIDE;, 1994.

D. S. Munro. On the Integration of Concurrency, Distribu-
tion and Persistence. PhD thesis, University of St Andrews,
1993.

OSF — Open Software Foundation. Remote Procedure Call
in a Distributed Computing Environment: A White Paper,
1991.

M. D. Schroeder and M. Burrows. Performance of firefly
RPC. Operating Systems Review, 23(5):83-90, Dec. 1989.
Sun Microsystems, 2550 Garcia Avenue, Mountain View,
CA 94043. RPC Programming Guide, 1993.

F. Wai. Distributed Concurrent Persistent Programming
Languages: An Experimental Design and Implementation.
PhD thesis, University of Glasgow, Apr. 1988.

C. Waite, R. Welland, T Printezis, A. Pir-
mohamed, P. Philbrow, G. Montgomery, M. Mira da Silva,
S. Macneill, D. Lavery, C. Hertzig, A. Froggatt, R. Cooper,
and M. Atkinson. Glasgow libraries for orthogonally persis-
tent systems — philosophy, organisation and contents. Tech-
nical Report FIDE/95/132, ESPRIT Basic Research Action,
Project Number 6309—FIDE,, 1995.

418

