Proving Monitor Proof Rules
Leif S. Nielsen and Andrew P. Black

Department of Computer Science
University of Washington

Seattle, Washington 98195

Technical Report 85-08-01
August 6, 1985

Abstract

Various authors have proposed differing sets of Axiomatic Proof Rules for Monitors.
Which of these sets of rules are correct? What are the relationships between them? To
answer these questions we need a description of the monitor that is both formal enough to
permit the derivation of the proof rules and yet intuitive enough to correspond clearly with
our informal understanding of monitors.

DMC is a new descriptive tool for concurrent modules that meets these goals. The central
idea is the separation of Data Manipulation and Control. A monitor can be translated into a
DMC module in which the semantics of signal and wait is given by the Control description.
From the use of DMC we derive a new set of proof rules that is strictly more powerful than
any that has been previously published. We are also able to clarify the role of the various

state predicates in these rules.

Nielsen is supported in part by an IBM Graduate Fellowship.
Black is supported in part by the National Science Foundation under Grant No.
MCS-8004111.

1 Introduction

The monitor is an important concurrent programming language concept [3). 1t
combines the idea of an abstract data type in a sequential language with the idea
of a critical section in a concurrent language. A monitor encapsulates a set of
related data variables and permits them to be accessed only through procedure calls.
Additionally, only one process is permitted to execute inside the monitor at any one
time (mutual exclusion). That process maintains exclusive access to the monitor
until it reaches a control point where the monitor variables are in a consistent state.

A monitor snvariant is a consistency assertion on the monitor’s variables. If each
procedure execution is allowed to proceed from entry to exit without giving up the
exclusive access to the monitor variables, we may formulate a simple set of proof
rules for maintaining the monitor invariant. The initialization must establish the
invariant; each procedure execution may assume the invariant to be true at the entry
point and must reestablish the invariant at the exit point. If the monitor invariant
is J, and the state predicate snst describes the state after the initialization, we can
formulate these proof rules as follows:

inst = J
{J} procedure body {J}

for any monitor procedure with body procedure body.

Using a dynamic resource allocator as an example, Hoare [3] points out that a
procedure execution may have to wait for the resource to become available. Thus,
there is a need for an operation to wast for a resource, and a stgnal operation to wake
up a waiting process. Hoare introduces the condition variable as a synchronization
mechanism. If cond is a condition variable associated with a particular resource,
then a process may relinquish its exclusive access to the monitor by executing a
cond.wait. When another procedure execution has established that the resource is
available, it executes a cond.signal. If one or more processes are waiting on cond at
this time, the signaling process will be suspended and one of the waiting processes
will be allowed to continue. If no process is waiting, then the signaler may proceed.
Suspended signalers and processes waiting to enter the monitor are ready. When a
process executes a cond.wast or exits from a procedure, one of the ready processes
may continue. y

We shall use R for the resource condstion associated with a condition variable
cond. R is an assertion on the monitor’s variables which describes the condition
under which the resource associated with cond is available. Using this notation,
Hoare’s proof rules for stgnal and wast are:

4 1 INTRODUCTION

{J} cond.wast {J A R}
{J A R} cond.signal {J}

The invariant J must be true before a wast operation since the next ready process
to execute may be a new caller, which needs the invariant. The ready process could
also be a suspended signaler; thus, the postcondition for signal is also the invariant.
The resource condition R should clearly be true when control is transferred from a
signaler to a waiting process. However, although the rules require that the invariant
should be true before a signal that will transfer control, correct monitors can be
written in which this is not the case. Similarly, the rules unnecessarily require that
the resource condition should be true when there is no process waiting at the time
of the signal. While simple and intuitive, the proof rules in [3] may often be too
weak to prove a monitor invariant. An example is the monitor implementation of a
semaphore |1, 4].

Two modifications have been made to these rules. Howard [4] introduces the
convention that there should be no unnecessary waiting, i.e. that there should be
no process waiting on a condition variable when the resource condition is true and
no other process is executing. As an example, a procedure execution should not exit
with R true if there are waiting processes. Proof rules are given for enforcing this
property (see section 4). These rules avoid the above problems by requiring that
there must be a process waiting on a condition variable before it can be signaled.

Adams and Black [1] address the problem of reflecting the semantics of condition
variables more closely. The main idea is to introduce a signaling condition B which
will be assumed as the postcondition for cond.wast. In the precondition of signal,
B is assumed when there are waiting processes, while the invariant is assumed when
there are no waiting processes (see section 4).

Both of the modified proof rule sets refer to the number of processes waiting
on cond. If the assertions in the proof rules are allowed to refer to this control
information, it is necessary to be careful about the pre- and postconditions for
cond.wast. Howard 5] shows how this can be done.

Howard [5] also gives proof rules for a number of alternative implementations
of condition variables. We consider the simplest possible implementation in which
the signal results in an immediate transfer of control to a waiting process, and the
suspended signaler goes back to the pool of ready processes. This is the “Signal and
Wait” semantics in {5].

This paper clarifies the relationship between these sets of rules using a new de-
seriptive tool, DMC. This is the basis of a general specification technique for concur-
rent modules; in this presentation, however, we restrict ourselves to the description
of the semantics of a monitor. This monitor description is formal, yet intuitive

enough to establish a clear correspondence between it and our informal understand-
ing of monitors. Using DMC, we derive a new set of proof rules that is strictly
stronger than any of those previously suggested. The monitor description in DMC
provides a simple medium for experimenting with different definitions of monitors
and with different ideas for monitor proof rules.

2 DMC: A model of concurrent modules

DMC is a concrete descriptive tool for concurrent modules currently under develop-
ment at the University of Washington {7]. The central ideas are the separation of
Data Manipulation and Control (giving the acronym DMC), and the use of familiar
underlying concepts such as modules, procedures, and control points. This presenta-
tion does not attempt to cover all the features of DMC; we restrict our attention to
those features that are necessary to describe monitors. Specifically, we will consider
modules which receive and execute procedure calls but do not initiate calls to other
modules.

A system in DMC consists of a fixed number of named modules; each module
description consists of a Data Manipulation description and a Control description.

The Data Manipulation description declares some initialized data variables
and some exported procedures that may manipulate these variables. Each procedure
has a number of control points, including an entry point and an exit point, and may
also have some local variables. The body of the procedure defines atomic data
transitions that occur as the procedure execution moves from one control point to
the next.

The following DMC procedure definition is used in section 3. It is the P operation
of a semaphore implementation translated from a monitor into DMC. The variable
s 13 a global data variable.

procedure P

entry:
if s =0 then cu:
g=g=~1

exit:

We represent the control points by labels using an Algol-like notation. The
internal control point cw represents the cond.wait in the monitor implementation.
In general, a DMC control point is used to represent a point in the execution where
interaction with other procedure executions or external communication may take
place. In our examples, the data transitions are programmed in an imperative style
using variables and assignments. In principle, the data transitions are defined by a
function which takes as input the state of the module’s variables, a control point,

6 2 DMC: A MODEL OF CONCURRENT MODULES

-0 o\:) oro O—

Empty Arrival Registration Emergence Departure

Figure 1: A control point and its use

and the state of the local variables of a procedure execution (at this control point);
the data transition function returns a new global data state, a new control point,
and a new local data state for the procedure execution. In particular, the choice of
the new control point may depend on the global and local data state: local control
is dynamic. In procedure P the value of s decides whether the procedure execution
moves from entry to cw or exst. '

In our model the control points are represented by buckets (U). The execution of
a procedure is represented by the movement of a pebble (o) from bucket to bucket; the
local variables of the procedure are written on the pebble. Each bucket is equipped
with two shelves. The left-hand shelf (1) is called the register shelf, it is occupied
by arriving pebbles before they are registered (moved down into the bucket). The
right-hand shelf () is called the emerge shelf; it is occupied by a pebble that has
emerged from the control point. A control point and its use is illustrated in figure 1.

The Control description defines enabling conditions for control points, declares
some control varidbles, and associates atomic transitions on the state of these vari-
ables with registration and emergence. These transitions are called control tran-
sitions and are programmed in an Algol-like notation. Some control variables are
pre-declared: the control point counter |z| indicates the number of pebbles in the
bucket for control point z, i.e. registered pebbles.

The enabling condition b for control point z is denoted by 6 — z, where b is a
boolean expression referring to control variables. Selection of a pebble from a bucket
may take place only when the enabling condition for the corresponding control point
is satisfied. When more than one pebble can be selected, the choice is made non-
deterministically. Following the selection, the pebble will emerge from the control
point. Figure 5 shows the complete Control description of a DMC module.

The movement of a pebble from one bucket to another is shown in figure 2; we
refer to this multiple transition as the triple-transition.

The triple-transition is indivisible; once a pebble has emerged from z, no other
pebble is moved until this pebble is registered at the next control point y. The
emergence and registration transitions always include the updating of the control
point counters; naturally, these counters may not be updated explicitly.

1. Emergence (control transition, includes |z| := |z] — 1)
2. Data transition
3. Registration (control transition, includes |y := |y| + 1)

Figure 2: Moving a pebble from control point z to control point y

2 3 4
’ Y s

—1»0' O =+

entry exit

Registration of call
. Emergence of call

. Data transition

. Exit registration

. Return transition

cn.uoaw!-

Figure 3: A simple procedure execution

The Data Manipulation description will refer only to global data variables and
the local variables of a procedure; the Control description will refer only to control
variables. This restriction is the main way in which we separate Data Manipulation
from Control.

A module computation takes place as follows. Initially, all buckets and shelves
are empty. A call of an exported procedure is represented by the registration of
a pebble at the procedure’s entry point. The entry point has no register shelf (a
destination control point). The arguments of the call are written on the pebble.
Following the registration of the pebble at the exit point, the pebble returns to the
caller; the results are written on the pebble. The exit point has no emerge shelf (a
source control point).! The exit registration increments the exit counter, but the
return transition does not decrement this counter. The exit counter thus acts as a
history variable recording: the number of completed procedure executions.

Figure 3 represents the execution of a simple procedure with no internal control

points.

1At the caller side, the call is represented by two control points: a call point (source control point)
and a return point (destination control point).

8 3 MONITOR SEMANTICS USING DMC

Because the triple-transition is indivisible, there will be at most one pebble on a
shelf. A state in which there is a pebble on a shelf is termed private; states in which
there is no such pebble are public. An external observer may think of the module
computation as a sequence of public states. The public state is changed by call
registrations and internal transitions (triple-transitions). The module programmer
is also concerned with the intermediate private states.

Call registration may occur in any public state. The call registration transition
may have programmer defined actions.

For reasoning about the module (e.g. for giving a module specification), we
introduce state predicates to describe the four states in the triple-transition. The
symbols J, r etc. can be imagined to be part of the bucket for the control point,
with the pebble on the horizontal line.

Sjfe: control point z is enabled (public state)

rz: a pebble on the emerge shelf of z (private state)
1y: a pebble on the register shelf of y (private state)
Ly: a pebble has just been registered at y (public state)

These predicates are not part of the DMC algorithmic notation, e.g. they cannot
be used in enabling conditions or in the tests of if/while statements. Jz implies that
there are pebbles at z and that z is enabled, but does not imply that one of these
pebbles will be selected. Ly is true only until a new pebble is selected or a call is
registered. Registration of a call of p has postcondition L p.entry. Lp.ezit remains
true until a new pebble is selected or a call is registered. The return transition will
not affect the value of this predicate.

Other predicates can be derived from these four state predicates. For example,
the predicate public is true in all public states. The predicate ¢nit is true in the
initial public state where all data and control variables have been initialized and
where no call has been registered.

In section 3 we describe how a monitor can be translated into a DMC module.
In section 4 this DMC module is used to derive a new set of proof rules. The above
state predicates are important for this derivation.

3 Monitor semantics using DMC

The essential properties of a monitor as defined by Hoare [3] are the encapsulation
of the monitor’s global data variables, the mutual exclusion of procedure executions,
and the use of condition variables. Figure 4 shows a monitor implementation of a
semaphore.

monitor sem
var
8:integer := 0
cond : condition

procedure P

begin
if s = 0 then cond.wait
$:=g-—1

end

procedure V

begin
s:=2+1
cond.signal
end
end sem

Figure 4: Monitor implementation of a semaphore

We now describe how a monitor can be translated into a DMC module. For
simplicity, we shall model a monitor with a single condition variable and two ex-
ported procedures (a generalization requires some extra notation}. Procedure W
does a single cond.wast, and procedure S does a single cond.ssgnal. The cond.wast
is represented by a control point cw, and the cond.signal is represented by control
point c¢s. The monitor template is shown in figure 5.

The monitor code is used to fill out the Data Manipulation description. The con-
trol points are represented as labels. The mutual exclusion of procedure executions
is achieved by grouping monitor statements into a single data transition which is
part of an indivisible triple-transition. '

The semantics of signal and wast is given by the Control description. The condi-
tion variable is not one of the Data Manipulation variables in the template; instead
a control variable trans fer is used to remember a signal. According to our seman-
tics, a signal on an empty condition variable may still give up control to a new
call or another suspended signaler. Suspended signalers could be given priority over
new calls by disabling the entry points when there are suspended signalers; this can
be accomplished simply by putting [cs| = 0 in the enabling conditions for the entry
points. If we wanted a sfgnal on an empty condition variable to be a no-op, we could
introduce the ability to enable particular procedure executions rather than control
points; i.e. by putting a mark on the procedure execution during the registration at

10 3 MONITOR SEMANTICS USING DMC

module MonitorTemplate
Data Manipulation

var

procedure W

entry: ..

cw: .. { cw represents cond.wait }
ezxst:

procedure S

entry: ..

¢s: .. { cs represents cond.signal }
exit:

Control

var
trans fer : boolean := false

register cs:
if [cw| > O then transfer ;= true

emerge cw:
trans fer := false

enable
-transfer — Wentry
-iransfer — S.entry
=trans fer — cs
transfer — cw

end MonitorTemplate

Figure 5: Monitor template in DMC

11

¢s, and use this mark in the enabling condition.? Alternatively, cond.signal could
be translated into: if |cw| > 0 then cs:. However, this tranlation would obscure the
clean mapping of programmer provided code to Data Manipulation description and
monitor implementation code to Control description, and it would also introduce a
control variable in the Data Manipulation description.

If the monitor in figure 4 were translated to DMC, the Data Manipulation de-
scription would look like this:

var
8 : integer := 0

procedure P

entry:
if 2 =0 then cw:
g:=8-1

ezxst:

procedure V
entry:
s:=s8+1
cs:
ezit:

The monitor template of figure 5 is used in the next section to derive a new set of
proof rules. The most important property of the monitor template is that trans fer
is true only when control is being transferred from a signaler to a waiting process.

4 Monitor proof rules using DMC

The usual verification technique for a monitor uses an snvariant: this invariant is
established initially, and is preserved by each monitor procedure execution. The
tricky part of the verification involves signal and wast. Since the signal may include
a transfer of control, the precondition of the sfgnal must imply the postcondition
of the wait. On the other hand, a signal on an empty condition variable may be a
no-op; in our monitor template in figure 5 we allow any ready process to continue.
Therefore, when no process is waiting on the condition variable the precondition of
the signal must imply both the postcondition of signal and the precondition of each
procedure.

In the following we shall assume a monitor invariant [and a signaling condition
B which is the postcondition for wast. B implies that the resource {corresponding

%In the general version of DMC, the enabling condition may refer to the local variables of the
procedure execution; the enabling condition then becomes a condition for selecting a particular
procedure execution at a given control point.

12 4 MONITOR PROOF RULES USING DMC

to the condition variable) is available. So, using R for the resource condition, we
have B = R. Some proof rules also require B = I; without this requirement,
B should be strong enough to reestablish I again before procedure exit. It is the
monitor programmer’s responsibility to come up with meaningful Is and Bs. We
(the formulators of the proof rules) will make some restrictions on these predicates.

Using a set of monitor proof rules, the monitor programmer may assume certain
preconditions for the data transitions and must then establish the corresponding
postconditions. As an example, in programming the data transition from an entry
point to a signal, the programmer may assume the precondition for the procedure
and must then establish the precondition for signal, which is actually the postcondi-
tion for the data transition. In terms of our model, the proof rules are presented to
the programmer as the private pre- and postconditions for the data transitions; that
is, they impose restrictions on the two intermediate states in the triple-transition in
figure 2. The initialization is the common responsibility of the monitor programmer
and the implementation of the monitor.

We shall use the monitor template in figure § to derive proof rules. We shall first
state a simple set of rules describing all public states. The state predicates init and
publsc are described in section 2. The rules are:

Pubg: tnit = [
Puby: publsc A ~transfer = I
Puby: transfer = B

Comments on the Pub-rules: The predicate inst is true in the initial public
state where all variables have been initialized; from inst = public A —transfer
it follows that Puby can be derived from Pub,. trans fer becomes true during a
cs registration which results in a public state. Two state transitions may occur
when transfer is true: a call registration may occur in any public state, and a cw
emergence has trans fer as enabling condition. The first maintains the public state,
while a cw emergence makes trans fer false and results in a private state. Therefore
trans fer = public, and Pub; is a public state predicate.

The Pub-rules express the essential ideas of 7 and B. We shall now translate
these rules into a set of predicates describing all private states. This will lead us one
step closer to the normal formulation of monitor proof rules.

Let us assume that [and B refer to the data variables and to the counter |ew).
We will allow the predicates to refer neither to any other counters, nor to the special
DMC predicates describing private and public states, because those predicates do not
make sense to the monitor programmer. In other words, the monitor programmer
is allowed to reason about the number of waiting processes at cond.wast (|ew}), but
not about any other control information.

13

We now present some rules describing the private states, and then prove that
these Pri-rules can be derived from the Pub-rules. We shall use the private state
predicates presented at the end of section 2. Using the two control transitions in
figure 5, and remembering the update of a control point counter in each control

transition (figure 2), we get:

{ Data Manipulation } { Control }
Prig: tnit = [shared responsibility
Priy: Fentry = I for each procedure
" Prizz ezt [for each procedure
Prig: Tew = [*
Prig: Few = B*
Pris: cs= (BA|cw|>0) V(IA |cw| =0)
Prig: res=1

where X* is obtained by replacing all occurrences of lew] in X by |ew] + 1.

Given the semantics of figure 5 we will prove that the Pri-rules can be derived
from the Pub-rules. The main observation is that trans fer becomes true during
a cs registration and remains true until the next emergence which must be a cw

emergence.

® Prig is the same as Puby; Prig can be inferred from Prs,.

e Priy, Priz, and Prig follow from Pub, since I must be true in the public state
preceding an entry or cs emergence, and I must be true in the public state
following an ezst registration.

* Pris follows from L cw = public A ~transfer = I, and the usual axiom for
assignment {I°} jew| := |ew| + 1 {I}. Pri, similarly follows from Jcw =
transfer = B, and {B} |cw] := |cw] - 1 { B*}.

® Pris follows from 1cs = -public = -transfer which together with the cs

registration gives:
Les = (transfer A lew| > 0} V (=trans fer A |cw| = 0)

We then use Pub, and Pub, to introduce I and B instead of trans fer, and
finally notice that the cs registration does not change I, B, and |cw|.

We have now proved that the Pri-rules follow from the Pub-rules. In general

it is true that if we have a set of predicates describing all the public states, we

14 4 MONITOR PROOF RULES USING DMC

can derive a complete set of private state predicates, and vice versa. In the above
transformation from Pub-rules to Pri-rules we have not lost any information. We
could derive the Pub-rules from the Pri-rules using similar arguments. The only
underlying assumption is that a call registration will not make I or B false; this
follows from the restriction that I and B do not refer to any entry counter.

A more traditional formulation of the private proof rules is:

Mo: init=> 1 (from Prip)
Mu: {I} procedure body {I} (by combining Prs; and Prip)
" Myz: {I'} cond.wast { B*} (by combining Pris and Pri,)

Mis: {(BAK)V(IA-K)}cond.signal {I} (by combining Pris and Prig)

The predicate K in M is equivalent to |cw| > 0. The counter |cw| corresponds
to the number of waiting processes (at cond.wast). In existing monitor languages,
the programmer is normally provided with a predicate which indicates that there
are waiting processes (e.g. K = cond.queue).

We can now discuss some of the monitor proof rules that have been suggested
in the past. Adams and Black [1] introduce the signaling condition B and the
disjunctive precondition for sfgnal. They do not use the asterisk to formalize the
use of the number of waiting processes. Their rules are the M,-rules leaving out the
asterisk in M2.

Howard [4, 5] introduces two extra requirements on the programmer. First, he
requires that signal is only done when there are waiting processes. A predicate Q
is used to ensure that there are waiting processes and that the resource is available.
Second, he requires that no process should be left waiting at a cond.wast if the
resource is available and the monitor is idle (that is, no process is executing). The
consistency of the monitor variables are described by the invariant J. E is introduced
to give the extra “no unnecessary waiting” property. Our interpretation of Howard’s
rules is:

My: inst=>JAE
Mz: {J A E} procedure body {J A E}

My: {(J AE)*} cond.wait {(J A Q)*}
Mzs: {J AQ} cond.signal {J A E}

My JAE=>-RV-K
Mog: J/\Q=>K
Meg: JAQ=>R

15

The asterisk was presented in {5]; however, in [4] it was not used, which may have
caused some confusion. For example, if the postcondition of cond.wast is J AQ, then
by Mas, K holds, i.e. there are always waiting processes.

The relation between the M,-rules and the M;-rules are contained in: I = JA E
and B = J A Q. If signal is done only when K is true, then the precondition from
My for cond.signal reduces to the precondition in Mss. Ma4 could also be added
to the M-rules. However, this requirement has nothing to do with the semantics
of the monitor; instead, it expresses a convention for its use. The requirement in
M:s that signal is only done when there are waiting processes is not required by
the Mj-rules. At the beginning of this section we mentioned B = R as a reasonable
assumption, corresponding to Mag.

Finally, we may point out that there is a conceptual difference between the M,-
rules and the Mz-rules. The Af;-rules require that the data invariant J is true when
control is transferred from a signaler to a waiting process, while the signaling condi-
tion B in the M-rules has no direct relation to the invariant I. The interpretation
of Howard’s rules is discussed further in the exchange of letters [6] and [2].

For comparison we shall repeat the original proof rules from [3]. They refer to
the data invariant J and the resource condition R.

Mso: init = J
Msy: {J} procedure body {J}

My2: {J} cond.wait {J A R}
Mss: {J A R} cond.signal {J}

Compared with the Mj-rules, there is no reference to the number of waiting
processes, and the signaling condition J A R implies both the postcondition for wast
and the postcondition for signal. If we assume the relations I = J and B = J A R,
then the precondition for signal in M,s is still weaker than J A R, because R is not
required when no process is waiting.

Of the rules we have discussed, clearly the M;-rules are the most powerful. The
rules were derived from the monitor template definition in DMC. Thus, the sound-
ness of these rules follows from their constructive derivation. Given the equivalence
with the Pub-rules it seems unlikely that a more powerful set of proof rules can
be formulated based on the idea of a monitor invariant and a signaling condition.
However, we did make one simplifying assumption in going from the Pub-rules to
the Pri-rules. We assumed that [and B are allowed to refer to the counter lew],
but not to any other counters. It would be simple to allow references to any control
point counter (entry, cs, and ezit), but it is not clear whether or not this would be

16 4 MONITOR PROOF RULES USING DMC

a useful generalization (the phase synchronizer example below includes some gen-
eralizations). Howard [5] presents a number of alternative proof rules for monitors.
However, they all reflect changes in the monitor semantics, e.g. that signalers have
priority over new procedure executions.

We have set up a framework in which experimentation with the monitor semantics
and with different ideas for proof rules can be carried out fairly easily.

4.1 Example: Semaphore

We shall prove that the monitor implementation of a semaphore shown in figure 4
satisfies Habermann’s invariant. With the resource condition R = (s > 0), Hoare’s
rules are strong enough to prove that the data invariant J = (s > 0) is maintained.

Habermann’s invariant is normally formulated np = min{nv,na}, where na is
the number of attempted P calls, np is the number of completed P calls, and nv is
the number of V' calls (including suspended signalers). Hoare’s rules are not strong
enough to prove this invariant. Using our DMC template we may interpret these
three entities by the relations: na = |cw|+|P.ezit|, np = |P.ezit|, nv = [cs|+|V.ezst|.
We also use s = nv — np which is true in all of the public states where our proof
rules require I. We may simplify Habermann’s invariant by subtracting np on both
sides of the equation to get: min{s,|cw|} = 0. This will be our I. Our signaling
condition B must be strong enough to reestablish I at the end of P. B = (s=1)is
the weakest predicate to guarantee this requirement. The M, -proof rules can now
be used to prove the normal monitor implementation of the semaphore as shown in
figure G.

We note that [= (J A (-RV ~K)), so [satisfies the no unnecessary waiting
property introduced by Howard. We also notice that -(B=1I).

Our verification has not used any auxiliary variables, except the natural control
point counter |cw|. We have not assumed that signal only be done when there
are waiting processes, and we have formalized the use of lcw|. These properties
illustrate that the AM,-rules are stronger than any of the previously published proof
rules mentioned in this paper.

4.2 Example: Phase synchronizer

The following example uses both the wast counter and the signal counter. The
M-rules are modified to allow reference to the counter [cs|. The new proof rule for
signal is:

Mis: {(B°A K)V(I° A~K)} cond.signal {I°}

where X° is obtained by replacing all occurrences of les| in X by |es| + 1.

4.1 Example: Semaphore

monitor sem

{ I =(min{s,|cw|} =0)}
{B=(s=1)}

var
8 :integer := 0
cond : condition
{init = (Jew| = 0)A{s=0)) >
min{s,cw|} =0}

procedure P
begin
{ min{s,|cw|} =0}
if s =0 then
{ (6 =0) A (min{s,|cw|} =0) }
{ mz’r}z{o, few| +1} =0}
II

cond.wait
{B*}
{a=1)

{ (s #0) A (min{s,|cu|} = 0) }
{(6>0)A(lew] =0) }
end if
(=1 (>0 Afful =0))
g:=a8—
{(s=0)V((s20)A(jcw| = 0)) }
{ min{s,|cw|} =0}

else

end

procedure V
begin
{ min{s,|cw|} =0}
s:=s8+1
{ min{s - 1,|cw}} =0}
{{ls =D A(lew] > 0} v ((min{s,|cw]} = 0) A (jcw| = 0)) }
cond.stgnal
{ min{s,|cw|} =0}
end

end sem

Figure 6: Verification of a monitor implementation of a semaphore

18 4 MONITOR PROOF RULES USING DMC

The program of n identical processes contains one loop. The processes must stay
in phase, that is, they wait at the top of the loop until all processes have completed
the current iteration; then they all do another iteration etc.

The synchronization is implemented by a call of the procedure synchronize in the
monitor phasesynch. The implementation uses one variable ¢ to count the number
of waiting processes at cond.wast (¢ = |cw| most of the time). The code for the
procedure synchronsze is short:

ifc<n-—1then

ci=c+1

cond.wast
else

c:=0
end if

cond.signal

It is important that control is transferred immediately from the signaler to the
waiting process, otherwise the signaler could complete its loop and join the waiting
processes before the current iteration is over. The central property of this implemen-
tation is that signal is executed when all n processes are either at signal or wait.
This is expressed in the signaling condition B = (([cw} + [cs| = n) A (¢ = 0)). The
invariant is I = (¢ = [cw|). This invariant does not follow from B, and therefore we
need the disjunctive precondition for signal. The verification is shown in figure 7.

The subtle point in the verification is the else part of the if statement. Given
(lew| 2 n—1) we use the fact that there are n processes. With at least n—1 processes
at waist and one process executing the else part, all n processes are accounted for.
It follows that (Jew| = n—1)A(|cs| = 0). It is interesting to observe that since ¢ < n
is always satisfied (could be part of the invariant), we can conclude |cw| =n -1 in
the else part without knowledge of the number of processes. However, if there may
be more than n processes calling the monitor, we can not prove les] = 0. In fact, the
signaling condition will no longer be correct in this case, unless suspended signalers
have priority over new incoming calls.

The property we want to prove is that the n processes are in phase. This follows
implicitly from B. To express this property explicitly we could introduce auziliary
variables to count the number of iterations for each process. If {; counts the number
of iterations for process i, the increment of /; should happen just before signal. The
new invariant and signaling condition are restrictions of the two old ones:

4.2 Example: Phase synchronizer 19

monitor phasesynch

(I=(c=ou) }
{B'=((lew| +lesl =n) A (c =0)) }

var
¢ : integer := 0
cond : condition
{ init = (Jcw| =0) A (c =0)) = (c =|cu|) }

procedure synchronize

begin
{ (c=cw]) }
ifc<n-1then
{(c<n=1)A(c=]cuw]) }
{(c=]cul) }
ci=c+1
{c=1=]cu]))
{1}
cond.waist
{ B*}
{(lew| +1+|cs =n)A(c=0)}
else
{(e2n=-1)A(c=]cu]) }
{lewl 2n -1}

c:=0
{lew| 2n-1)A(c=0))
{ lew] = n = 1) A (Jes| = 0) A (c = 0) } { because there are n processes }
{ (lew| +1+]cs) =n) A (c=0))
{B°}
{ (B* A (jcu| > 0)) v (B* A (jeu| = 0)) }
{ (B° A(jcw] > 0) v ((c = 0) A (jeu] = 0)) }
{ (B2 A(Jeul > 0)) v (I° A (jow] = 0)) }
cond.aignal
{I°}
{1}

end

end phasesync

Figure 7: Verification of a phase synchronizing monitor

20 5 CONCLUSION

'sIAM ;= krgll?"{lk})
B'= B A (Vp; € cond.signal : I; = kréklin”{lk} +1)A
(Vp; € cond.wast : I; = krgl:}']”{lk})

The predicate p; € cond.signal means that process p; (s € 1..n) belongs to the set
of suspended signalers. In DMC terms this corresponds to saying that the pebble is
in the bucket of cs. To verify these predicates we need a further generalization of
the proof rules. Using the given formulation of the M;-rules (including M), the
meaning of X° is now: replace each reference to the set of suspended signalers in X by
the same set extended with the executing process. The definitions of p; € cond.wast
and X* refer to the set of processes waiting on the condition variable. We leave the
proof of the new predicates to the reader.

Howard [4] has a similar consideration for condition variables with priority. The
set of waiting processes is then a queue.

The generalization from counters to sets of processes is probably the ultimate
generalization of the given proof rules.

5 Conclusion

This paper has illustrated how monitor semantics and monitor proof rules can be
studied using the DMC notation based on an explicit separation of Data Manipu-
lation and Control. We have demonstrated a method by which a monitor can be
translated into a DMC module in which the description of signal and wast is simple
and intuitive. Based on the DMC monitor template we derived proof rules that were
strictly stronger than any other proof rules that have been suggested for the same
monitor semantics. _

The derivation of the proof rules is unique in that we first postulated a simple set
of predicates for all public states, and then derived the private state predicates which
can be formulated in the usual notation of monitor proof rules. In the translation
from public to private proof rules, the only underlying requirement is that the two
state predicates (/ and B) cannot be made false by a call registration. An alternative
approach would have been to start out with a set of existing proof rules and then to
translate them into the DMC notation to obtain private proof rules. These private
proof rules could then be validated by using the monitor semantics (as given by the
monitor template), or they could be translated into a public set of rules which were
obviously true. If the proof rules were not consistent with the semantics we would
get contradictions either in the validation or in the public state predicates.

21

The DMC approach is currently being developed by the authors [7]. One of its ap-
plications is as a specification language for concurrent modules. It is our hypothesis
that the separation of Data Manipulation and Control is useful in intermediate-level
specifications. A systematic DMC program development starts with a property
specification of a module using a module invariant, pre- and postconditions for the
procedures (safety properties), and liveness properties specified using temporal logic.
Next, the safety properties are programmed as data transitions and enabling con-
ditions. Finally, the liveness properties are programmed in the Control description.
This leaves an algorithmic DMC description which can easily be translated into an
existing programming language where Data Manipulation and Control are mixed.

The separation of Data Manipulation and Control and the concrete nature of
DMC are useful features both when DMC is used as a specification tool and when,
as in this paper, it is used as a descriptive tool.

Acknowledgement
We thank Jgrgen Staunstrup and Alan Shaw for comments on drafts of this paper.

References

(1] AdamsJ.M., Black A.P.: On Proof Rules for Monitors. ACM Operating Systems Review
16:2, 18-27 (April 1982)

[2] Adams J.M., Black A.P.: Letter with reply to [6]. ACM Operating Systems Review
17:1, 6-8 (January 1983)

[3] Hoare C.A.R.: Monitors: An Operating System Structuring Concept. Commun. ACM
17:10, 519-557 (October 1974)

[4] Howard J.H.: Proving Moaitors. Commun. ACM 19:5, 273.279 (May 1976)

[5] Howard J.H.: Signaling in Monitors. Proc. 2nd Int. Conf. on Software Engineering,
pp. 47-52, IEEE, 1976

[6] Howard J.H.: Reply to “On Proof Rules for Monitors”. ACM Operating Systems Review
16:4, 8-9 (October 1982)

[7] Nielsen L.S.: Ph.D. dissertation (in preparation). Department of Computer Science,
University of Washington, 1985

