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Abstract. Programs that process streams of information are commonly
built by assembling reusable information-flow components. In some sys-
tems the components must be chosen from a pre-defined set of primitives;
in others the programmer can create new custom components using a
general-purpose programming language.
Neither approach is ideal: restricting programmers to a set of primi-
tive components limits the expressivity of the system, while allowing
programmers to define new components in a general-purpose language
makes it difficult or impossible to reason about the composite system.
We advocate defining information-flow components in a domain-specific
language (DSL) that enables us to infer the properties of the components
and of the composed system; this provides us with a good compromise
between analysability and expressivity.
This paper presents DirectFlow, which comprises a DSL, a compiler and
a runtime system. The language allows programmers to define objects
that implement information-flow components without specifying how
messages are sent and received. The compiler generates Java classes by
inferring the message sends and methods, while the run-time library con-
structs information-flow networks by composition of DSL-defined com-
ponents with standard components.

1 Introduction

Systems that stream information continuously from source to sink are common-
place; examples include software routers for network traffic [1], data stream query
systems [2], surveillance systems, real-rate video streaming [3], and highway loop
detector data analysis [4]. Hart and Martinez survey more than 50 current ex-
amples of environmental sensor networks, and argue that the ability to construct
systems that stream environmental data continuously from the field to the sci-
entists’ laboratories will revolutionize earth system science [5]. We refer to this
wide class of systems as information flow applications.

A popular strategy for building information-flow applications is by compos-
ing reusable components. Systems based on this strategy include Aurora [2],
the Click modular router [1], Krasic’s media streaming system [3], StreamIt [6],
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Spidle [7], and our own Infopipes system [4, 8]. In these systems, each compo-
nent has a set of input ports (inports) and output ports (outports), which con-
nect to information flows. Since each application has distinct data-processing
requirements, many information-flow programming systems allow programmers
to define custom components.

In component-based systems, programmers construct an information-flow ap-
plication by connecting the ports of components with channels, which specify
the flow of data packets. In an object-oriented program, message sends directly
determine how the thread of control passes between objects. In contrast, a chan-
nel connecting two ports determines only how data packets flow: it says nothing
(directly) about how the thread passes between components. Control may pass
from upstream to downstream or the other way around: the choice depends on
not only the nature of the connected components, but also the context in which
the components appear. These dependencies make managing the control flow of
an information-flow application a difficult and labor-intensive task: the relation-
ship between a component’s data-flow behaviour and its control-flow interaction
with other components is understood only for linear components [9]. Moreover,
the context-sensitivity of components means that a local code change may have
a great influence on the global control-flow.

Manually managing the control flow distracts programmers from organizing
the data flow in an application, and a practical information-flow programming
system should relieve programmers of this burden with the following feature:

F0. Automatic invocation of components. The system should handle the invo-
cation of components in response to runtime data flow. The programmer
should not have to specify how a component invokes, or is invoked by, neigh-
boring components.

In addition to this software-engineering feature, we will argue that a practical
information-flow programming system should also support the following three
information-flow features:

F1. Expressive custom components. The system should allow the creation of
custom components with multiple inports and outputs that can add packets
to or remove packets from a flow.

F2. Control over data-transfer latency between components. The system should
connect components with unbuffered channels to avoid introducing arbi-
trary latency between components.

F3. Choice of processing mode. Two different modes of processing are possible:
data-driven processing invokes a component when a data packet arrives at
one of its inports, while demand-driven processing invokes a component
when a data request arrives at one of its outports. The system should allow
both modes of processing to coexist in one application.
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Unfortunately, no previous information flow systems support all four features
F0–F3 because this rich combination of features can allow programmers to con-
nect components in a way that has no reasonable implementation.

In this article we describe DirectFlow, which does support all four fea-
tures. How do we achieve this? DirectFlow allows programmers to define custom
components using a domain-specific language (DSL). The DirectFlow compiler
checks the DSL modules to see if they satisfy a context condition (discussed
in Sect. 3.2). If they do, the compiler generates one or more Java classes for
each module. The DirectFlow runtime system allows programmers to compose
these custom components with standard library components; further consistency
checks are applied at composition time. The effect of the checks is to elimi-
nate unimplementable pipelines. The composed pipeline is then instantiated in
a set-up phase, and can finally be used in an ordinary Java program to perform
information-flow processing tasks.

In Sect. 2 we fill-in some background about the four features listed above
and explain why it is hard to support them all. The DirectFlow domain-specific
language is described in Sect. 3. Section 4 describes the way that we ascertain
the possible processing modes for the components defined in the DSL, and how
we generate Java code. Section 5 discusses the DirectFlow Framework, which
brings together library code, generated Java code, and hand-crafted Java code
into deployable pipelines.

The specific technical contributions of this work are as follows:

– A CSP-inspired programming model that supports both data-driven and
demand-driven data processing in a uniform manner.

– A general characterization of how the thread of control traverses through
ports of information-flow components connected by unbuffered data-driven
and demand-driven channels.

– A control-flow analysis algorithm that infers automatically how the thread
of control enters and exits an information-flow component.

– The DirectFlow DSL based on our programming model.
– A compiler that generates several different Java implementations of a com-

ponent from the DirectFlow definition, one for each possible flow of control.
– A run-time system that allows programmers to compose DirectFlow compo-

nents, while ensuring that they are composed consistently.

We also show that the ideas behind DirectFlow lead to an alternative formulation
of objects that does not involve methods.

2 Background

The information-flow features F1–F3 are important because of situations that
naturally arise in information-flow applications. We illustrate these situations by
example; here and throughout this paper we will refer to the custom components
depicted in Fig. 1.
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Fig. 1. Five example components

A filter transforms individual packets in a flow. For example, a filter can de-
compress an MPEG video block into an 8× 8 block of pixels.

A prioritizer buffers packets in a flow. On request, it outputs the packet with
the highest priority. The output thus depends not only on the content of
the flow but also on the timing of the input and output events. Krasic uses
such a component to provide high-quality video playback over an unstable
network connection [3].

A duplicator sends each packet in the input flow to two output flows. A pro-
grammer might use it to copy a stream for logging.

A separator sends each packet in the input flow to one of two output flows. The
chosen flow is the one that is ready to receive the packet first. A separator
allows us to connect a “ticket dispenser” component that produces unique
numbers to multiple clients.

A demultiplexer sends each packet in the input flow to one of two output
flows depending on the packet’s contents. For example, a demultiplexer can
extract video and audio streams from an MPEG system stream.

2.1 Why the Information-Flow Features are Important

If an information-flow system is to allow programmers to define custom compo-
nents like these examples, it must exhibit features F1–F3. Without F1 (expres-
sivity), there is no way to implement a demultiplexer because it has two outports
with different data rates. Without F2 (latency-control), the system is no longer
compositional: splitting a component into two components can introduce arbi-
trary latency [8, §2.1]. Moreover, buffered channels change the behaviour of the
prioritizer because they alters the timing of input and output operations and
thus interfere with the priority-reordering.

The result of sacrificing F3 (choice of processing mode) depends on the
specifics of the system. If the system supports only data-driven processing, there
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is no way to build a separator without buffering or blocking. If the system sup-
ports only demand-driven processing, there is no way to use a duplicator or a
demultiplexer without buffering or blocking.

Full support of F3 permits not only pure data-driven and demand-driven
components but also components that are partially data-driven and partially
demand-driven. For example, the prioritizer has a data-driven inport and a
demand-driven outport; it stores packets whenever they arrive and outputs one
whenever a request is received from downstream. If a system does support F3,
components like the filter and duplicator present additional complications: they
can naturally work in multiple processing modes, and the programming system
ought to support this generality. While the case of multi-mode single-inport,
single-outport components is well understood [8, 10], there is little discussion
of the general case in the literature beyond the statement that the problem is
“complicated” [9].

2.2 Information-Flow Features in Existing Systems

Given the importance of features F1–F3, it seems clear that an information-
flow programming system should aim to provide them. Unfortunately, all of
the systems we surveyed have given up some of F1–F3 in order to support F0
(automatic invocation). The consequences of supporting F0 depend on system
design:

1. Systems such as Click [1], which use buffered channels and rely on a runtime
scheduler to invoke components, can run into deadlocks or unbounded buffer
growth.

2. In thread-transparent Infopipes [9], adding components with multiple inports
or outports introduces the risk of resuming a stale coroutine.

3. Shivers’ and Might’s online transducers with multiple inports or outports [11]
risk using stale channel continuations.

These problems show up only in specific pipeline configurations (for example,
connecting a data-driven outport to a demand-driven inport); they suggest that
the combination of F1–F3 allows programmers to specify pipelines that are in-
ternally inconsistent and for which there is no reasonable implementation. Exist-
ing systems get around these problems by sacrificing one of the information-flow
features, or by giving up F0 and requiring the programmer to specify the control-
flow interaction of components.

Instead of sacrificing one of F1–F3 to achieve F0, DirectFlow allows program-
mers to define internally inconsistent pipelines but uses a context condition to
detect these cases at compile time. It is the restricted expressivity of the DSL
that makes this possible.
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2.3 Comparison with Infopipes

DirectFlow evolved from the Infopipes middleware system [8]; following the ter-
minology developed there, we call a component a pipe and a composition of
components a pipeline. (To avoid confusion, we reserve “Infopipes” exclusively
for the previous Smalltalk-based system.) The Infopipes system sits on top of
an object-oriented language; it represents a pipe as an object and implements
inter-pipe packet transfer with message send.

Infopipes support features F1–F3, but require programmers to manually ar-
range the invocation of pipes by declaring their polarity configurations. A polarity
configuration defines the control-flow interface of a pipe by assigning a positive
or negative polarity to each port. A positive port transfers data by sending a
message (push for outports and pull for inports), and a negative port transfers
data when it receives a message. Specifying the polarity configuration of a pipe
is more complicated than merely writing a declaration: for each negative port
the programmer has to define a method to run in response to messages received.
Thus, the polarity configuration dictates how the functionality of the pipe must
be divided into methods. Moreover, there are no general rules to help program-
mers decide what polarity configurations a pipe can have; although multi-mode
(“polymorphic”) pipes can be constructed, all of the methods necessary to make
them work must be written by hand, and the programmer is responsible for
ensuring that the data-driven and demand-driven behaviours are the same.

DirectFlow differs from Infopipes in three main ways. First, DirectFlow pro-
grammers define their components at a higher level; rather than defining objects
that implement both the data-flow and the control-flow behaviour of their pipes,
they define only the data-flow behaviour using a DSL. The DirectFlow compiler
infers the control flow and generates the objects (specifically, Java classes). Sec-
ond, DirectFlow deals with composition more consistently than did Infopipes:
composite pipelines can be treated in exactly the same way as custom pipes, since
they can be instantiated as many times as needed. Third, while both Infopipes
and DirectFlow use ports, their role is different in the two systems. Infopipe
ports are objects that exist at runtime: all packets flowing into or out of a pipe
have to pass though a port. In DirectFlow, ports exist at configuration time, but
they are eliminated before runtime, thus also eliminating a level of indirection
in the information flow.

3 The DirectFlow DSL

The DSL component of DirectFlow is an embedded language for programming
information-flow components. We developed the language under the following
assumptions:

A1. A pipe transfers data packets through a fixed set of inports and outports.
A2. Pipes are reactive. A pipe does not own a thread of control: it runs only in

response to external data transfer requests.
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A3. An outport of an upstream pipe is connected to a single inport of a down-
stream pipe by an unbuffered channel.

A4. At most one thread of control is executing in a pipeline at a given time.
A5. The thread moves from one pipe to another along with the data; this is

similar to the way that message sends in an object-oriented system cause
the thread of control to move from one object to another.

We introduced assumption A1 to simplify the design of DirectFlow, while as-
sumptions A3 and A5 are inherited from the Infopipes system. Assumptions A2
and A4, which may seem rather strong, apply not to the entire information-
flow application, but only to individual segments implemented in DirectFlow.
Programmers can implement any segment of the system that they wish to run
without scheduling overhead as a DirectFlow pipeline and then create higher-
level logic to connect these segments. For example, a voice-mail server might
use separate pipelines to serve separate clients, and each client might have its
own pipeline that takes packets from the network, decrypts them, and presents
audio to the user. Even though A2 and A4 still hold within each pipeline, the
application as a whole involves multiple threads and run-time scheduling.

3.1 Language Overview and Syntax

The DirectFlow language is inspired by Hoare’s Communicating Sequential Pro-
cesses (CSP) [12] and therefore bears some resemblance to occam [13]. Using
CSP abstracts away from the polarity configurations of the objects; program-
mers see a DirectFlow module as a sequentially executed thread that uses input
and output statements to perform data transfers. Like occam, DirectFlow sup-
ports nondeterministic branches, so a DirectFlow module can perform concurrent
blocking I/O operations in the style of the POSIX select system call.

DirectFlow is not a complete, stand-alone programming language; for exam-
ple, it contains no support for arithmetic or other data manipulation operations.
To be useful the DSL must be embedded into a general-purpose programming
language, which we call the host language. This embedded design strategy has
the benefit of reducing the work of language design (there is no need to reinvent
all the wheels and do a bad job). It also simplifies the task of porting an existing
program to DirectFlow: the data input–output interface will need to be changed,
but the code that actually manipulates the data can be brought over from the
host language unchanged.

In the work described here we embedded DirectFlow DSL into Java, and
matched DirectFlow’s concrete syntax to that of Java. However, it is a simple
matter to change the concrete syntax when integrating DirectFlow with another
host language: we developed a previous prototype using Smalltalk syntax and
integrated it with Squeak.

The syntax of the DirectFlow/Java language is shown in Fig. 2. A Direct-
Flow/Java module contains the name of the pipe, an optional Java superclass
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declaration (discussed in Sect. 4.4), port declarations, and a data-processing
process block. The process block defines how the pipe performs input–output
and processes data packets in each iteration; there is an implicit unbounded
loop around the block. Code in the block can make use of three new kinds of
primitive statement: alternative, input and output.

alternative. The meaning of alt stmt1 with stmt2 with stmt3 is that one of the
branches stmt1, stmt2 or stmt3 is executed. The programmer of a pipe has
no direct control over which; this is determined at run time based on the
outstanding input and output requests from other pipes. The meaning of an
alt statement does not depend on the order of the branches.

input. The meaning of var = port ? is that the pipe inputs a packet from the
inport port and stores the packet in the variable var.

output. The meaning of port ! expr is that the pipe evaluates the expression
expr and outputs the result through the outport port.

The primitive statements in our DSL correspond closely to those of CSP,
but with a few modifications. For example, a DirectFlow module has no way to
invoke itself, or indeed any other DirectFlow module. We have also eliminated
the CSP parallel composition operator || because it is not useful in our context
(due to A4). In contrast with the CSP choice operator [], which requires that
the first statement in each branch performs a distinct input or output operation,
the alt statement in the DirectFlow DSL does not restrict the first statements
in the branches.

3.2 The Context Condition

To ensure that a DirectFlow module corresponds to a reactive pipe, we introduce
one context condition restricting how the pipe performs input–output through

module ::= pipe name (extends super)? ‘{’ portdecl+ process ‘{’ stmt+ ‘}’ ‘}’
portdecl ::= ( inport | outport ) port ( ‘,’ port )+ ‘;’
var ::= Java variable identifier
expr ::= Java expression
stmt ::= Java statement | alternative | input | output
alternative ::= alt stmt ( with stmt )+
input ::= var = port ‘?’ ‘;’
output ::= port ‘!’ expr ‘;’

Fig. 2. DirectFlow/Java syntax in Backus-Naur form extended with ? (indicating 0 or 1
repetitions), and + (indicating 1 or more repetitions). We list only those grammar rules
that augment Java syntax. The top level nonterminal symbol is module; the alternative,
input, and output statements can appear at any place in a DirectFlow module at which
an ordinary Java statement can appear.
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its ports. Before we can state the context condition we need to introduce two
definitions.

– An alt specialization of a module is the module that results from replacing
each alternative statement by one of its branches. For example, the module
{ a; alt b; with c; } has two alt specializations: { a; b; } and { a; c; }.

– A port is an index port of an alt specialization if the port is accessed exactly
once in the execution of the alt specialization, regardless of control flow, and
if the port is not accessed in any other alt specialization of the module. It
does not matter if the port is an inport or an outport.

The context condition we impose on DirectFlow is that every alt specialization
in a valid module must have at least one index port. The motivation behind this
requirement is twofold. First, we want to ensure that every alt specialization is
triggered by data transfer at a certain port. The index port of the alt special-
ization is that port; transferring data through the index port executes the alt
specialization. Second, we need to determine which branch of an alt to execute.
By requiring that each alt specialization has an exclusive index port not accessed
elsewhere, we can always make this determination when a data transfer request
arrives at an index port. In essence, this rule lets us implement angelic nonde-
terminism, i.e., we make alt choices not arbitrarily but in a way that ensures
that the pipe can conduct the necessary data transfer.

pipe Filter {
inport in;
outport out;

process {
Object packet;
packet = in ?;
out ! packet;

}
}

pipe Duplicate {
inport in;
outport out0, out1;

process {
Object packet;
packet = in ?;
out0 ! packet;
out1 ! packet;

}
}

pipe Separate {
inport in;
outport out0, out1;

process {
Object packet;
packet = in ?;
alt out0 ! packet;
with out1 ! packet;

}
}

Fig. 3. DirectFlow modules for the Filter, Duplicate and Separate pipes of Sect. 2.

Fig. 3 shows three pipes in DirectFlow/Java. Port names in a pipe are not
values in the host language and thus cannot be stored in variables; they can be
used only as the subjects of the ? and ! constructs.

Since the Filter module does not contain an alt statement, its alt specializa-
tion is trivially the same as the module itself. Both in and out are index ports of
this program, and thus it satisfies the context condition. Likewise, the alt spe-
cialization of the Duplicate module is the same as itself. Ports in, out0 and out1
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pipe Switch {
inport in0, in1;
outport out0, out1;

process {
Object packet;
alt packet = in0 ?;
with packet = in1 ?;
alt out0 ! packet;
with out1 ! packet;

}
}

Fig. 4. This Switch pipe definition is not a valid DirectFlow module because none of
its alt specializations has an index port.

are all index ports, and the module satisfies the context condition. The Separate
module has two alt specializations: {Object packet; packet = in ?; out0 ! packet; }
and {Object packet; packet = in ?; out1 ! packet; }. The first has out0 as an index
port; the second has out1 as an index port. Note that the port in appears in both
alt specializations, so it cannot be an index port of either.

The Switch module in Fig. 4 is an example of an invalid DirectFlow module.
It has four alt specializations: { packet = in0 ?; out0 ! packet; }, { packet =
in0 ?; out1 ! packet; }, { packet = in1 ?; out0 ! packet; }, and { packet = in1 ?;
out1 ! packet; }. However, none of these alt specializations has an index port
because each port is accessed in two different specializations.

4 Compiling DirectFlow Modules

In the previous section we described how DirectFlow uses a CSP-inspired pro-
gramming model to eliminate the polarity-declaration requirement in Infopipes.
Instead the DirectFlow compiler infers the polarity configurations of a pipe and
generates the pipe objects. In this section we first discuss the inference process
conceptually, and then present the details of our inference algorithm. Finally, we
explain how the compiler generates code.

4.1 Principles of the Compilation Process

An object is characterized by its behaviour: its protocol (the messages that it can
understand), and the responses that it makes to those messages. Most “object-
oriented” languages, including Java, specify both of these things by defining a
set of methods: the names of the methods define the protocol, and the bodies of
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the methods define the response to each message. So we have:

methods in an object =⇒

{
messages the object can understand
code to run when receiving a message

However, this is not the only way of defining the behaviour of an object. Direct-
Flow modules can also be viewed as defining objects. Their protocol is limited to
a subset of the messages push and pull, while the response to these messages is
given implicitly by the DirectFlow module. The task of the compiler is to deter-
mine if the object corresponding to a DirectFlow module understands push, pull,
or both, and to generate Java methods that implement the data-processing func-
tionality defined in the DirectFlow code. So we start by inverting the diagram
above:

methods in the object ⇐=

{
messages an object can understand
code to run when receiving a message

How can we decide what messages a pipe object can understand? The DirectFlow
code might say that a pipe performs output on a certain port, but it does not
explicitly say whether the port is positive or negative. If the port is positive, it
will send messages to transfer data to or from some other pipe, but will never
receive messages. Only negative ports can receive messages: negative inports
receive push messages and negative outports receive pull messages. Thus, if we
can determine the possible polarity configurations of a DirectFlow program, we
can infer its protocol. Can we also infer the body of the method to execute in
response to an incoming message? We can, provided that, for each negative port,
there is a single piece of code that executes a data transfer on the port. So we
constrain valid polarity configurations to ensure that each negative port must
be associated with one alt specialization, and that it is accessed exactly once in
the execution of one cycle of the pipe. In other words, a port can be negative
only if it is an index port as defined in Sect. 3.2.

Thus the following strategy lets us derive an implementation for a DirectFlow
module as a Java class:

For each alt specialization, mark one of its index ports with negative
polarity. Mark all other ports with positive polarity. The code to run
when receiving a message through a negative port is the alt specialization
that accesses the port.

This strategy determines how many polarity configurations a pipe has. The con-
text condition of Sect. 3.2 ensures that a DirectFlow module has at least one
polarity configuration, but some pipes have more than one. Consider the Filter
pipe in Fig. 3. Because both in and out are index ports, applying this strategy
to Filter produces the data-driven and demand-driven polarity configurations as
documented in the filter design pattern [10]. Fig. 5 shows the results of applying
this strategy to the Duplicate and the Separate pipes.
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Infopipe in out0 out1

Duplicate
− + +
+ − +
+ + −

Separate + − −

Fig. 5. Polarity configurations of the Duplicate and Separate pipes in Fig. 3.

4.2 Mapping an Invalid DirectFlow Module to Objects

Let us try to implement the Switch DirectFlow module in Fig. 4 (which violates
the context condition) as a pipe object. We will fail, but it is instructive to see
why. We start by considering which ports should have negative polarity.

– Suppose that in0 and in1 are negative, and the other ports are positive. Since
branches in the second alt construct do not access any negative ports (out0
and out1 are both positive), the object cannot use the received message to
decide whether to send the outgoing packet through out0 or out1.

– Suppose ports in0, in1, and out0 are negative. This pipe cannot respond to
data request on out0 in a useful way because it has no way of requesting
data from upstream, but must instead block until an upstream pipe pushes
data in (which may never happen).

– Suppose that ports in1 and out0 are negative. With this polarity configura-
tion we can eliminate the blocking behaviour by making the object pull from
in0 when it receives a pull message associated with out0, and push to out1
when it receives a push message associated with in1. However, such an ob-
ject does not implement the Switch Infopipe faithfully because our arbitrary
choice rules out the execution paths in0— out1 and in1 — out0.

– Suppose that all ports are positive. Since pipe objects do not have their own
threads, and this pipe object does not have a thread entrance, it will never
acquire a thread and will just sit idly doing nothing. This behaviour is quite
useless, so we disallow the all-positive configuration.

Even though these discussions are based on our intuitive understanding of reac-
tive objects, they all relate back to the context condition. These lines of reasoning
should help programmers to understand the cause of the problem when the Di-
rectFlow compiler rejects a module that violates the context condition, or why
the compiler does not allow a pipe to have a specific polarity configuration.

4.3 Inferring Polarity Configurations of DirectFlow Modules

The compilation process reflects the preceding discussion. It starts by identify-
ing the alt specializations of the module using a mechanism called alt lifting. It
then determines if each alt specialization has one or more index ports; if there
is no index port, the context condition has been violated. The next step is to
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Code pattern Rewrite result

alt 〈 s1, ..., sm 〉 ; t alt 〈 s1 ; t, ..., sm ; t 〉 (seq-a)
s ; alt 〈 t1, ..., tn 〉 alt 〈 s ; t1, ..., s ; tn 〉 (seq-b)
if (c) { alt 〈 s1, ..., sm 〉 } t alt 〈 if (c) s1 t, ..., if (c) sm t 〉 (if-a)
if (c) s { alt 〈 t1, ..., tn 〉 } alt 〈 if (c) s t1, ..., if (c) s tn 〉 (if-b)
alt 〈 s1, ..., alt 〈 t1, ..., tn 〉, ..., sm 〉 alt 〈 s1, ..., t1, ..., tn, ..., sm 〉 (alt)

Fig. 6. The rewrite rules for alt lifting in an abstract-syntax notation. We enclose alt
branches in angle brackets separated by commas. The semicolon (;) in the seq rules is
the statement sequence operator.

compute the polarity configurations by selecting one index port from each alt
specialization and marking it as a negative port. The compiler can then gen-
erate a pipe object with a push method and a pull method. The push method
contains alt specializations with negative inports, and the pull method contains
alt specializations with negative outports. If the pipe has multiple polarity con-
figurations, we generate a separate pipe object for each configuration. We now
describe the processes of alt lifting and of computing the polarity configurations
in more detail.

Alt Lifting. The alt lifting procedure computes the alt specializations of a Di-
rectFlow module through a series of rewrites. The rewrite rules, listed in Fig. 6,
make use of the property that conditional, looping, and statement sequencing
constructs all distribute over alt, so we can “lift” alt up without changing the
meaning of the module. Since code duplicated by the rewrites goes into different
alt branches, and an alt construct always executes only one branch, the dupli-
cation cannot cause multiple executions of the same statement. The procedure
repeatedly rewrites the module until all alt constructs are at the top level, at
which point each alt branch would be an alt specialization. The observant reader
will notice that there is no rule for loops. A module that contains an alt in a
loop always violates the context condition, so the compiler never needs to lift it.

Example: Applying alt lifting to Separate and Switch. We illustrate the alt lifting
procedure by applying it to two examples. The Separate pipe in Fig. 3 contains
only one alt construct and the rewrite terminates in one step. The Switch pipe
in Fig. 4 contains two alt constructs; the rewrite starts by lifting either of the alt
constructs and then proceeds by flattening the nested alt constructs using the
alt rewrite rule. Fig. 7 shows the pipes after alt lifting; each top-level alt branch
corresponds to an alt specialization of the module.

Computing Polarity Configurations. The DirectFlow compiler computes
the polarity configurations of a DirectFlow module by first identifying the index
ports of each alt specialization, and then computing the Cartesian product of
the sets of index ports. The algorithm proceeds as follows.
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pipe Separate {
inport in;
outport out0, out1;

process {
alt {

Object packet;
packet = in ?;
out0 ! packet;

} with {
Object packet;
packet = in ?;
out1 ! packet;

}
}

}

pipe Switch {
inport in0, in1;
outport out0, out1;

process {
alt {

Object packet;
packet = in0 ?;
out0 ! packet;

} with {
Object packet;
packet = in1 ?;
out0 ! packet;

} with {
Object packet;
packet = in0 ?;
out1 ! packet;

} with {
Object packet;
packet = in1 ?;
out1 ! packet;

}
}

}

Fig. 7. The Separate and Switch pipes after alt lifting. The original DirectFlow source
for these two pipes are shown in Figs. 3 and 4.

Step 1. Let B be the set of alt specializations of the program; for each b ∈ B,
compute the set Pb of all the ports accessed in b.

Step 2. For each b ∈ B, compute the set Qb using the following equation:

Qb = Pb −
⋃

i∈B−{b}

Pi

Qb is the set of ports that are accessed in the alt specialization b and
nowhere else.

Step 3. For each b ∈ B, eliminate from Qb all ports accessed in a loop, accessed
in only one branch of an if construct, or accessed multiple times in an
execution path. This step is a simple control-flow analysis that enforces
the “exactly once” part of the definition of index ports. The resulting
sets Qb contain the index ports of the alt specializations in B.

Step 4. We compute the negative ports in a polarity configuration by choosing
one port from the set Qb for each specialization b. We represent a
polarity configuration by a tuple of its negative ports, and the set N
of configurations is given by

N =
∏
i∈B

Qi
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where
∏

represents Cartesian product on sets.

In our experience, the crude control-flow analysis algorithm in Step 3 works
fairly well. If it later turns out that imprecision in this algorithm rules out some
polarity configurations on useful DirectFlow modules, we can apply more sophis-
ticated control-flow analysis algorithms. (These could, for example, recognize
mutually exclusive if conditions to infer a larger set of polarity configurations.)

Example: Polarity configurations of Separate. We number the alt branches in
Fig. 7 according to their order of appearance and use the module to demonstrate
how to compute polarity configurations.

Step 1. P1 = { in, out0 }, P2 = { in, out1 }
Step 2. Q1 = P1 − P2 = { out0 }, Q2 = P2 − P1 = { out1 }
Step 3. No changes to Q1 and Q2

Step 4. N = Q1 ×Q2 = { 〈out0, out1〉 }

The set N has only one element, so Separate has one polarity configuration.
The ports out0 and out1 are negative, and hence in is positive.

Example: Polarity configurations of Switch. We now apply the same constraint
solving process to the lifted Switch Infopipe in Fig. 7.

Step 1. P1 = { in0, out0 }, P2 = { in1, out0 }, P3 = { in0, out1 }, P4 =
{ in1, out1 }

Step 2. Q1 = Q2 = Q3 = Q4 = ∅

At this point we can conclude that the Switch DirectFlow module does not
have a polarity configuration because none of its alt specializations has an index
port, and the Cartesian product of any set with an empty set is empty. In this
case the compiler reports an error instead of continuing with the code generation
process.

4.4 Generating Code for Pipe Objects

When a DirectFlow module is compiled, the compiler analyses the program,
determines how many polarity configurations are possible for the pipe that it
defines, and (assuming that there is at least one legal configuration) outputs sev-
eral Java class definitions. A Java logical pipe class is always created; the logical
pipe is like an abstract model of the pipe’s behaviour. Inside this class, amongst
other things, is a method validConfigurations that returns a set of polarity con-
figurations; in Fig. 8 we assume that there are three. For each configuration, the
compiler outputs a Java class definition for a physical pipe class. We don’t yet
know which of these classes will be used, because this depends on the context
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Physical pipe class 3 

DirectFlow program 
defining a pipe

Logical pipe class

 

Physical pipe class 2 
Physical pipe class 1 

DirectFlow 
compiler

3 valid 
polarity 
configs

Fig. 8. Defining a DirectFlow pipe using the domain-specific language

into which the pipe is eventually deployed, so the most useful thing to do is to
generate all of them.

Each physical pipe Java class implements the data-processing functionality
of the DirectFlow module. In addition to the ability to transfer data packets to
and from other pipe objects, a DirectFlow physical pipe object can:

1. invoke methods in Java objects,
2. maintain persistent state between executions, and
3. make its persistent state accessible from other Java objects.

In this subsection we describe the design of physical pipe objects and how
the DirectFlow compiler generates these objects from a DirectFlow module.

At the core of a physical pipe object are its push and pull methods. The push
method accepts a port number and a data packet; the pull method accepts a
port number and returns a data packet. (The compiler translates port names
in DirectFlow to port numbers.) Both methods contain a top-level test of the
port number, and execute a different segment of code depending on the port
through which data transfer occurred; see SeparatePhysicalPipePNN in Fig. 9
for an example. Each of these segments is derived from one alt specialization,
and the derivation depends on whether the specialization has a negative inport
or a negative outport. If an alt specialization has a negative inport, it works in
data-driven mode and therefore the code belongs in the push method (because an
upstream component will push data into this component). If an alt specialization
has a negative outport, it works in demand-driven mode and the code belongs in
the pull method.

This translation realizes our intuition that negative ports act as thread en-
trances, while positive ports act as thread exits. Since each index port (and
therefore, each negative port) is accessed exactly once, we can be certain that
each invocation of a data-driven alt specialization consumes one data packet,
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public class DuplicatePhysicalPipeNPP {
public void push(int index, Object input) {

if (index == 0) {
Object packet;
packet = input;
out0.push(packet);
out1.push(packet);
return;

}
}

}

public class DuplicatePhysicalPipePNP {
public Object pull(int index) {

Object output;
if (index == 1) {

Object packet;
packet = in.pull();
output = packet;
out1.push(packet);
return output;

}
}

}

public class SeparatePhysicalPipePNN {
public Object pull(int index) {

Object output;

if (index == 1) {
Object packet;
packet = in.pull();
output = packet;
return output;

}
if (index == 2) {

Object packet;
packet = in.pull();
output = packet;
return output;

}
}

}

Fig. 9. Excerpt of physical pipe objects compiled from the DirectFlow modules in
Fig. 3. We show only two of the three classes generated from the Duplicate pipe because
the PPN case is analogous to the PNP one (left bottom).

and each invocation of a demand-driven alt specialization produces one data
packet. Fig. 9 shows the physical pipes generated from the Duplicate and the
Separate Infopipes.

We use the generation-gap pattern [14] in the physical pipe objects to in-
tegrate the code generated from the DirectFlow DSL with ordinary Java code
written by hand. The original formulation of the generation-gap pattern puts
machine-generated code in a superclass of the hand-written code; this allows the
machine-generated code to be customized by subclassing. Such an approach does
not quite work in our case because the compiler can generate multiple physical
pipe classes from a DirectFlow module, and because the number of generated
physical pipe classes may change with the contents of the DirectFlow module.
Instead we make the machine-generated classes subclasses of the hand-written
code; this allows all of the generated classes to reuse the same hand-written code.
This is the purpose of the extends superclass clause mentioned in Sect. 3.1: it de-
fines the name of the hand-written class from which the generated physical pipe
classes should inherit. We call this variant the inverse generation-gap pattern.

The inverse generation-gap pattern enables a physical pipe object to maintain
persistent state in the fields of its superclass; it also allows other Java objects to
access that persistent state through the public methods of the superclass. The
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DirectFlow compiler copies all Java statements in a DirectFlow module into the
translated alt specializations in the physical pipe classes, so the programmer is
able to invoke other Java methods from within the DirectFlow module.

5 The DirectFlow Framework

The DirectFlow framework is designed to help the programmer build an infor-
mation flow system in several steps. Although this may at first sight appear
unnecessarily complicated, the stepwise development allows for maximal reuse.
Let us draw an analogy with object-oriented programming languages. If what
one wants is objects, classes may seem like an unnecessary complication —why
not define objects directly? However, it turns out that classes are quite use-
ful when one needs to make many objects that are almost the same. Similarly,
generic classes may seem like an unnecessary complication, but they turn out to
be quite useful when one needs to make several classes that differ parametrically.

5.1 Building a Pipeline

The first step in using DirectFlow is to define any custom pipes that are necessary
for the application at hand. There is a library of standard pipes, which we expect
to grow over time, but let us assume that at least one custom pipe is required,
for example, a pipe that diverts suspicious data packets (say, into a log) to help
track down a suspected sensor malfunction.

As described in Sect. 4.4, the result of compiling these custom pipe mod-
ules is a collection of logical and physical pipe classes. The next step is to take
these generated classes and to write a Java program that composes them with
appropriate library classes to build the desired information pipeline. This pro-
cess is illustrated in Fig. 10 for the simple case of a pipeline containing only
two components. The thread configuring the pipeline first creates a Composite-
Factory object, and then creates the two logical pipes, src and sink, that will
be its components. src and sink are added to the factory, and the appropriate
connections between the output port of src and the input port of sink are set up.
Incremental checks are performed during this process; for example, we check to
make sure that two outputs are not connected together. At this stage it is also
possible to specify that an internal port of one of the components is “forwarded”
to become an external port of the whole composition. When the programmer
has completed the “wiring up” of the composite factory, the factory is told to
instantiate the composition. Some non-local checks can now be carried out, for
example, to ensure that there are no disconnected ports inside the composition.
If all is well, the result of instantiation is another logical pipeline.

The composite logical pipeline has no open ports, so it can be instantiated
as a physical pipeline: a pipeline that can actually carry data. This is not a
simple matter, because the appropriate mode of processing of each component
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Fig. 10. A UML Sequence diagram showing how a physical pipeline is created.

in the composition depends on the mode of its neighbors. Now we see the value
of building the logical pipeline first: it provides an abstract model of the com-
posite pipeline that can be explored to gain a global understanding of the whole
pipeline. This makes it possible to select the best physical pipe class to imple-
ment each logical pipe.

5.2 Composite Pipes

The DirectFlow system supports two kinds of pipes — simple pipes and compos-
ite pipes —and goes to some lengths to treat them on an equal footing. Simple
pipes are created by instantiating a logical pipe object, which is an instance of
the logical pipe class generated by the DirectFlow compiler. Composite pipes,
which are compositions of other pipes, are constructed by instantiating a logical
pipeline object, but in this case the logical pipe object is created by a composite
factory.
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To construct a composite pipe, the programmer starts by creating a Compos-
iteFactory object and then invokes its methods to describe the structure of the
desired composite pipe.

– addPipe(String n, LogicalPipe op) This method adds an internal pipe op
with name n to the composite pipe.

– newInport(String ident) and newOutport(String ident) These methods adds
an input port or an output port to the composite pipe. A composite pipe
with ports can be further composed with other pipes.

– connect(Channel c) A Channel object identifies a pair of ports, each in a
specific component. The connect method connects the two ports described
by c. The programmer can connect an inport of the composite pipe to an
inport of an internal pipe, an outport of an internal pipe to an inport of an
internal pipe, or an outport of an internal pipe to a outport of the composite
pipe.

Finally, invoking the instantiate() method on the CompositeFactory creates a
CompositeLogicalPipe object. The resulting CompositeLogicalPipe object is like
any other logical pipe object, and the programmer can pass it to addPipe to
compose it with other pipes.

To create a physical pipe object that can perform data processing operations,
the programmer terminates a logical pipe by connecting its inports and outports
to special Source and Sink logical pipes, and then instantiates the logical pipe to
produce a CompositePhysicalPipe object.

Because the resulting physical pipe has no open ports, it cannot be sent push
or pull messages. Instead we use the getInternal method to obtain references to
the Source and Sink physical pipes, and use these objects to inject data and
control into the pipeline. This design hides the communication protocol between
physical pipe objects and allows it to evolve without changing the public interface
of the pipeline.

6 Related Work

Historical Information-Flow Systems. Computer programs have long been
structured to process streams of information from external devices. The idea of
a stream as a first-class object can be traced back to Stoy and Strachey’s OS6
operating system [15]. OS6 also incorporated stream functions, which could be
applied to an argument stream to construct another stream (with different con-
tents) as the result. A related I/O system using (bidirectional) streams appeared
in Unix [16]. In both OS6 and Unix, the stream subsystem is regarded as pe-
ripheral to the “main program”, and it incurs high overhead due to the reliance
on runtime scheduling and the need to move data across process boundaries.

Coordination Languages. Our work bears some resemblance to control-based
coordination languages [17] in that they model a program as a collection of
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entities connected by point-to-point channels. Unlike existing coordination lan-
guages, which treat processes as purely computational entities, DirectFlow also
captures the communication aspects of a component by addressing it separately
from the computation aspects of the component.

Communicating Sequential Processes. DirectFlow is inspired by Hoare’s
CSP [12]. Unlike libraries such as JCSP [18], which faithfully implement the
semantics of CSP, DirectFlow eliminates certain restrictions (such as the pro-
hibition against different alt branches starting with the same operation) while
adding others (such as the context condition) to better support the development
of information-flow programs.

Design Patterns. The way we build information-flow programs by exchanging
messages between Infopipe objects has been documented under the name filter
pattern [10]. The filter pattern literature describes (data-driven) sink filters and
(demand-driven) source filters, but it does not discuss how to generalize these
two cases to filters with multiple inputs or outputs. DirectFlow provides a more
general and more elegant mechanism for building filters because it relieves the
programmer from the responsibility of implementing both the data-driven and
demand-driven variants of a filter.

Information-Flow Systems without F1. Some information-flow program-
ming systems achieve automatic component invocation by restricting the form or
the behaviour of custom components. Both thread-transparent Infopipes [9] and
StreamIt [6] require a component to have exactly one inport and one outport,
and Spidle [7] requires all channels to have the same data rate.

Information-Flow Systems without F2. Some information-flow program-
ming systems connect components with buffered channels and achieve automatic
invocation by runtime scheduling. Click [1] and StreamIt [6] both fall into this
category. Such designs suffer from three problems. First, the reliance on runtime
scheduling makes it difficult to understand the interaction between components
and to ensure liveness. Second, channel buffering introduces latency and there-
fore breaks compositionality. Finally, buffering interferes with components such
as a prioritizer whose operation depends on the interleaving of input and output.

Information-Flow Systems without F3. Some information-flow program-
ming systems achieve automatic component invocation by supporting only data-
driven or only demand-driven processing. The Eden operating system [19] ex-
plored making streams asymmetric by eliminating active output (data-driven)
operations. Reactive objects in O’Haskell [20, 21] eliminate active input (demand-
driven) operations. Dataflow languages like SISAL [22] and lazy streams, which
typically appear in programs written in functional languages like Scheme or
Haskell, support only data-driven operation. These systems cannot support the
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prioritizer described in Sect. 2, which uses both data-driven and demand-driven
data processing.

Polarity-Polymorphic Ports. Our previous Infopipes system [8] supports a
feature called polarity polymorphism that allows an Infopipe object to assume
multiple polarity configurations. In the system, an Infopipe defines a polarity-
polymorphic port by providing it with both push and pull methods and specifying
its polarity using a variable that is instantiated to either + or −. For example, a
filter has polarity configuration α → ᾱ that is instantiated to + → − or − → +.
The runtime system determines the polarity configuration of an Infopipeline by
unifying the polarity specifications of connected ports.

The Click modular router [1] uses agnostic ports for the same purpose. The
agnostic polarity specifies that the port can work in either demand-driven or
data-driven mode, and the programmer is required to specify a flow code for
any processing element that contains agnostic ports to help the runtime system
decide the polarity configurations of the element. A flow code is a sequence of port
codes that specify the internal dataflow of an element; if the codes of two ports
share the same letter, data packets arriving from one port may exit from the
other. For example, a filter has flow code “ x/x” indicating that packets arriving
from the inport can exit from the outport. We do not completely understand
how Click computes the polarity configurations of an element from its flow code,
but the design of agnostic ports appears to be similar to polarity polymorphism.
Both designs share the following drawbacks.

1. When defining a component, the programmer must identify the ports that
can assume either polarity and provide additional information on the rela-
tionship between the polarity of ports. There is no tool support for checking
whether the supplied information is consistent with the behaviour of the
component, and therefore the programmer is solely responsible for the cor-
rectness of the port polarity specifications.

2. The programmer must implement both push and pull methods for each poly-
morphic/agnostic port and ensure that the component exhibits the same
information flow behaviour regardless of whether it is used with push or pull.

3. The mechanisms used to specify port polarity relations are not general
enough to capture the polarity relations of components with more than two
ports. There is no way to define a polymorphic Infopipe that works in all
three configurations of the duplicate pipe in Fig. 5. Likewise, even though a
duplicator, a separator, and a demultiplexer all have different information-
flow behaviour and polarity configurations, they cannot be distinguished in
the Click system because they share the same flow code “ x/xx”.

In comparison, our proposed technique both requires less programmer in-
tervention (by automatically inferring the information flow behaviour of a pipe
and generating the methods corresponding to each polarity configuration) and
works in more general contexts (because it can distinguish between and correctly
characterize duplicators, separators, and demultiplexers).
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7 Experiences

We first prototyped DirectFlow as a Smalltalk-embedded language and then
adapted it for embedding in Java. We implemented a DirectFlow/Java com-
piler in Haskell [23] and a corresponding run-time library in Java. Excluding
comments and blank lines, the compiler is about 400 lines of Haskell, and the
run-time library is about 600 lines of Java. The implementation is available
through http://infopipes.cs.pdx.edu/.

One of the design goal for DirectFlow is to allow programmers to define pipes
that correspond to data stream operators like those in the Aurora Stream Query
Algebra (SQuAl) [2]. SQuAl defines a wide variety of primitive operators, which
include standard relational algebra operators like Map (projection) and Union,
generalized relational algebra operators like Filter (selection-based demultiplex-
ing), and data-stream-specific operators like Resample. Some of these operators
have multiple inports, some have multiple outports; only Map has a fixed rela-
tionship between its input data rate and its output data rate.

We studied SQuAl and concluded that DirectFlow is expressive enough to
support all its operators. The only difficulty is that implementing SQuAl op-
erators with variable arity requires a daisy-chain of pipes. For example, SQuAl
has an n-stream union operation; because a DirectFlow pipe has a fixed set of
ports, this must be implemented using a chain of two-stream unions components.
However, since this can be implemented by a 1..n loop at pipeline configuration
time, we do not see this as a problem.

Our study further suggests that using DirectFlow can improve the expressiv-
ity of existing data-stream management systems. To simplify system design and
implementation, data-stream management systems such as Niagara and Aurora
support only data-driven components. While they work well with data sources
that produce infrequent discrete events, they are not well-suited for data sources
that produce a continuous stream of time-varying data, such as thermometers or
light sensors. Such sources are most naturally demand-driven: operating them
in data-driven mode requires that they produce frequent updates, which wastes
resources when the user does not need those values. However, reducing the fre-
quency of updates compromises data freshness. DirectFlow naturally supports
both data-driven and demand-driven components, so it would allow a data-
stream management system to request data from continuous sources on demand,
achieving the best of both worlds.

8 Conclusions and Future Work

Abstraction mismatch between the programming language and the application
domain makes software development unnecessarily complicated. This is because
making programmers use a language that exposes aspects of the system that are
irrelevant to the domain forces over-specification and thus reduces reusability.
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Dually, a language that hides aspects of the system that are relevant to the
domain makes it more difficult to define and to reason about system behaviour
in domain-specific terms.

We investigated the problem of abstraction mismatch in the information-flow
domain and proposed the DirectFlow language to address the shortcomings of
programming this domain with objects. By allowing programmers to define pipes
without specifying their polarity configurations, DirectFlow eliminates the need
to define and maintain multiple pipe objects that differ only in their polarity
configurations.

The design of DirectFlow seeks a balance between language expressivity
and implementation efficiency. The language allows a pipe to alter its input–
output behaviour based on its internal state, which makes it possible to define
demultiplexers and reordering buffers, components that are commonly found
in information-flow programs. At the same time, DirectFlow is sufficiently re-
strictive to permit the compiler to perform static analysis on DirectFlow mod-
ules and to compile them to objects. DirectFlow is expressive enough to imple-
ment the Aurora stream algebra; whether it will be equally successful on other
information-flow tasks is a question that we plan to explore in our future work.

In this paper we have demonstrated that DirectFlow simplifies the devel-
opment of information-flow components by hiding the control flow interaction
between them. It remains to be seen if DirectFlow facilitates reasoning about
information-flow programs. We hope that deeper understanding of the semantics
of DirectFlow will lead to progress in quality-of-service verification and in thread
allocation for information pipelines.
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