
PSU 510FLP F17 Compiling c© Sergio Antoy 2017 1

Compiling FL Programs

Main concepts of this unit:

Source language
- data
- functions

Target language
- data
- functions

Order of evaluation
- call-by-need
- call-by-value

Compilation
- abstract
- low level

PSU 510FLP F17 Compiling c© Sergio Antoy 2017 2

The problem

Consider the program:

loop = loop

snd (-,y) = y

and evaluate the expression

snd (loop,0)

Applying the first rule, “makes no progress.”
If only the first rule is applied, no result is ever found.

Applying the second rule, gives the result.

A compiler must generate code that applies the right
rule to the right redex so that if an expression has a value,
that value is eventually produced.

The generated code represents expressions/graphs as
linked structures. It encodes procedures that traverse
these graphs and replace subgraphs in a graph until no
more replacements are possible.

PSU 510FLP F17 Compiling c© Sergio Antoy 2017 3

Source language

The source language being compiled consists of a defini-
tional tree of each operation and the arity of each symbol,
in particular the constructors

Example in Curry:

[]++y = y

(x:xs)++y = x:(xs++y)

Corresponding source language:

arity of [] = 0
arity of : = 2
tree of ++ =

x ++y

⑧⑧
⑧⑧
⑧⑧
⑧

❄❄
❄❄

❄❄
❄

[]++y

��

(x:xs)++y

��
y x:(xs++y)

PSU 510FLP F17 Compiling c© Sergio Antoy 2017 4

Target language

• The target language consists of two functions: H
and N.

• Each function takes and returns an expression.

• These expressions are made up by all the symbols
of the source language.

• Each function performs case analysis of its argu-
ment and selection of subarguments. Hence, they
can be conveniently defined by rules with pattern
matching. Hence, the target language is a rewrite
system!

• The evaluation in the target system is eager/by-
value.

• The rules of the target system are tried in textual
order, the first one that is applicable is the only one
being applied.

• Hence, the control (execution) is simple.



PSU 510FLP F17 Compiling c© Sergio Antoy 2017 5

Function H (1)

Let S and T denote the source and target systems.

Function H takes an expression e of S and returns a
head constructor form of e (a constructor application),
or aborts if this form doesn’t exist.

The rules of H are generated piecemeal for each opera-
tion f of S by a post-order traversal, let’s call it compile,
of a definitional tree of f . We define compile by exam-
ples.

Let N be a branch node with pattern π, some induc-
tive variable, and a few children. First compile each child
(post-order traversal). Then produce the rule:

H(π) = H(π′)

where π′ is like π with the inductive variable wrapped by
H.

Example using the root of the tree of ++:

H(x++y) = H(H(x)++y)

Rationale: x is needed and matches a function applica-
tion or a textually preceeding rule would have been fired.

PSU 510FLP F17 Compiling c© Sergio Antoy 2017 6

Function H (2)

Let N be a leaf node with rule l → r. We distinguish
3 exhaustive and mutually exclusive cases for r.

1. r is a constructor application. Produce the rule:

H(l) = r

2. r is a function application. Produce the rule:

H(l) = H(r)

3. r is a variable, say x. Produce the rules:

H(l′) = ci(x1, . . . xk)

where l′ is like l with x replaced by ci(x1, . . . xk) for every
constructor symbol ci of arity k.

Example, compile the left leaf of the tree of ++:

H([]++[]) = []

H([]++(y:ys)) = y:ys

H([]++y) = H(y)

Note, the right-hand side of the rule of ++ is a variable.
In the 3rd rule of H, y matches a function application.

Exercise 6.A Compile the right leaft of ++.

Exercise 6.B Compile operation take defined at page 5
of the “Strategies” unit.

PSU 510FLP F17 Compiling c© Sergio Antoy 2017 7

Function H (3)

Let N be an exempt node with pattern π. compile pro-
duces:

H(π) = abort

where “abort” is a directive to abort the computation
since the expression being evaluated has no value.

Optimization.

An effective optimization is often available. Consider
the previously discussed rule:

H(x++y) = H(H(x)++y)

We know that the recursive outermost call to H will al-
ways match ++ at the root. We can specialize this call
and avoid first constructing and later matching the root:

H(x++y) = H++(H(x), y)

Non-determinism.

This compilation scheme is for deterministic func-
tions. Various approaches to non-determinism, e.g.,
backtracking could be integrated

Higher order.

Not discussed at this time. Maybe later.

PSU 510FLP F17 Compiling c© Sergio Antoy 2017 8

Function N

Function N takes an expression e of S and returns the
value of e (in S) or it “aborts” if e has no value.

It invokes function H that takes an expression e of S and
evaluates it to a head constructor form, or aborts if it
doesn’t exist.

Operation N is defined by one rule for each symbol of S.
In the following metarules, c stands for a constructor of
S of arity m, f stands for an operation of S of arity n,
and xi is a fresh variable for every i.

N(c(x1, . . . xm)) = c(N(x1), . . .N(xm))

N(f(x1, . . . xn)) = N(H(f(x1, . . . xn)))

Examples:

N([]) = []

N(x:xs) = N(x):N(xs)
N(x++y) = N(H(x++y))

The 3rd rule can be optimized as discussed earlier.

After execution of the 3rd rule, the recursive call executes
either the 1st or the 2nd.



PSU 510FLP F17 Compiling c© Sergio Antoy 2017 9

Low level implementation

The target system can be implemented relatively easily
in a low-level language such as C.

The graphs abstracting the expressions have nodes and
arcs. A node is a struct containing a label/symbol and
pointers to the node successors.

Functions H and N are ordinary C functions.

Pattern matching is implemented by case analysis
through a traversal of (the top portion of) the argument.

A working system must accommodate built-in types, like
the integers, and provide some library functions that can-
not be coded in Curry.

Exercise 9. Sketch the case analysis required to dispatch
the rule of H in the target system for an argument rooted
by ++. Hint: start with writing all the rules of H.

Thu Aug 31 11:22:30 PDT 2017


