
PSU 568 F20 Declarative Programming c© Sergio Antoy 2020 1

Declarative Programming

What is Declarative Programming?

Programming: the process of transforming a problem
into a program so that a solution of the problem can be
found by a computer.

Declarative: the program is mostly a declaration of the
elements of the problem and/or relationships between
them. The language of the program is in contrast to im-

perative languages in which a program is an algorithm,
a sequence of instructions or commands executed by a
computer.

Why using Declarative Programming?

Humans express and understand relationships better than
algorithms (try to execute an algorithm by hand). Declar-
ative programs are shorter and have fewer details, hence
are easier to code and understand. They inspire more
confidence. Regardless of the language, often relation-
ships must be stated before coding and tested after.

How to use Declarative Programming?

Curry: a language that joins the characterizing features
of functional programming and logic programming.
The language syntax and semantics will come in due time.



PSU 568 F20 Declarative Programming c© Sergio Antoy 2020 2

A problem

Before the age of computing, some of the simplest codes
were sent in plain view, embedded in a long string of text.
The simplest type of this embedded code is to “hide” a
string of text every ‘n’ characters in the larger block of
text. The recipient only needed to know the value of ‘n’,
to extract the message.

You are to write a program that searches a block of text
for a given string. Determine if the string is embedded
somewhere, and if so, report the ‘n’ value.

For example,
String to search for: “Hello World”
Text to search through: “AHaealalaoa aWaoaralad”
Result: “Hello World” is found with embedding 2.

ACM Pacific NW Region Programming Contest
11 November 2000
PROBLEM E
Embedded Codes



PSU 568 F20 Declarative Programming c© Sergio Antoy 2020 3

Program Design

My interpretation is that the ciphertext can have
a suffix (tail portion) that does not belong to the
plaintext (otherwise the problem seems too sim-
ple). E.g. ab is found in xaxbzz with embedding
2. Other interpretations are plausible and can be
discussed later.

Imperative: Try all the plausible values of n by
looping over the characters of the ciphertext and
plaintext. Some care is required for the control
(loop boundaries) and the characters comparison
(corresponding indexes).

Declarative: State the relationships between em-
bedding, ciphertext and plaintext. These rela-
tionships are already provided by the problem.
Though the statement is informal, the relation-
ships must be sufficiently precise to determine the
solution(s).



PSU 568 F20 Declarative Programming c© Sergio Antoy 2020 4

Declarations

The elements of the problem

- cipher is the ciphertext string
- plain is the plaintext string
- embed is the key of the encryption

Relationships between symbols in a graphical intutitive
representation:

plain c ps

cipher x c cs
︸ ︷︷ ︸

embed

Relationships between symbols formalized in a system of
equations:







plain = c : ps

cipher = x ++ (c : cs)

n = length x + 1



PSU 568 F20 Declarative Programming c© Sergio Antoy 2020 5

Coding

The system of equations captures the problem conditions for
the first character of the plaintext. The same conditions must
hold for the following characters. Thus, we name and param-
eterize the system of equations and recur for each character
ot the plaintext.

Interestingly, the symbols “++”, “:”, length and [·] are library
operations, hence already defined. The programmer has to
code almost nothing.

In the following lectures you will learn how to encode this
problem into a program. The programming language is Curry.
The paradigm is functional logic. The computation is narrow-
ing.

As a preview, this is the complete program:

conditions - "" n = n

conditions (x++c:cs) (c:ps) n

| length x + 1 == n

= conditions cs ps n

As an exercise to understand and appreciate the differences
between paradigms, I recommend that you solve this problem
in a language you are familiar with, e.g., Java, C or python.



PSU 568 F20 Declarative Programming c© Sergio Antoy 2020 6

How does it work?

Initially, imagine that function conditions is called with 3 val-
ues: cipher, plain, and embed. If these values satisfy the
conditions of the problem, the function returns embed. Oth-
erwise, it reports that no value can be returned (in jargon, it
fails).

For example, the call:

conditions "aaba" "a" 1

returns 1.

Now, simplifying a little, you can replace any argument of the
call with an unknown value, represented by a free variable. For
example, if we want to compute the embedding:

conditions "aaba" "a" n where n free

A fundamental theorem states, simplifying a little, that if there
is some value for a variable that would allow the function call
to produce a result, the function execution will produce that
result and also bind that value to that variable. Thus, the
above call will return 1, 2 and 4 which are also bound to vari-
able n.

Observe that by choosing which arguments are values and
which are free variables, function conditions solves different
kinds of problems, e.g., decrypting or encrypting.



PSU 568 F20 Declarative Programming c© Sergio Antoy 2020 7

Homework

Code a program to solve problem E of the ACM contest. Use
your favorite imperative/OO language, e.g., C, Java, Python,
etc. Include both unit testing and trace of execution.

A sound way to start (as usual) is to design tests for the out-
put of your program. This should help you understand the
problem (or understand what you are not understanding) to a
the degree suitable for coding a program.

Thus, code a procedure that, given some plaintext p, cipher-
text c and embedding n, verifies whether p is embedded in
c with embedding n. It is useful to code many tests, both
positive and negative, with as many corner cases as you can.

The code for testing the program will suggest how to design
the program object of this homework.

Include unit tests for each function/method of your program.

Wed 07 Oct 2020 03:11:49 PM PDT


