
PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 1

Introduction to Narrowing

Main concepts of this unit:

Variables
- existential, universal

Residuation
- rigid function

Narrowing
- flexible function
- non-determinism

Strict Equality
Programming with Equations
Properties of Narrowing

- soundness, completeness

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 2

Variables

Variables in terms occurs in two situations. In a rewrite
rule, a variable stands for any term. This use is like uni-
versal quantification. E.g.:

pop (push S) = S

is intended as: “for any element E and stack S, the re-
sult of popping push(E,S) is S”.

Functional logic programming supports the evaluation of
expressions containing variables. Variables in expressions
differ from variables in rules. They stand for some un-
known value. This use is like existential quantification.
E.g.:

data Suit = Club | Spade | ...

data Rank = Ace | King | ...

data Card = Card Rank Suit

rank (Card r) = r

The following Curry code, which finds whether a poker
hand is a four-of-a-kind, contains unknown variables: x,
, z and r.

isFour (x++[]++z)

| map rank (x++z) == [r,r,r,r]

= Just r where r free

isFour’default = Nothing

This unit’s focus is to evaluate expressions of this kind.

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 3

Residuation

The problem is the “functional” evaluation of expressions
(terms) containing uninstantiated variables. The func-
tions are defined by rewrite rules.

One approach, called residuation, assumes that some
special functions, e.g., in Escher the equality operator,
may instantiate variables to which are applied. Other
functions wait (residuate) when applied to variables. The
control is transfered to another expression hoping that
the evaluation of this expression will instantiated the vari-
ables in question. E.g., in Curry:

digit = 0

digit = 1

digit = 2

...

test x y = x+x=:=y & x*x=:=y & digit=:=x

Suppose the expression to evaluate is test X Y, where
the arguments are both uninstantiated variables.

Both “+” and “*” residuate, but “=:=” does not. The
variable x is instantiated by the last equation, which in
turn restarts the evaluation of the residuating expressions.

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 4

Narrowing

As for residuation, the problem is still the “functional”
evaluation of expressions (terms) containing uninstanti-
ated variables. The functions are defined by rewrite rules.

Another approach, called narrowing, guesses values for
the variables when this is necessary to keep the compu-
tation going. Of course, some guesses may be wrong.
A guess comes from a pattern found in a rewrite rule
of the function applied to variables. E.g., in the Curry’s
prelude:

length [] = 0

length (:xs) = 1 + length xs

The evaluation of:

Prelude> length l where l free

gives:

{l=[]} 0

{l=[a]} 1

{l=[a, b]} 2

...

Most functions in Curry behave in this way. Typical ex-
ceptions are arithmethic operations and I/O primitives.

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 5

Equality

Curry predefines a polymorphic Boolean equality, “==”,
to tell whether two expressions are equal.

data Color = Red | Green | Blue

test1 = Red == Red

test2 = Red == Green

test3 = Red == x where x free

As expected test1 is True, test2 is False, and test3
produces 3 values, one for each color.

The expression e1 == e2 evaluates to True when e1 and
e2 evaluate to a same ground data expression, to False

when they evaluate to different data expressions.

Equality between a number or character and an unbound
variable suspends, because there are too many (or
infinite) cases to consider. E.g.:

x==2 where x free

Likewise, equality between two unbound variables
suspends.

Exercise 5. Forget the predefined equality. Define your
own equality for lists of colors. E.g. the following must
return False.

[Red,Blue] ‘myeqlofc‘ [Red,Green]

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 6

Equations

An equation is an expression of the form e1 = e2

and typically containing free variables. Solving the
equation consists in finding values for the free variables
that evaluate the expression to True.

Curry predefines a polymorphic constrained equality,
“=:=”, to solve equations. Loosely speaking, compute
only the positive outcomes “==”.

Examples 6.

Compute a permutation of a list:

permute [] = []

permute (x:xs) | permute xs =:= u ++ v

= u ++ x:v

where u, v free

Pick a duplicate element in a list

pickdupl l | l =:= a++d:b++d:c

= d

where a,b,c,d free

Find the distance between two given elements in a list:

distance l i j | l =:= a++i:b++j:c

= length b + 1

where a,b,c free

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 7

Soundness and Completeness

Narrowing solves equations involving user-defined data
types. Let e be an equation and v1, . . . , vn uninstan-
tiated variables in e and σ = {v1 7→ t1, . . . , vn 7→ tn} a
substitution.

Narrowing is sound: if e
∗
❀ True and computes σ, then

σ(e)
∗→ True as well, i.e., (σ is a solution of e).

Narrowing is complete: if σ(e)
∗→ True (σ is a solution

of e), then there exists a narrowing evaluation of e to
True that computes a substitution at least as general as
σ.

The (operational) completeness of narrowing is not trivial
to obtain. Many implementations of narrowing, including
the one provided by Pakcs, are incomplete.

Narrowing is able to find all the solutions of an equation.
If the number of solutions is finite, narrowing may or may
not find them in finite time.

Exercise 7. Invoke the Packs interpreter and try to
compute repeated solutions of both:

X =:= [1,2,3]

length X =:= length [1,2,3]

How do you interpret the behavior of Pakcs?

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 8

Narrowing Computations

Example 8. The following example shows how narrow-
ing computes.

data Nat = Zero | Succ Nat

leq Zero = True

leq (Succ) Zero = False

leq (Succ x) (Succ y) = leq x y

add Zero y = y

add (Succ x) y = Succ (add x y)

Trace the evaluation of leq (add X Y) Y =:= True.

- leq (add X Y) Y

- - add X Y guess Zero for X
- - add Zero Y

- - Y

- leq Y Y guess Zero for Y
- leq Zero Zero

- True {X 7→ Zero, Y 7→ Zero}
find new solution, try other last guess

- leq Y Y guess (Succ U) for Y
- leq (Succ U) (Succ U)

- - leq U U guess Zero for U
- - leq Zero Zero

- - True

- True {X 7→ Zero, Y 7→ Succ Zero}
Exercise 8. Which other solutions will Pakcs find? Is
this OK?

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 9

Programming

The problem is a portion of the Game of 24, a puzzle for
children (and CS students).

Given four 1-digit positive integers find an
arithmetic expression that evaluates to 24 in
which each digit occurs exactly once. A num-
ber can be divided only by its factors. For
example, a solution of the problem [2,3,6,8]
is (2+8)*3-6. There are 26 distinct solutions
of this problem.

A design pattern for search problems of this kind is
called generate and test. Its application consists of: (1)
generating a well-formed expression of the problem, e.g.,
(2+3)*(6+8), and testing whether it evaluates to 24
(no for the given example).

Exercise 9. Code a Curry program that generates any
(all) well-formed expressions of a problem.

Hint: a plausible type for the expressions:

data Exp = Num Int

| Add Exp Exp

| Mul Exp Exp

| Sub Exp Exp

| Div Exp Exp

PSU 510FLP W’03 Narrowing c© Sergio Antoy 2003 10

Programming cont’d

The problem is to compute the day schedule of a league
of sport teams. A day schedule is a set of games (be-
tween two teams), where (1) every team, or every team
but one if number of teams is odd, plays daily and (2)
no team plays more than one game per day.

Exercise 10a. Code a Curry program that computes a
day schedule for a league of sport teams.

Hints: a non-deterministic solution picks two teams of
the league for a game and recurs on the remaining teams.
There are two challenges: (1) ensuring that every sched-
ule is generated, and (2) avoiding or minimizing repeated
computations of the same schedule.

Exercise 10b. How many different schedules are there?
Extend the previous program to compute the set of day
schedules (use the SetFunctions library).

Thu Aug 31 11:22:30 PDT 2017

