
PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 1

Strategies

Main concepts of this unit:

Narrowing Step
- narrex

Subsumption Ordering
Definitional Trees

- leaf and branch patterns
- inductive position

Inductive sequentiality
Strategies

- needed narrowing
Program classes

- conditions, overlapping

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 2

Narrowing Step

Let t be a term, l → r a rule, p a non-variable position
of t, and σ a substitution such that σ(l) = σ(t|p), i.e.,
l and t|p unify. The subterm of t at position p is a
narrex.

A narrowing step is a pair of terms t → σ(t[r]p), where
the latter denotes the term obtained by replacing the
subterm of σ(t) at position p with σ(r).

Example 2. Consider the following TRS:

data Nat = Zero | Succ Nat

leq Zero = True

leq (Succ) Zero = False

leq (Succ x) (Succ y) = leq x y

add Zero y = y

add (Succ x) y = Succ (add x y)

Let

t = leq (add X Y) Y,
l → r = add Zero y = y,
p = 〈1〉,
σ = {X 7→ Zero, y 7→ Y}.

Then

leq (add X Y) Y ❀〈l→r,p,σ〉 leq Y Y

The problem is choosing l → r, p, and σ for a term t.

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 3

Strategy

A strategy selects the rule, position, and unifier of a step.
Formally, a strategy is a mapping from a term to a set

of steps (triples). A naive strategy tries all possible steps
with most general unifiers.

Efficient strategies compute only a subset of all possible
steps of a term and forgo most general unifiers. Different
strategies exist for different classes of TRS, e.g., conflu-
ent, constructor based, etc. We look at a strategy for
constructor-based TRS.

All modern strategies for functional logic computations
(narrowing) are based, directly or indirectly, on a hierar-
chical organization of the lhs of the rewrite rules of each
function of a program. This structure is called a defini-
tional tree.

A definitional tree is a set of terms (partially) ordered by

subsumption. Given two terms, t and u, we write t 6 u

and say that t preceeds u, if there exists a substitution

σ such that σ(t) = u, i.e., u is an instance of t.

Examples 3. (variable are in upper case)

X 6 0
X 6 Y and Y 6 X
X++Y 6 [] ++Y
(X:Xs) ++Y 66 [] ++Y and [] ++Y 66 (X:Xs) ++Y

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 4

Definitional Tree

A definitional tree of an operation f is a finite, non-
empty set T of linear patterns partially ordered by sub-
sumption and having the following properties up to re-
naming of variables:

• [leaves property] The maximal elements, referred

to as the leaves, of T are all and only variants of
the left hand sides of the rules defining f . Non-
maximal elements are referred to as branches.

• [root property] The minimum element, referred
to as the root, of T is f(X1, . . . , Xn), where
X1, . . . , Xn are fresh, distinct variables.

• [parent property] If π is a pattern of T different
from the root, there exists in T a unique pattern π′

strictly preceding π such that there exists no other
pattern strictly between π and π′. π′ is referred to
as the parent of π and π as a child of π′.

• [induction property] All the children of a same par-
ent differ from each other only at the position, re-
ferred to as inductive, of a variable of their parent.

Examples are in the next page . . .

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 5

Examples

Examples 5. Some operations with their definitional
trees. The inductive variable is boxed.

[] ++ Y = Y

(X:Xs) ++ Y = X : Xs++Y

X ++ Y

⑧⑧
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄❄
❄❄

[] ++ Y (X1:Xs) ++ Y

take 0 = []

take (s N) [] = []

take (s N) (X:Xs) = X : take N Xs

take N X

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

❄❄
❄❄

❄❄
❄❄

take 0 X take (s N1) X

⑧⑧
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄❄
❄❄

take (s N1) [] take (s N1) (X1:Xs)

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 6

Inductive Sequentiality

An operation is inductively sequential if it has a defini-

tional tree. A program (TRS) is inductively sequential if
all its operations are inductively sequential.

Each non-value expression of such a program having a
value also has a step, called needed, that must be ex-
ecuted to compute the value.

Every (first-order) Haskell program is inductively sequen-
tial with the conventional reading of rules from top to
bottom.

Inductively sequential programs are confluent. Some
Curry programs, even confluent ones, are not inductively
sequential, e.g.:

infixl 2 \/

True \/ = True

\/ True = True

False \/ False = False

Pakcs approximates the execution of the above opera-
tion.

Exercise 6. Prove that the operations of Example 2 are
inductively sequential. Prove that “\/” defined above is
not inductively sequential.

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 7

Needed Narrowing

Narrowing steps in inductively sequential programs are
computed by the needed narrowing strategy.

Let t = f(t1, . . . , tk) be an operation-rooted term to
narrow. We most-generally unify t with some non-
deterministically chosen maximal pattern π in a defini-
tional tree T of f . Let η be a most general unifier of t
and π. If π is a leaf of T, η(t) is a redex and we replace it.
If π is a branch of T, we consider the subterm u of η(t)
at the inductive position of π. The term u cannot be a
variable. If u is operation-rooted, we recursively attempt
to narrow it. If u is constructor-rooted, we fail, since η(t)
cannot be narrowed to a value.

Since there can be many maximal patterns π that unify
with t, distinct steps can be computed on t, i.e., the
above definition is non-deterministic.

Note that the unifier of a step computed by needed nar-
rowing is not necessarily most general. Without this con-
dition, some narrowing steps are useless.

Needed narrowing is sound, complete and, for computa-
tions to a value, it computes only unavoidable steps and
disjoint substitutions.

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 8

Example

Compute the needed steps of t = take N ([1]++[2]),
where N is an uninstantiated variable.

The term t unifies with both take 0 X, which is a leaf,
and take (s N1) X, which is a branch. The first is ob-
viously a maximal element in its tree, since it is a leaf.
The second is maximal as well, since t does not unify
with either of its children. Therefore, needed narrowing
computes the two steps shown below.

The step with the leaf has unifier {N 7→ 0}:

take N ([1]++[2]) ❀Λ,{N 7→0} []

The step with the branch has unifier {N 7→ (sN1)}.
The inductive position is 2 (counting from 1):

take N ([1]++[2]) ❀2,{N 7→(sN1)}
take (s N1) (1:[]++[2])

Exercise 8.

- Verify that the inner step (at position 2) of above
step is computed by needed narrowing.

- Verify that the above step could be computed with
a more general unifier.

- Verify that executing the above step with a most
general unifier may be useless (difficult).

PSU 510FLP F17 Strategies c© Sergio Antoy 2003-2017 9

Program Classes

Inductively sequential programs are too restrictive for
functional logic programming. Two larger classes have
been proposed for FLP.

Constructor-based, conditional programs: no restric-
tions except the constructor discipline.

Constructor-based, left-linear programs: no restrictions
except the linearity of the lhss.

insert e xs = e:xs

insert e (x:xs) = x:insert e xs

Overlapping inductively sequential programs: the lhss
of an operation have a definitional tree; distinct rhss are
allowed for a single lhs.

insert e xs = e:xs

insert e xs = neins e xs

neins e (x:xs) = x:insert e xs

Every (first-order) program in the first two classes can be
transformed (syntactically) into a program of the third
class.

A strategy for the overlapping inductively sequential pro-
grams is very similar to needed narrowing: in addition to
the other non-deterministic choices, non-deterministically
pick one of the rhss, if many are available.

Thu Aug 31 11:22:30 PDT 2017

