Strategies

Main concepts of this unit:

Narrowing Step

- narrex

Subsumption Ordering Definitional Trees

- leaf and branch patterns
- inductive position

Inductive sequentiality

Strategies

- needed narrowing

Program classes

- conditions, overlapping

Narrowing Step

Let t be a term, $l \to r$ a rule, p a non-variable position of t, and σ a substitution such that $\sigma(l) = \sigma(t|_p)$, i.e., l and $t|_p$ unify. The subterm of t at position p is a narrex.

A narrowing step is a pair of terms $t \to \sigma(t[r]_p)$, where the latter denotes the term obtained by replacing the subterm of $\sigma(t)$ at position p with $\sigma(r)$.

Example 2. Consider the following TRS:

```
data Nat = Zero | Succ Nat leq Zero _ = True leq (Succ _) Zero = False leq (Succ x) (Succ y) = leq x y add Zero y = y add (Succ x) y = Succ (add x y)

Let t = \text{leq (add X Y) Y,} \\ l \rightarrow r = \text{add Zero y = y,} \\ p = \langle 1 \rangle, \\ \sigma = \{ \text{X} \mapsto \text{Zero, y} \mapsto \text{Y} \}.
```

Then

```
leq (add X Y) Y \leadsto_{\langle l 
ightarrow r, p, \sigma 
angle} leq Y Y
```

The problem is choosing $l \to r$, p, and σ for a term t.

Strategy

A strategy selects the rule, position, and unifier of a step. Formally, a *strategy* is a mapping from a term to a set of steps (triples). A naive strategy tries all possible steps with most general unifiers.

Efficient strategies compute only a subset of all possible steps of a term and forgo most general unifiers. Different strategies exist for different classes of TRS, e.g., confluent, constructor based, etc. We look at a strategy for constructor-based TRS.

All modern strategies for functional logic computations (narrowing) are based, directly or indirectly, on a hierarchical organization of the lhs of the rewrite rules of each function of a program. This structure is called a *definitional tree*.

A definitional tree is a set of terms (partially) ordered by subsumption. Given two terms, t and u, we write $t \le u$ and say that t preceds u, if there exists a substitution σ such that $\sigma(t) = u$, i.e., u is an instance of t.

Examples 3. (variable are in upper case)

```
X\leqslant 0 X\leqslant Y \text{ and } Y\leqslant X X++Y\leqslant [\ ]++Y \ (X:Xs)++Y\not\leqslant [\ ]++Y \text{ and } [\ ]++Y\not\leqslant (X:Xs)++Y
```

Definitional Tree

A *definitional tree* of an operation f is a finite, non-empty set \mathcal{T} of linear *patterns* partially ordered by subsumption and having the following properties up to renaming of variables:

- [leaves property] The maximal elements, referred to as the *leaves*, of \mathcal{T} are all and only variants of the left hand sides of the rules defining f. Non-maximal elements are referred to as *branches*.
- [root property] The minimum element, referred to as the **root**, of \mathcal{T} is $f(X_1, \ldots, X_n)$, where X_1, \ldots, X_n are fresh, distinct variables.
- [parent property] If π is a pattern of \mathcal{T} different from the root, there exists in \mathcal{T} a unique pattern π' strictly preceding π such that there exists no other pattern strictly between π and π' . π' is referred to as the *parent* of π and π as a *child* of π' .
- [induction property] All the children of a same parent differ from each other only at the position, referred to as *inductive*, of a variable of their parent.

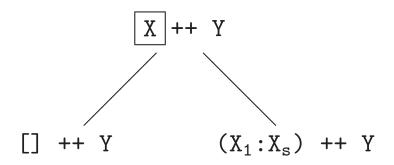
Examples are in the next page ...

Examples

Examples 5. Some operations with their definitional trees. The *inductive variable* is boxed.

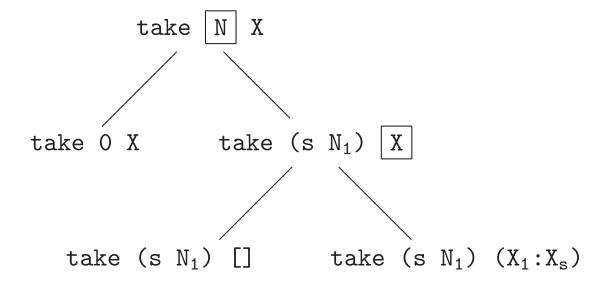
$$[] ++ Y = Y$$

(X:Xs) ++ Y = X : Xs++Y



take
$$0 = []$$

take $(s N) = []$
take $(s N) (X:Xs) = X : take N Xs$



Inductive Sequentiality

An operation is *inductively sequential* if it has a definitional tree. A program (TRS) is inductively sequential if all its operations are inductively sequential.

Each non-value expression of such a program having a value also has a step, called needed, that must be executed to compute the value.

Every (first-order) Haskell program is inductively sequential with the conventional reading of rules from top to bottom.

Inductively sequential programs are confluent. Some Curry programs, even confluent ones, are **not** inductively sequential, e.g.:

```
infix1 2 \/
True \/ _ = True
_ \/ True = True
False \/ False = False
```

PAKCS approximates the execution of the above operation.

Exercise 6. Prove that the operations of Example 2 are inductively sequential. Prove that "\/" defined above is not inductively sequential.

Needed Narrowing

Narrowing steps in inductively sequential programs are computed by the *needed narrowing* strategy.

Let $t = f(t_1, \ldots, t_k)$ be an operation-rooted term to narrow. We most-generally unify t with some non-deterministically chosen maximal pattern π in a definitional tree \mathcal{T} of f. Let η be a most general unifier of t and π . If π is a leaf of \mathcal{T} , $\eta(t)$ is a redex and we replace it. If π is a branch of \mathcal{T} , we consider the subterm u of $\eta(t)$ at the inductive position of π . The term u cannot be a variable. If u is operation-rooted, we recursively attempt to narrow it. If u is constructor-rooted, we fail, since $\eta(t)$ cannot be narrowed to a value.

Since there can be many maximal patterns π that unify with t, distinct steps can be computed on t, i.e., the above definition is non-deterministic.

Note that the unifier of a step computed by needed narrowing is **not** necessarily most general. Without this condition, some narrowing steps are useless.

Needed narrowing is sound, complete and, for computations to a value, it computes only *unavoidable* steps and *disjoint* substitutions.

Example

Compute the needed steps of t = take N ([1]++[2]), where N is an uninstantiated variable.

The term t unifies with both take 0 X, which is a leaf, and take (s N_1) X, which is a branch. The first is obviously a maximal element in its tree, since it is a leaf. The second is maximal as well, since t does not unify with either of its children. Therefore, needed narrowing computes the two steps shown below.

The step with the leaf has unifier $\{N\mapsto 0\}$:

```
take N ([1]++[2]) \sim_{\Lambda,\{N\mapsto 0\}} []
```

The step with the branch has unifier $\{N \mapsto (s N_1)\}$. The inductive position is 2 (counting from 1):

```
take N ([1]++[2]) \sim_{2,\{N\mapsto(s\,N_1)\}}
take (s N<sub>1</sub>) (1:[]++[2])
```

Exercise 8.

- Verify that the inner step (at position 2) of above step is computed by needed narrowing.
- Verify that the above step could be computed with a more general unifier.
- Verify that executing the above step with a most general unifier may be useless (difficult).

Program Classes

Inductively sequential programs are too restrictive for functional logic programming. Two larger classes have been proposed for FLP.

Constructor-based, conditional programs: no restrictions except the constructor discipline.

Constructor-based, left-linear programs: no restrictions except the linearity of the lhss.

```
insert e xs = e:xs
insert e (x:xs) = x:insert e xs
```

Overlapping inductively sequential programs: the lhss of an operation have a definitional tree; distinct rhss are allowed for a single lhs.

```
insert e xs = e:xs
insert e xs = neins e xs
neins e (x:xs) = x:insert e xs
```

Every (first-order) program in the first two classes can be transformed (syntactically) into a program of the third class.

A strategy for the overlapping inductively sequential programs is very similar to needed narrowing: in addition to the other non-deterministic choices, non-deterministically pick one of the rhss, if many are available.