
CPM User’s Manual

Jonas Oberschweiber Michael Hanus

Institut für Informatik, CAU Kiel, Germany

packages@curry-language.org

January 17, 2019

Contents

1 Introduction 2

2 Installing the Curry Package Manager 2

3 Starting the Curry Package Manager 3

4 Package Basics 4

5 Using Packages 5

5.1 Creating New Packages . 5

5.2 Installing and Updating Dependencies . 5

5.3 Checking out Packages . 5

5.4 Installing Applications of Packages . 6

5.5 Executing the Curry System in a Package . 6

5.6 Using Packages Outside a Package . 7

5.7 Replacing Dependencies with Local Versions . 7

6 Authoring Packages 9

6.1 Semantic Versioning . 9

6.2 Adding Packages to the Central Package Index . 11

6.3 Publishing a Package . 11

7 Configuration 13

8 Some CPM Internals 14

9 Command Reference 15

10 Package Specification Reference 20

11 Error Recovery 25

1

1 Introduction

This document describes the Curry package manager (CPM), a tool to distribute and install Curry

libraries and manage version dependencies between these libraries.

A distinguishing feature of CPM is its ability to perform semantic versioning checking, i.e.,

CPM provides a command to check the semantics of a new package version against an older version

of the same package.

2 Installing the Curry Package Manager

CPM is part of recent distributions of the Curry systems PAKCS1 (since version 1.15.0) and KiCS22

(since version 0.6.0). If you use an older release of PAKCS or KiCS2 or you want to install the

most recent CPM version from the source repository, this section contains some hints about the

installation of CPM.

To install and use CPM, a working installation of either PAKCS in version 1.14.1 or greater, or

KiCS2 in version 0.5.1 or greater is required. Additionally, CPM requires Git3, curl4, tar, and unzip

to be available on the PATH during installation and operation. You also need to ensure that your

Haskell installations reads files using UTF-8 encoding by default. Haskell uses the system locale

charmap for its default encoding. You can check the current value using System.IO.localeEncoding

inside a ghci session.

It is also recommended that SQLite5 is installed so that the executable sqlite3 is in your path.

In this case, CPM uses a SQLite database for caching the central package index (see Section 8).

This yields faster response times of various CPM commands.

To install CPM from the sources, enter the root directory of the CPM source distribution. The

main executable curry of your Curry system must be in your path (otherwise, you can also specify

the root location of your Curry system by modifying the definition of CURRYROOT in the Makefile).

Then type make to compile CPM which generates a binary called cypm in the bin subdirectory. Put

this binary somewhere on your path.

1https://www.informatik.uni-kiel.de/~pakcs/
2https://www-ps.informatik.uni-kiel.de/kics2/
3http://www.git-scm.com
4https://curl.haxx.se
5https://www.sqlite.org

2

https://www.informatik.uni-kiel.de/~pakcs/
https://www-ps.informatik.uni-kiel.de/kics2/
http://www.git-scm.com
https://curl.haxx.se
https://www.sqlite.org

3 Starting the Curry Package Manager

If the binary cypm is on your path, execute the command

> cypm update

to pull down a copy of the central package index to your system. You can use the same command

to update later your copy of the central package index to the newest version.

Afterwards, you can show a list of all packages in this index by

> cypm list

The command

> cypm info PACKAGE

can be used to show more information about a package. There is also a command

> cypm search QUERY

to search inside the central package index.

Section 9 contains a complete list of all available CPM commands.

3

4 Package Basics

Essentially, a Curry package is nothing more than a directory structure containing a package.json

file and a src directory at its root. The package.json file is a JSON file containing package

metadata, the src directory contains the Curry modules that make up the package.

We assume familiarity with the JSON file format. A good introduction can be found at http:

//json.org. The package specification file must contain a top-level JSON object with at least

the keys name, author, version, synopsis and dependencies. More possible fields are described in

Section 10. A package’s name may contain any ASCII alphanumeric character as well as dashes

(-) and underscores (). It must start with an alphanumeric character. The author field is a free-

form field, but the suggested format is either a name (John Doe), or a name followed by an email

address in angle brackets (John Doe <john.doe@goldenstate.gov>). Separate multiple authors with

commas.

Versions must be specified in the format laid out in the semantic versioning standard:6 each

version number consists of numeric major, minor and patch versions separated by dot characters as

well as an optional pre-release specifier consisting of ASCII alphanumerics and hyphens, e.g. 1.2.3

and 1.2.3-beta5. Please note that build metadata as specified in the standard is not supported.

The synopsis should be a short summary of what the package does. Use the description field

for longer form explanations.

Dependencies are specified as a nested JSON object with package names as keys and dependency

constraints as values. A dependency constraint restricts the range of versions of the dependency that

a package is compatible to. Constraints consist of elementary comparisons that can be combined

into conjunctions, which can then be combined into one large disjunction – essentially a disjunctive

normal form. The supported comparison operators are <,≤, >,≥,= and ∼>. The first four are

interpreted according to the rules for comparing version numbers laid out in the semantic versioning

standard. ∼> is called the semantic versioning arrow. It requires that the package version be at

least as large as its argument, but still within the same minor version, i.e. ∼> 1.2.3 would match

1.2.3, 1.2.9 and 1.2.55, but not 1.2.2 or 1.3.0.

To combine multiple comparisons into a conjunction, separate them by commas, e.g. ≥ 2.0.0, <

3.0.0 would match all versions with major version 2. Note that it would not match 2.1.3-beta5

for example, since pre-release versions are only matched if the comparison is explicitly made to a

pre-release version, e.g. = 2.1.3-beta5 or ≥ 2.1.3-beta2.

Conjunctions can be combined into a disjunction via the || characters, e.g. ≥ 2.0.0, < 3.0.0|| ≥
4.0.0 would match any version within major version 2 and from major version 4 onwards, but no

version within major version 3.

6http://www.semver.org

4

http://json.org
http://json.org
http://www.semver.org

5 Using Packages

Curry packages can be used as dependencies of other Curry packages or to install applications

implemented with a package. In the following we describe both possibilities of using packages.

5.1 Creating New Packages

Creating a new Curry package is easy. To use a Curry package in your project, create a package.json

file in the root, fill it with the minimum amount of information discussed in the previous session,

and move your Curry code to a src directory inside your project’s directory. Alternatively, if

you are starting a new project, use the cypm new <project-name> command, which creates a new

project directory with a package.json file for you.7 Then declare the dependencies inside the new

package.json file, e.g.:

{

...,

"dependencies": {

"base": ">= 1.0.0, < 2.0.0",

"json": "~> 1.1.0"

}

}

Then run cypm install to install all dependencies of the current package and start your interactive

Curry environment with cypm curry. You will be able to load the JSON package’s modules in your

Curry session.

5.2 Installing and Updating Dependencies

To install the current package’s dependencies, run cypm install. This will install the most recent

version of all dependencies that are compatible to the package’s dependency constraints. Note that

a subsequent run of cypm install will always prefer the versions it installed on a previous run, if

they are still compatible to the package’s dependencies. If you want to explicitly install the newest

compatible version regardless of what was installed on previous runs of cypm install, you can

use the cypm upgrade command to upgrade all dependencies to their newest compatible versions,

or cypm upgrade <package> to update a specific package and all its transitive dependencies to the

newest compatible version.

If the package also contains an implementation of a complete executable, e.g., some useful tool,

which can be specifed in the package.json file (see Section 10), then the command cypm install

also compiles the application and installs the executable in the bin install directory of CPM (see

Section 7 for details). The installation of executables can be suppressed by the cypm install option

-n or --noexec.

5.3 Checking out Packages

In order to use, experiment with or modify an existing package, one can use the command

cypm checkout <package>

7The new command also creates some other useful template files. Look into the output of this command.

5

to install a local copy of a package. This is also useful to install some tool distributed as a package.

For instance, to install curry-check, a property-testing tool for Curry, one can check out the most

recent version and install the tool:

> cypm checkout currycheck

. . . Package ’currycheck-1.0.1’ checked out into directory ’currycheck’.

> cd currycheck

> cypm install

. . .

INFO Installing executable ’curry-check into ’/home/joe/.cpm/bin’

Now, the tool curry-check is ready to use if $HOME/.cpm/bin is in your path (see Section 7 for details

about changing the location of this default path).

5.4 Installing Applications of Packages

Some packages do not contain only useful libraries but also application programs or tools. In order

to install the executables of such applications without explicitly checking out the package in some

local directory, one can use the command

cypm install <package>

This command checks out the package in some internal directory (default: $HOME/.cpm/apps Currysystem,

see Section 7) and installs the binary of the application provided by the package in $HOME/.cpm/bin

(see also Section 5.3).

For instance, the most recent version of the web framework Spicey can be installed by the

following command:

> cypm install spicey

. . . Package ’spicey-xxx’ checked out . . .

. . .

INFO Installing executable ’spiceup’ into ’/home/joe/.cpm/bin’

Now, the binary spiceup of Spicey can be used if $HOME/.cpm/bin is in your path (see Section 7 for

details about changing the location of this default path).

5.5 Executing the Curry System in a Package

To use the dependencies of a package, the Curry system needs to be started via CPM so that

it will know where to search for the modules provided. You can use the command “cypm curry”

to start the Curry system (which is either the compiler used to install CPM or specified with

the configuration option CURRY BIN, see Section 7). Any parameters given to “cypm curry” will be

passed along verbatim to the Curry system. For example, the following will start the Curry system,

print the result of evaluating the expression 39+3 and then quit.

> cypm curry :eval "39+3" :quit

To execute other Curry commands, such as “curry check”, with the package’s dependencies avail-

able, you can use the “cypm exec” command. This command will set the CURRYPATH environment

variable and then execute the command given after “exec”.

6

5.6 Using Packages Outside a Package

In principle, packages can be used only inside another package by declaring dependencies in the

package specification file package.json. If you invoke cypm in a directory which contains no package

specification file, CPM searches for such a file from the current directory to the parent directories

(up to the root of the file system). Thus, if you are outside a package, such a file is not available.

In order to support the use other packages outside package, CPM provides a meta-package which is

usually stored in your home directory at ~/.cpm/Currysystem-homepackage.8 This meta-package is

used when your are not inside another package. Hence, if you write some Curry program which is

not a package but you want to use some package P, you have to add a dependency to P to this meta-

package. CPM does this automatically for you with the CPM command cypm add --dependency

(short: cypm add -d).

For instance, to use the libraries of the JSON package in your application, one can use the

following commands:

> cypm add -d json # add ’json’ dependency to meta-package

> cypm install # download and install all dependencies

> cypm curry # start Curry system with JSON libraries in load path

...

Prelude> :load JSON.Data

JSON.Data>

The default behavior of the add command is to add the dependency and install all dependencies,

i.e., the previous commands can be reduced as follows:

> cypm add json

> cypm curry

...

Prelude> :load JSON.Data

JSON.Data>

5.7 Replacing Dependencies with Local Versions

During development of your applications, situations may arise in which you want to temporarily

replace one of your package’s dependencies with a local copy, without having to publish a copy of

that dependency somewhere or increasing the dependency’s version number. One such situation

is a bug in a dependency not controlled by you: if your own package depends on package A and

A’s current version is 1.0.3 and you encounter a bug in this version, then you might be able to

investigate, find and fix the bug. Since you are not the the author of A, however, you cannot release

a new version with the bug fixed. So you send off your patch to A’s maintainer and wait for 1.0.4

to be released. In the meantime, you want to use your local, fixed copy of version 1.0.3 from your

package. The cypm link command allows you to replace a dependency with your own local copy.

cypm link takes a directory containing a copy of one of the current package’s dependencies

as its argument. It creates a symbolic link from that directory the the current package’s lo-

cal package cache. If you had a copy of A-1.0.3 in the ~/src/A-1.0.3 directory, you could use

cypm link ~/src/A-1.0.3 to ensure that any time A-1.0.3 is used from the current package, your

8Use cypm config and look at HOME PACKAGE PATH to see the current location of this meta-package.

7

local copy is used instead of the one from the global package cache. To remove any links, use

cypm upgrade without any arguments, which will clear the local package cache. See Section 8 for

more information on the global and local package caches.

8

6 Authoring Packages

If you want to create packages for other people to use, you should consider filling out more metadata

fields than the bare minimum. See Section 10 for a reference of all available fields.

6.1 Semantic Versioning

The versions of published packages should adhere to the semantic versioning standard, which lays

out rules for which components of a version number must change if the public API of a package

changes. Recall that a semantic versioning version number consists of a major, minor and patch

version as well as an optional pre-release specifier. In short, semantic versioning defines the following

rules:

• If the type of any public API is changed or removed or the expected behavior of a public

API is changed, you must increase the major version number and reset the minor and patch

version numbers to 0.

• If a public API is added, you must increase at least the minor version number and reset the

patch version number to 0.

• If only bug fixes are introduced, i.e. nothing is added or removed and behavior is only changed

to removed deviations from the expected behavior, then it is sufficient to increase the patch

version number.

• Once a version is published, it must not be changed.

• For pre-releases, sticking to these rules is encouraged but not required.

• If the major version number is 0, the package is still considered under development and thus

unstable. In this case, the rules do not apply, although following them as much as possible

as still encouraged. Release 1.0.0 is considered to be the first stable version.

To aid you in following these rules, CPM provides the diff command. diff can be used to compare

the types and behavior of a package’s public API between two versions of that package. If it finds

any differences, it checks whether they are acceptable under semantic versioning for the difference

in version numbers between the two package versions. To use diff, you need to be in the directory

of one of the versions, i.e., your copy for development, and have the other version installed in CPM’s

global package cache (see the cypm install command). For example, if you are developing version

1.3.0 of the JSON package and want to make sure you have not introduced any breaking changes

when compared to the previous version 1.2.6, you can use the cypm diff 1.2.6 command while in

the directory of version 1.3.0.

CPM will then check the types of all public functions and data types in all exported modules of

both versions (see the exportedModules field of the package specification) and report any differences

and whether they violate semantic versioning. CPM will also compare the behavior of all exported

functions in all exported modules whose types have not changed. Actually, this part is performed

by CurryCheck [3], a property-based test tool for Curry. For this purpose, CPM generates a Curry

program containing properties stating the equivalence of two operations with the same name but

9

defined in two different versions of a package. The ideas and scheme of this generation process

are described in [4]. Note that not all functions can be compared via CurryCheck. In particular,

functions taking other functions as arguments (there are a few other minor restrictions) can not be

checked so that CPM automatically excludes them from checking.

Note that the results of non-terminating operations, like Prelude.repeat, cannot be compared

in a finite amount of time. To avoid the execution of possibly non-terminating check programs,

CPM compares the behavior of operations only if it can prove the termination or productivity9 of

these operations. Since CPM uses simple criteria to approximate these properties, there might be

operations that are terminating or productive but CPM cannot show it. In these cases you can use

the compiler pragmas {-# TERMINATE -#} or {-# PRODUCTIVE -#} to annotate such functions.

Then CPM will trust these annotations and treat the annotated operations as terminating or

productive, respectively. For instance, CPM will check the following operation although it cannot

show its termination:

{-# TERMINATE -#}

mcCarthy :: Int → Int

mcCarthy n | n<=100 = mcCarthy (mcCarthy (n+11))

| n>100 = n-10

As another example, consider the following operation defining an infinite list:

ones :: [Int]

ones = 1 : ones

Although this operation is not terminating, it is productive since with every step a new constructor

is produced. CPM compares such operations by comparing their results up to some depth. On the

other hand, the following operation is not classified as productive by CPM (note that it would not

be productive if the filter condition is changed to (>1)):

{-# PRODUCTIVE -#}

anotherOnes :: [Int]

anotherOnes = filter (>0) ones

Due to the pragma, CPM will compare this operation as other productive operations.

There might be situations when operations should not be compared, e.g., if the previous version

of the operation was buggy. In this case, one can mark those functions with the compiler pragma

{-# NOCOMPARE -#} so that CPM will not generate tests for them.

Note that there are different ways to state the equivalence of operations (e.g., see the discussion

in [2]). CPM offers two kinds of equivalence tests:

• Ground equivalence means that two operations are considered as equivalent if they yield

identical values for identical input values.

• Contextual or full equivalence means that two operations are considered as equivalent if they

produce the same results in all possible contexts.

Since contextual equivalence is more meaningful in the context of semantic versioning, CPM tests

this kind of equivalence in the default case, based on the techniques described in [1]. However, using

9An operation is productive if it always produces outermost constructors, i.e., it cannot run forever without

producing constructors.

10

the option --ground of the diff command, one can also enfore the checking of ground equivalence

as described in [4].

6.2 Adding Packages to the Central Package Index

When you have your package ready and want to use it in other packages, it must be added to the

central package index so that CPM can find it when searching for packages. For this purpose, you

can use the “cypm add” command:

> cypm add --package mypackage

In this case, mypackage is the name of the directory containing you package. In particular, the JSON

file “mypackage/package.json” must contain the metadata of the package (see also Section 10). This

command copies your package into your local copy of the central package index so that it can be

used in other packages. If you want to replace this copy by an improved version of the same package,

you have to provide the option -f or --force.

Note that this command makes your package only available on your local system. If you want

to publish your package so that it can be used by other CPM users, follow the instruction described

next.

6.3 Publishing a Package

There are three things that need to be done to publish a package: make the package accessible

somewhere, add the location to the package specification, and add the package specification to the

central package index.

CPM supports ZIP (suffix “.zip”) or compressed TAR (suffix “.tar.gz”) files accessible over

HTTP as well as Git repositories as package sources. You are free to choose one of those, but a

publicly accessible Git repository is preferred. To add the location to the package specification, use

the source key. For a HTTP source, use:

{

...,

"source": {

"http": "http://example.com/package-1.0.3.zip"

}

}

For a Git source, you have to specify both the repository as well as the revision that represents the

version:

{

...,

"source": {

"git": "git+ssh://git@github.com:john-doe/package.git",

"tag": "v1.2.3"

}

}

There is also a shorthand, $version, available to automatically use a tag consisting of the letter v

followed by the current version number, as in the example above. Specifying $version as the tag

11

and then tagging each version in the format v1.2.3 is preferred, since it does not require changing

the source location in the package.json file every time a new version is released. If one already

has a repository with another tagging scheme, one can also place the string $version$ in the tag,

which will be automatically replaced by the current version number. Thus, the tag “$version” is

equivalent to the tag “v$version$”.

After you have published the files for your new package version, you have to add the corre-

sponding package specification to the central package index. This can be done with the “cypm add”

command (see Section 6.2). If you have access to the Git repository containing the central package

index, then you can push the modified version of this Git repository. Otherwise, send your package

specification file to packages@curry-language.org in order to publish it.

12

packages@curry-language.org

7 Configuration

CPM can be configured via the $HOME/.cpmrc configuration file. The following list shows all con-

figuration options and their default values.

PACKAGE INDEX URL The URL of the central package index which is used by the update command

to download the index of all repositories.

REPOSITORY PATH The path to the index of all packages. Default value: $HOME/.cpm/index.

PACKAGE INSTALL PATH The path to the global package cache. This is where all downloaded

packages are stored. Default value: $HOME/.cpm/packages

BIN INSTALL PATH The path to the executables of packages. This is the location where the

compiled executables of packages containing full applications are stored. Hence, in order

to use such applications, one should have this path in the personal load path (environment

variable PATH). Default value: $HOME/.cpm/bin

APP PACKAGE PATH The path to the package cache where packages are checked out if only their

binaries are installed (see Section 5.4). Default value: $HOME/.cpm/apps Currysystem.

HOME PACKAGE PATH The path to the meta-package which is used if you are outside another pack-

age (see Section 5.6). Default value: $HOME/.cpm/Currysystem-homepackage.

CURRY BIN The name of the executable of the Curry system used to compile and test packages.

The default value is the binary of the Curry system which has been used to compile CPM.

BASE VERSION The version of the base libraries which is used for package installations. In the

default case, the base version is the version of the system libraries used by the Curry compiler.

These system libraries are also available as package “base” so that they can listed as a

dependency in the package specification. If the base version of the package is identical to the

base version of the Curry compiler used by CPM, the installed copy of the base libraries is

ignored.10 If one uses a different base version, e.g., enforced by a package dependency or by

setting this configuration variable, then this version of the base package is used. Thus, one

can use a package even if the current compiler has a different version of the base libraries.

Note that one write the option names also in lowercase or omit the underscores. For instance,

one can also write currybin instead of CURRY BIN. Moreover, one can override the values of these

configuration options by the CPM options -d or --define. For instance, to install the binary of the

package spicey in the directory $HOME/bin, one can execute the command

> cypm --define bin_install_path=$HOME/bin install spicey

10Since the system libraries of a Curry compiler are usually pre-compiled, the usage of the system libraries instead

of the base package might result in faster compilation times.

13

8 Some CPM Internals

CPM’s central package index is contains all package specification files. It is stored at a central

server where the actual location is defined by CPM’s configuration variable PACKAGE INDEX URL,

see Section 7. A copy of this index is stored on your local system in the $HOME/.cpm/index directory,

unless you changed the location using the REPOSITORY PATH setting. CPM uses the package index

when searching for and installing packages and during dependency resolution. This index contains

a directory for each package, which contain subdirectories for all versions of that package which

in turn contain the package specification files. So the specification for version 1.0.5 of the json

package would be located in json/1.0.5/package.json.

When a package is installed on the system, it is stored in the global package cache. By default,

the global package cache is located in $HOME/.cpm/packages. When a package foo, stored in directory

foo, depends on a package bar, a link to bar’s directory in the global package cache is added to

foo’s local package cache when dependencies are resolved for foo. The local package cache is stored

in foo/.cpm/package cache. Whenever dependencies are resolved, package versions already in the

local package cache are preferred over those from the central package index or the global package

cache.

When a module inside a package is compiled, packages are first copied from the local package

cache to the run-time cache, which is stored in foo/.cpm/packages. Ultimately, the Curry compiler

only sees the package copies in the run-time cache, and never those from the local or global package

caches.

14

9 Command Reference

This section gives a short description of all available CPM commands. In addition to the commands

listed below, there are some global options which can be placed in front of the CPM command:

-d | --define option=value: This option overrides the configuration options of CPM, see Section 7.

-v | --verbosity [info|debug]: The default value is info. The value debug provides more output

messages in order to see what CPM is doing.

-t | --time: This option adds the elapsed time to every info or debug output line.

The available commands of CPM are:

config Shows the current configuration of CPM (see also Section 7). The option --all shows

also the names and version of the packages installed in the global package cache.

info Gives information on the current package, e.g. the package’s name, author, synopsis and its

dependency specifications.

info package [--all] Prints information on the newest known version (compatible to the current

compiler) of the given package. The option --all shows more information.

info package version [--all] Prints basic information on the given package version. The option

--all shows more information.

list [--versions] [--csv] List the names and synopses of all packages of the central package

index. Unless the option --versions is set, only the newest version of a package (compatible

to the current compiler) is shown. The option --versions shows all versions of the packages.

If a package is not compatible to the current compiler, then the package version is shown in

brackets (e.g., “(1.5.4)”). The option --csv shows the information in CSV format.

list --category [--csv] List the category names together with the packages belonging to this

category (see Section 10) of the central package index. The option --csv shows the information

in CSV format.

search [--module|--exec] query Searches the names, synopses, and exported module names of

all packages of the central package index for occurrences of the given search term. If the

option --module is set, then the given name is searched in the list of exported modules. Thus,

the package exporting the module JSON.Data can be found by the command

> cypm search --module JSON.Data

If the option --exec is set, then the search is restricted to the name of the executable provided

by the package. For instance, the command

> cypm search --exec show

lists all packages where the name of the executable contains the string “show”.

15

update Updates the local copy of the central package index to the newest available version. This

command also cleans the global package cache in order to support the download of fresh pack-

age versions. Note that this also removes local copies of packages installed by the command

“add --package”. The option --url allows to specify a different URL for the central package

index (might be useful for experimental purposes).

install Installs all dependencies of the current package. Furthermore, if the current package

contains an executable application, the application is compiled and the executable is installed

(unless the option -n or --noexec is set). With the option -x or --exec, the executable

is installed without installing all dependencies again. This is useful to speed up the re-

installation of a previously installed application.

install package [--pre] Installs the application provided by the newest version (compatible to

the current compiler) of a package. The binary of the application is installed into the directory

$HOME/.cpm/bin (this location can be changed via the $HOME/.cpmrc configuration file or by the

CPM option --define, see Section 7). --pre enables the installation of pre-release versions.

install package version Installs the application provided by a specific version of a package. The

binary of the application is installed into the directory $HOME/.cpm/bin (this location can be

changed via the $HOME/.cpmrc configuration file or by the CPM option --define, see Section 7).

install package.zip Installs a package from a ZIP file to the global package cache. The ZIP

file must contain at least the package description file package.json and the directory src

containing the Curry source files.

uninstall Uninstalls the executable installed for the current package.

uninstall package Uninstalls the executable and the cached copy of a package which has been

installed by the install command.

uninstall package version Uninstalls a specific version of a package from the global package

cache.

uninstall package version Uninstalls a specific version of a package from the global package

cache.

checkout package [--pre] Checks out the newest version (compatible to the current compiler) of

a package into the local directory package in order to test its operations or install a binary of

the package. --pre enables the installation of pre-release versions.

checkout package version Checks out a specific version of a package into the local directory

package in order to test its operations or install a binary of the package..

upgrade Upgrades all dependencies of the current package to the newest compatible version.

upgrade package Upgrades a specific dependency of the current package and all its transitive

dependencies to their newest compatible versions.

16

deps Does a dependency resolution run for the current package and prints out the results. The

result is either a list of all package versions chosen or a description of the conflict encountered

during dependency resolution. Using the option --path], only the value of CURRYPATH required

to load modules of this package is shown.

test Tests the current package with CurryCheck. If the package specification contains a definition

of a test suite (entry testsuite, see Section 10), then the modules defined there are tested.

If there is no test suite defined, the list of exported modules are tested, if they are explicitly

specified (field exportedModules of the package specification), otherwise all modules in the

directory src (including hierarchical modules stored in its subdirectories) are tested. Using

the option --modules, one can also specify a comma-separated list of module names to be

tested.

doc Generates the documentation of the current package. The documentation consists of the

API documentation (in HTML format) and the manual (if provided) in PDF format. The

options --programs and --text forces to generate only the API documentation and the man-

ual, respectively. Using the option --docdir, one can specify the target directory where the

documentation should be stored. If this option is not provided, “cdoc” is used as the documen-

tation directory. The actual documentation will be stored in the subdirectory name-version

of the documentation directory.

The API documentation in HTML format is generated with CurryDoc. If the package

specification contains a list of exported modules (see Section 10), then these modules are

documented. Otherwise, the main module (if the package specification contains the entry

executable, see Section 10) or all modules in the directory src (including hierarchical mod-

ules stored in its subdirectories) are documented. Using the option --modules, one can also

specify a comma-separated list of module names to be documented.

In the default case, modules contained in packages used by the current package are not

documented. Instead, it is assumed that these packages are already documented11 so that

links to these package documentations are generated. Using the option --full, one can

generate also the documentation of packages used by the current package. This might be

reasonable if one uses packages which are only locally installed.

The manual is generated only if the package specification contains a field documentation where

the main file of the manual is specified (see Section 10 for more details).

diff [version] Compares the API and behavior of the current package to another version of the

same package. If the version option is missing, the latest version of the current package

found in the repository is used for comparison. If the options --api-only or --behavior-only

are added, then only the API or the behavior are compared, respectively. In the default

case, all modules commonly exported by both versions of the package are compared. Using

the option --modules, one can restrict this comparison to a list of modules specified by a

comma-separated list of module names.

11See http://www.informatik.uni-kiel.de/~curry/cpm/ for the documentation of all packages. This default

location can be changed with the option --url.

17

http://www.informatik.uni-kiel.de/~curry/cpm/

As described in Section 6.1, CPM uses property tests to compare the behavior of different

package versions. In order to avoid infinite loops durings these tests, CPM analyzes the

termination behavior of the involved operations. Using the operation --unsafe, CPM omits

this program analysis but then you have to ensure that all operations are terminating (or you

can annotate them by pragmas, see Section 6.1).

In the default case, CPM tests the contextual equivalence of operations (see Section 6.1).

With the option --ground, the ground equivalence of operations is tested.

exec command Executes an arbitrary command with the CURRYPATH environment variable set to

the paths of all dependencies of the current package. For example, it can be used to execute

“curry check” or “curry analyze” with correct dependencies available.

curry args Executes the Curry compiler with the dependencies of the current package available.

Any arguments are passed verbatim to the compiler.

link source Can be used to replace a dependency of the current package using a local copy, see

Section 5.7 for details.

add --package dir [--force] Copies the package contained in directory dir into the local copy of

the central package index so that it can be used by other packages in the local environment

(see Section 6.2 for details). The option “--force” allows to overwrite existing copies in the

central package index.

add --dependency package [--force] Adds the package package as a new dependency. This

command adds a dependency to the given package either in the package description file

(package.json) of the current package or in the meta-package (see Section 5.6). The option

“--force” allows to overwrite existing dependencies in the package description file.

add package [--force] Adds the package package as a new dependency and install the new de-

pendencies. Thus, this abbreviates the two commands

cypm add package && cypm install

upload [--notagging] [--force] Uploads the current package to the central package index so

that it can be used by other developers via CPM (if they update their local copy of the

central package index by “cypm update”).

For security reasons (this will be weakened in the future), the package must have a source

specification (see Section 6.3) of the following form:

{

...,

"source": {

"git": ". . .git.ps.informatik.uni-kiel.de/curry-packages/. . ..git",

"tag": "$version"

}

}

18

Thus, the source is managed as a Git repository which is stored at the server git.ps.informatik.uni-kiel.de

in group curry-packages and has an automatic version tag. Unless the option --nottagging

is given, the version tag wil be automatically set in the local repository (and pushed to the

remote repository, i.e., one should have write access to the remote repository). Then the re-

mote repository will be cloned and tested (by “cypm test”). If this is successful, the package

specification of the repository will be added to the central package index (by a web service of

the central package index). The option “--force” allows to overwrite an existing version in

the central package index.

clean Cleans the current package from the generated auxiliary files, e.g., intermediate Curry files,

installed dependent packages, etc. Note that a binary installed in the CPM bin directory (by

the install command) will not be removed. Hence, this command can be used to clean an

application package after installing the application.

new project Creates a new project package with the given name and some template files.

19

10 Package Specification Reference

This section describes all metadata fields available in a CPM package specification. Mandatory

fields are marked with a * character.

name* The name of the package. Must only contain ASCII letters, digits, hyphens and underscores.

Must start with a letter.

version* The version of the package. Must follow the format for semantic versioning version

numbers.

author* The package’s author. This is a free-form field, the suggested format is either a name or

a name followed by an email address in angle brackets, e.g.,

John Doe <john@doe.com>

Multiple authors should be separated by commas.

maintainer The current maintainers of the package, if different from the original authors. This

field allows the current maintainers to indicate the best person or persons to contact about

the package while attributing the original authors.

The suggested format is a name followed by an email address in angle brackets, e.g.,

John Doe <john@doe.com>

Multiple maintainers should be separated by commas.

synopsis* A short form summary of the package’s purpose. It should be kept as short as possible

(ideally, less than 100 characters).

description A longer form description of what the package does.

category A list of keywords that characterize the main area where the package can be used, e.g.,

Data, Numeric, GUI, Web, etc.

license The license under which the package is distributed. This is a free-form field. In case of a

well-known license such as the GNU General Public License12, the SPDX license identifier13

should be specified. If a custom license is used, this field should be left blank in favor of the

license file field.

licenseFile The name of a file in the root directory of the package containing explanations

regarding the license of the package or the full text of the license. The suggested name for

this file is LICENSE.

copyright Copyright information regarding the package.

homepage The package’s web site. This field should contain a valid URL.

12https://www.gnu.org/licenses/gpl-3.0.en.html
13https://spdx.org/licenses/

20

https://www.gnu.org/licenses/gpl-3.0.en.html
https://spdx.org/licenses/

bugReports A place to report bugs found in the package. The suggested formats are either a valid

URL to a bug tracker or an email address.

repository The location of a SCM repository containing the package’s source code. Should be a

valid URL to either a repository (e.g. a Git URL), or a website representing the repository.

dependencies* The package’s dependencies. This must be JSON object where the keys are pack-

age names and the values are version constraints. See Section 4.

compilerCompatibility The package’s compatibility to different Curry compilers. Expects a

JSON object where the keys are compiler names and the values are version constraints.

Currently, the supported compiler names are pakcs and kics2. If this field is missing or con-

tains an empty JSON object, the package is assumed to be compatible to all compilers in all

versions.

The compiler compatibility of a package is also relevant when some version of a package

should be examined or installed (with CPM commands info, checkout, install). If a newest

package should be installed, i.e., no specific version number is provided, then only the newest

version which is compatible to the current Curry compiler (see also Section 7 for configuration

option CURRY BIN) is considered. Similarly, the current package is executed (CPM commands

curry and test) only if the current Curry compiler is compatible to this package.

source A JSON object specifying where the version of the package described in the specification

can be obtained. See Section 6.3 for details.

sourceDirs A list of directories inside this package where the source code is located. When the

package is compiled, these directories are put at the front of the Curry load path. If this field

is not specified, src is used as the single source directory.

exportedModules A list of modules intended for use by consumers of the package. These are the

modules compared by the cypm diff command (and tested by the cypm test command if a

list of test modules is not provided). Note that modules not in this list are still accessible to

consumers of the package.

configModule A module name into which some information about the package configuration (loca-

tion of the package directory, name of the executable, see below) is written when the package

is installed. This could be useful if the package needs some data files stored in this package

during run time. For instance, a possible specification could be as follows:

{

...,

"configModule": "CPM.PackageConfig",

...

}

In this case, the package configuration is written into the Curry file src/CPM/PackageConfig.curry.

executable A JSON object specifying the name of the executable and the main module if this

package contains also an executable application. The name of the executable must be de-

fined (with key name) whereas the name of the main module (key main) is optional. If the

21

latter is missing, CPM assumes that the main module is Main. Furthermore, the executable

specification can also contain options for various Curry compilers. The options must be a

JSON object consisting of compiler names as keys and an option string for the compiler. For

instance, a possible specification could be as follows:

{

...,

"executable": {

"name": "cypm",

"main": "CPM.Main",

"options": { "kics2" : ":set rts -T" }

}

}

If a package contains an executable specification, the command cypm install also compiles

the main module and installs the executable in the bin install directory of CPM (see Section 7

for details).

testsuite A JSON object specifying a test suite for this package. This object contains a directory

(with key src-dir) in which the tests are executed. Furthermore, the test suite must also

define a list of modules to be tested (with key modules). For instance, a possible test suite

specification could be as follows:

{

...,

"testsuite": {

"src-dir": "test",

"modules": ["testDataConversion", "testIO"]

}

}

All these modules are tested with CurryCheck by the command cypm test. If no test suite is

defined, all (exported) modules are tested in the directory src. A test suite can also contain

a field options which defines a string of options passed to the call to CurryCheck.

If a test suite contains a specific test script instead modules to be tested with CurryCheck,

then one can specify the name of this test script in the field script. In this case, this script

is executed in the test directory (with the possible options value added). The script should

return the exit code 0 if the test is successful, otherwise a non-zero exit code. Note that one

has to specify either a (non-empty) list of modules or a test script name in a test suite, but

not both.

One can also specify several test suites for a package. In this case, the testsuite value is an

array of JSON objects as described above. For instance, a test suite specification for tests in

the directories test and examples could be as follows:

{

...,

"testsuite": [

{ "src-dir": "test",

22

"options": "-v",

"script": "test.sh"

},

{ "src-dir": "examples",

"options": "-m80",

"modules": ["Nats", "Ints"]

}

]

}

documentation A JSON object specifying the name of the directory which contains the sources of

the documentation (e.g., a manual) of the package, the main file of the documentation, and

an optional command to generate the documentation. For instance, a possible specification

could be as follows:

{

...,

"documentation": {

"src-dir": "docs",

"main" : "manual.tex",

"command": "pfdlatex -output-directory=OUTDIR manual.tex"

}

...

}

In this case, the directory docs contains the sources of the manual and manual.tex is its main

file which will be processed with the specified command. Occurrences of the string OUTDIR in

the command string will be replaced by the actual documentation directory (see description

of the command cypm doc). If the command is omitted, the following commands are used

(and you have to ensure that these programs are installed):

• If the main file has the extension .tex, e.g., manual.tex, the command is

pdflatex -output-directory=OUTDIR manual.tex

and it will be executed twice.

• If the main file has the extension .md, e.g., manual.md, the command is

pandoc manual.md -o OUTDIR/manual.pdf

In order to get a compact overview over all metadata fields, we show an example of a package

specification where all fields are used:

{

"name": "PACKAGE_NAME",

"version": "0.0.1",

"author": "YOUR NAME <YOUR EMAIL ADDRESS>",

"maintainer": "ANOTHER NAME <ANOTHER EMAIL ADDRESS>",

"synopsis": "A ONE-LINE SUMMARY ABOUT THE PACKAGE",

"description": "A MORE DETAILED SUMMARY ABOUT THE PACKAGE",

23

"category": ["Category1", "Category2"],

"license": "BSD-3-Clause",

"licenseFile": "LICENSE",

"copyright": "COPYRIGHT INFORMATION",

"homepage": "THE URL OF THE WEB SITE OF THE PACKAGE",

"bugReports": "EMAIL OR BUG TRACKER URL FOR REPORTING BUGS",

"repository": "THE (GIT) URL OF THE WEB SITE REPOSITORY",

"dependencies": {

"PACKAGE1" : ">= 0.0.1, < 1.5.0",

"PACKAGE2" : "~> 1.2.3",

"PACKAGE3" : ">= 2.1.4, < 3.0.0 || >= 4.0.0"

},

"compilerCompatibility": {

"pakcs": ">= 1.14.0, < 2.0.0",

"kics2": ">= 0.5.0, < 2.0.0"

},

"sourceDirs" : ["src", "include"],

"exportedModules": ["Module1", "Module2"],

"configModule": "ConfigPackage",

"executable": {

"name": "NAME_OF_BINARY",

"main": "Main",

"options": {

"kics2" : ":set rts -T",

"pakcs" : ":set printdepth 100"

}

},

"testsuite": [

{ "src-dir": "src",

"options": "-m80",

"modules": ["Module1", "Module2"]

},

{ "src-dir": "examples",

"options": "-v",

"script" : "test.sh"

}

],

"documentation": {

"src-dir": "docs",

"main" : "manual.tex",

"command": "pfdlatex -output-directory=OUTDIR manual.tex"

},

"source": {

"git": "URL OF THE GIT REPOSITORY",

"tag": "$version"

}

}

24

11 Error Recovery

There might occur situations when your package or repository is in an inconsistent state, e.g., when

you manually changed some internal files or such files have been inadvertently changed or deleted,

or a package is broken due to an incomplete download. Since CPM checks these files, CPM might

exit with an error message that something is wrong. In such cases, it might be a good idea to clean

up your package file system. Here are some suggestions how to do this:

cypm clean

This command cleans the current package from generated auxiliary files (see Section 9).

Then you can re-install the package and packages on which it depends by the command

cypm install.

rm -rf $HOME/.cpm/packages

This cleans all packages which have been previously installed in the global package cache

(see Section 8). Such an action might be reasonable in case of some download failure. After

clearing the global package cache, all necessary packages are downloaded again when they are

needed.

rm -rf $HOME/.cpm/index

This removes the central package index of CPM (see Section 8). You can simply re-install

the newest version of this index by the command cypm update.

25

References

[1] S. Antoy and M. Hanus. Equivalence Checking of Non-deterministic Operations. In Proc. of

the 14th International Symposium on Functional and Logic Programming (FLOPS 2018), pp.

149–165. Springer LNCS 10818, 2018.

[2] G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva. Automatic Synthesis of Specifications

for First Order Curry. In Principles and Practice of Declarative Programming (PPDP’12), pp.

25–34. ACM Press, 2012.

[3] M. Hanus. CurryCheck: Checking Properties of Curry Programs. In Proceedings of the 26th

International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR

2016), pp. 222–239. Springer LNCS 10184, 2017.

[4] M. Hanus. Semantic Versioning Checking in a Declarative Package Manager. In Technical

Communications of the 33rd International Conference on Logic Programming (ICLP 2017),

OpenAccess Series in Informatics (OASIcs), pp. 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2017.

26

	Introduction
	Installing the Curry Package Manager
	Starting the Curry Package Manager
	Package Basics
	Using Packages
	Creating New Packages
	Installing and Updating Dependencies
	Checking out Packages
	Installing Applications of Packages
	Executing the Curry System in a Package
	Using Packages Outside a Package
	Replacing Dependencies with Local Versions

	Authoring Packages
	Semantic Versioning
	Adding Packages to the Central Package Index
	Publishing a Package

	Configuration
	Some CPM Internals
	Command Reference
	Package Specification Reference
	Error Recovery

