
Set Functions for Functional Logic Programming ∗

Sergio Antoy
Computer Science Department

Portland State University
Portland, OR 97207, USA

antoy@cs.pdx.edu

Michael Hanus
Institute of Computer Science

Christian-Albrechts-University of Kiel
D-24098 Kiel, Germany

mh@informatik.uni-kiel.de

Abstract
We propose a novel approach to encapsulate non-deterministic
computations in functional logic programs. Our approach is based
on set functions that return the set of all the results of a correspond-
ing ordinary operation. A characteristic feature of our approach is
the complete separation between a usually-non-deterministic oper-
ation and its possibly-non-deterministic arguments. This separation
leads to the first provably order-independent approach to comput-
ing the set of values of non-deterministic expressions. The proof is
provided within the framework of graph rewriting in constructor-
based systems. We propose an abstract implementation of our ap-
proach and prove its independence of the order of evaluation. Our
approach solves easily and naturally problems mishandled by cur-
rent implementations of functional logic languages.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Semantics—Subspaces; D.3.3 [Programming Langua-
ges]: Language Constructs and Features—Non-determinism; D.3.3
[Programming Languages]: Language Constructs and Features—
Control structures; F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems—Term Graph
Rewriting Systems

General Terms Algorithms, Design, Languages

Keywords Functional Logic Programming Languages, Non-De-
terminism, Subspaces, Rewrite Systems

1. Introduction
Non-determinism is one of the most characterizing features of
functional logic languages. A consequence of non-determinism
is that some expression may have multiple values, hence some
computation may produce multiple results. The programmer cannot
select a specific value of a non-deterministic expression, but can
constrain a value for a specific purpose. For example, consider the
problem of computing a flight itinerary between two cities. Flights
are represented by the non-deterministic operationflight that
stores flight information in a simple tabular form (we use the syntax

∗ This work was partially supported by the German Research Council
(DFG) under grant Ha 2457/5-2 and the DAAD grants D/06/29439and
D/08/11852.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’09, September 7–9, 2009, Coimbra, Portugal.
Copyright c© 2009 ACM 978-1-60558-568-0/09/09. . . $10.00

of the functional logic language Curry [20] for the examples in this
paper):

flight = (LH469, Portland, Frankfurt,10:.15)
flight = (NWA92, Portland, Amsterdam,10:.00)
flight = (LH10, Frankfurt,Hamburg, 1:.00)
flight = (KL1783,Amsterdam,Hamburg, 1:.52)
...

For example, flight Lufthansa 469 connects Portland, Oregon, to
Frankfurt, Germany, in 10 hours and 15 minutes.

An operation that computes an itinerary constrained by at most one
intermediate stop is defined as:

itinerary orig dest
| flight =:= (num,orig,dest,len)
= [num]
where num, len free

itinerary orig dest
| flight =:= (num1,orig,stop,len1)
& flight =:= (num2,stop,dest,len2)
= [num1,num2]
where num1, len1, num2, len2, stop free

In an interactive environment, the programmer can obtain all the
itineraries one after another in some non-deterministic order. Cod-
ing the operationitinerary using the operationflight is much
simpler than if the flights were represented using an adjacency ma-
trix or adjacency lists. Usingflight avoids defining these struc-
tures and coding and invoking operations to extract information
from them.

However, a drawback of this simplicity is that, without additional
machinery, it is impossible to compute, e.g., an itinerary of shortest
duration. The reason is that the proposed representation has no no-
tion of all the flights and any non-deterministic result of operation
itinerary is independent of any other result. What is needed is
a way to accessall the values of a non-deterministic expression.
In the above example, we would like a function that returns all the
itineraries from Portland to Hamburg in a set so that some element
with minimal duration can be computed. This function would also
be useful in other situations which arise frequently in practice, e.g.,
detecting if a constraint has solutions. We will discuss an example
of this kind in some detail in Section 5.

Primitive operations for the purpose discussed above have been
available in functional logic languages since the early days. Un-
fortunately, every proposal so far suffers from one or more major
flaws, in particular the behavior of the primitive operation is un-
natural in some cases and/or its result depends on the evaluation
order. [5, 12] discuss at length these problems. In this paper, we
propose a novel approach characterized by the separation of the
non-determinism of an operation from that of its argument(s). We

prove that our approach is independent of the order of evaluation
and that it exhibits a natural behavior in situations in which previ-
ous approaches misbehave.

We assume some familiarity with functional logic programming
and term graph rewriting. Section 2 tersely recalls key concepts and
notations. Section 3 motivates our definitions, formalizes our ap-
proach, and proves the key result of this paper—the independence
of the order of evaluation. Section 4 describes an abstract imple-
mentation of our approach and proves its correctness. Section 5
shows that our approach easily and naturally solves a problem out-
side the domain of previous approaches. Section 6 compares our
proposal with previous proposals. Section 7 offers our conclusion.

2. Background
Functional logic programs define data types and operations through
a rich set of syntactic and semantics features that include modules
with visibility control, nested declarations with local scope, par-
tially applied and higher-order functions, and monadic I/O. The
compilation of asourceprogram produces atarget program, se-
mantically equivalent to the source one, in which these features
have been removed. The target program belongs to acorelanguage
that is simpler to both reason about and implement. We define the
core language below and describe our results and prove them for
this language.

The core language is modeled by a class of graph rewriting sys-
tems calledlimited overlapping inductively sequential, abbreviated
LOIS[4]. In the rest of this paper, aprogramwill be a system in this
class. In theLOIS systems, each rule defining an operationf has
the form1 f(t̄) = r and is required to be left-linear (i.e., there are no
multiple occurrences of variables in̄t) and constructor-based (i.e.,
t̄ does not contain any operation symbol). Moreover, the left-hand
sides of all the rules defining each operation are organized in a hier-
archical structure called a definitional tree [1] that guides the eval-
uation strategy [4]. This class of programs is the intersection [18]
of the strongly sequential systems [22] and the constructor-based
systems [27]. In order to support non-deterministic operations, as
desired for functional logic programming, aLOISsystem addition-
ally contains a single operation whose rules’ left-hand sides are
overlapping [2]. This operation is calledchoice. It is denoted by
the infix symbol “?” and defined by the following rules:

x ? _ = x R1

_ ? y = y R2
(1)

LOIS systems are an adequate core language for functional logic
programming since any functional logic program (i.e., constructor-
based conditional rewrite system) can be translated into aLOIS
system [3].

The treatment of graph rewriting is non-trivial. For lack of space,
we are unable to recall graph rewriting in this paper. Instead, for
the convenience of the reader, we strictly adhere to the definitions
and notations of [15] (see also [16]). Below, we recall a couple of
essential concepts. Graph rewriting stipulates that a variable labels
at most one node of a graph [15, Def. 2, cond. 5]. This is relevant
when a variable occurs repeatedly in the right-hand side of a rule.
For example, consider the rule (for consistency with the programs
presented later, functional application is curried):

double x = x + x

1 Throughout this paper, we writēt for a list of (argument) termst1, . . . , tn
and use notions defined for terms also for list of terms. This is justified by
the equivalence ofn-ary functions and unary functions with tuple argu-
ments.

where ‘x’ is a variable and ‘+’ is the integer addition. By design,
functional logic programs are not confluent. Thus, some expres-
sion t matching ‘x’ may have two values (normal forms), say 0
and 1. Since there is only one node labeled by ‘x’ the values of
‘double t’ are only 0 and 2. In other formal models of functional
logic programs, e.g., [17], this stipulation is referred to as thecall-
time choicesemantics [23].

A component of a graph is a set of nodes labeled by variables and
the symbols of (the signature of) the program. Every time a non-
collapsing rule, i.e., a rule whose right-hand side is not a variable,
is applied, some nodes are introduced by the replacement. These
nodes arefreshor new, i.e., are nodes that do not appear anywhere
else in the expression being replaced and in other expressions dis-
cussed in the same context. In some situations, e.g., when we rea-
son about commutative diagrams, this difference matters. Some-
time, we will apply twice the same step to the same term. The two
terms resulting from the two equal steps are not equal. They are
“structurally” equal, but the identities of some of their nodes differ
because the nodes introduced by one step are not the same as the
nodes introduced by the other step. Graphs that differ only for the
identities of some nodes are said to beequal up to a renaming of
nodes[15, Def. 15].

A redex isdeterministiciff it is an instance of the left-hand side of
only one rule. Hence, in aLOISsystem, a redex is deterministic iff
it is not rooted by the choice operation. A step isdeterministiciff
it replaces a deterministic redex, otherwise it isnon-deterministic.
We use “expression” as a generic name for a term graph over the
signature of a program. An irreducible expression is called afailure
if it has occurrences of defined operations, otherwise it is called a
value.

Without loss of generality, we discuss the computation of all the
values of some expressions only for rewriting, as opposed to nar-
rowing. [7, Th. 2] shows that narrowing computations in the in-
ductively sequential programs with extra variables are equivalent
to rewriting computations in the overlapping inductively sequen-
tial programs without extra variables [7, Th. 2].LOISsystems, our
programs, are a subset of the latter.

In the following, we writee1 →n e2 for a rewrite step that
performs a replacement at noden in e1, where the indexn is
omitted if it is irrelevant. In reasoning about a computation space,
we will need to determine if two steps are “substantially” equal.
This concept is similar to the equality we consider for graphs.
Let e1 ande2 be graphs equal up to a renaming of nodes and let
φ : e1 → e2 be a graph isomorphism witnessing this equality.
Let e1 →n1

e′1 and e2 →n2
e′2 be steps at nodesn1 and n2,

respectively, that apply the same rule. Ifφ(n1) = n2, we say that
these steps areequal up to a renaming of nodes, or more simply
that they are equal.

We call v a value of an expressione if v is a value withe
∗
→ v.

An operationf is non-deterministiciff, for some list of values̄v,
f(v̄) has two or more values (up to renaming of node), otherwise it
is deterministic. For instance, the operation ‘?’ is non-deterministic
whereas ‘double’ is deterministic.

A strategy defines the steps to be executed on an expression. A
strategy, denoted byϕ, maps each expression into afinite set
of expressions. The meaning is that the steps (multisteps, if the
strategy is parallel) that can be executed one are all and only
e → e′, for anye′ ∈ ϕ(e). A strategyϕ is complete(normalizing)
iff, for any expressione and any valuev of e, there exists a
derivation ofe into v consisting only of steps computed byϕ. A
strategyϕ is sensibleiff, for all expressionse, distinct elements
of ϕ(e) originate from distinctnon-deterministicsteps ofe. If a

strategy is notsensible, a value of an expression could be repeatedly
computed. For example, a strategy that mapse = 1*2+3*4 into
S = {2+3*4, 1*2+12} would not be sensible. A sensible strategy
would mape into either element ofS, or into {2+12}, if it is
parallel.

A strategy controls the computations. To keep the notation lighter,
we assume a fixed strategy and refrain from parameterizing with
the strategy concepts defined in this paper, in particular, the com-
putation space. The computation space of an expressione abstracts
all the computations ofe with a given strategy, and consequently
all the expressions derived frome. Thecomputation spaceof e, de-
notedC(e), according to a (fixed) strategyϕ is a possibly-infinite,
finitely-branching tree inductively defined by:

C(e) = 〈e, {C(e1), . . . , C(en)}〉,
whenϕ(e) = {e1, . . . , en}

For a sensiblestrategy, a branch has a single child if the step
is deterministic and has multiple children if the step is non-
deterministic. A leaf ofC(e) is an expression that cannot be further
evaluated (according to the given strategy). For acompletestrategy,
a leaf is either a value ofe or is an expression that cannot be de-
rived to value, i.e., a failure. Acomputationof e is a path inC(e)
starting at the root.

A goal of our work is the formulation of anorder-independentap-
proach to computing all the values of some expression. Informally,
this means that the order in which the steps of a computation are
executed does not affect the computed result. This property is de-
sirable in programming languages: it frees the programmer from
considering a particular order of evaluation for reasoning about a
program and makes it easier to perform computations in parallel to
exploit the opportunities provided by current and future hardware.

Formalizing the concept of “order independence” for a functional
logic language takes a bit of work. In a rewriting-based framework,
order independence can be formalized by confluence. Typically,
many steps can be applied to an expression. The confluence of a
program ensures that the choice of the applied step does not affect
the value of the expression. Unfortunately, this is not true for some
functional logic programs. Consider the program:

coin = 0 ? 1

Any complete strategy must map ‘coin’ into {0, 1} which shows
that the choice of the step does affect the result. Therefore, a more
specialized concept of confluence is needed for a functional logic
language. We recall the following concept from [5].

DEFINITION 1. A program is deterministically confluentiff for
every expressiont and stepst →n1

t1 andt →n2
t2 with n1 6= n2

there exist expressionsu1 andu2 such thatt1 →
=

u1 andt2 →
=

u2

andu1 = u2 up to a renaming of nodes.

Our definition differs from the standard notion of confluence [10,
11] in two aspects: (1) we explicitly excludedifferentsteps at the
samenode, and (2) to complete the diagram we use the reflexive
closure (→

=
) instead of the reflexive transitive closure (

∗
→) of the

rewrite relation. This second difference is only apparent. Condition
5 of [15, Def. 2], i.e., any variable labels at most one node of an
expression, ensures that both a node and a redex have at most one
descendent (residual) by a step.

Deterministic confluence is an appropriate formalization of the
notion of independence of the order of evaluation. Steps at different
nodes can be executed in any order without affecting the result of a
computation. We have shown that different steps at the same node
may break the (ordinary) confluence of a program, but this is the

essence of non-determinism, a feature that we highly value in the
language. The following result is from [5].

LEMMA 1. Any program is deterministically confluent.

Proof. If e is an expression andn1

andn2 are the roots of distinct re-
dexes ofe, then, since all rules are
constructor-based, noden2 is not
in the redex pattern2 of the redex
at n1 and vice versa. Thus, if the
redex atn1 is replaced, and node
n2 is not erased [11, pag. 391] by
the reduction, the redex pattern at
n2 is unchanged. Thus, the redex

e

n1

����
��

��
�� n2

��
??

??
??

??

e1

=n2/n1

��
??

??
??

?
e2

= n1/n2

����
��

��
�

e′

at n2 is replaced exactly in the same way whether or not the redex
at n1 has been replaced. As for the Parallel Moves Lemma [22] in
orthogonal systems, the diagram of the two steps commutes, with
the simplification that in graph rewriting a redex has at most one
descendant, whereas in orthogonal systems it can have multiple de-
scendants. ⊓⊔

Since every program is deterministically confluent, we say that the
language of these programs isorder independent. To date, all the
approaches to compute all the values of some expression are based
on a primitive operation [5]. Thus, we begin with formalizing this
concept and showing its potential pitfall.

DEFINITION 2. LetR be a program ande an expression ofR. We
define theset of values ofe asS(e) = {v | e

∗
→ v, v is a value},

i.e.,S(e) is the set of all the values that can be derived frome.

The steps executed to computeS(e) depend on the strategy. How-
ever, for every expressione, every complete strategy computes the
sameS(e), since it computes the same values ofe.

Unfortunately, a language aug-
mented with an unrestricted “set
of values” operation is not order
independent. To see this, assume
that such an operation takes an
argument and returns the corre-
sponding value. Thus, e.g., if we
replaceS(coin) at the root we
obtain {0, 1}, whereas if we re-
place the argument ‘coin’ with

S(coin)

∗

����
��

��

�� ��
??

??
??

{0,1} S(0)

��

S(1)

��

{0} {1}

one of its values we end up with either{0} or {1}. The popularity
of computing the sets of values of an expression through a primi-
tive operation, despite the loss of order independence, is justified
by the following paragraphs.

A compiler or interpreter of a functional logic language, which we
will refer to asthe device, is intended to compute all the values of
an expression regardless of our treatment. In an interactive environ-
ment,the deviceloads a program and executes a “read-eval-print”
loop that reads an expression input by the user, evaluates it to a
value, and prints this value. Similar to a logic language device, and
in contrast to a functional language device, a computation can pro-
duce more than one value. For this reason, after printing a value of
an expression,the devicegives the user the option to either com-
pute and print another value of the same expression, if it exists, or
to read and process a new expression.

To accomplish this behavior,the device, on input an expression
e, traversesC(e), the computation space ofe. When it visits a

2 These are [11, Def 2.7.3] the nodes of the redex isomorphically mapped
[15, Defs. 10-12] to the non-variable nodes of the left-handside of the
applied rule.

leaf containing a valuev, it presentsv to the user and waits for
instructions. Thus,the devicemust be capable of enumerating, in
some order implicitly defined by the strategy and/or the traversal,
the set of values on an input expressione and to present these
elements incrementally and interactively to the user. Therefore, the
same device can be used to compute the set of values ofe with
one small change: every value found during the traversal ofC(e)
is placed in a structure suitable for representing a set rather than
being presented to the user. This behavior only approximates the
computation of a set of values. For example, consider the definition:

zs = 0 ? zs

It is easy to see thatS(zs) = {0}. However, the computation space
of ‘zs’ is infinite. Hence, the traversal and accumulation of the
values of this space does not terminate. This is an asset rather than
a liability. In a programming environment in which computations
are non-strict, infinite structures are common. Thus, the behavior
of the deviceis not only acceptable, but even desirable. A program
computes a set of values lazily as demanded by its context like any
other expression evaluated during an execution.

Within a program, a set of values is an instance of an algebraically
defined data type suitable for abstracting a set and it is defined
entirely within the language. The program manipulates instances of
this type through operations that, e.g., check whether a set is empty,
or some element belongs to a set, or some set is contained in some
other set, etc. Instances of this type are evaluated lazily as any other
instance of any other type. The rewriting framework that we use to
formulate and prove properties of our approach effortlessly handles
potentially infinite expressions, if the strategy is complete, and it is
therefore adequate to model the behavior of a lazy programming
language.

3. Formalization
Since an unrestricted operation to compute sets of values is order
dependent, as the example ofS(coin) shows, we are interested
in more advanced concepts. For instance, one can only check for
emptiness of sets of values [24, 28] or try to define a “computation
barrier” to strongly separate non-deterministic and deterministic
computations [12, 13] (see also the discussion in Section 6). We are
interested in a more flexible approach that supports the separation
of different regions of non-determinism without being dependent
on an evaluation order. For this purpose, we propose to associate
to any operationf of a program a new operation, denoted by
fS and called set function off , intended to compute the set of
values computed byf . This concept is delicate because we want to
capture the non-determinism off but exclude any non-determinism
originating from the argument(s) to whichf is applied. Obviously,
the operationfS , which is deterministic, is interesting only when
f is non-deterministic. We begin with a contrived example whose
merit is only its simplicity. Consider the following definitions,
where ‘coin’ was defined earlier:

bigCoin = 2 ? 4
f x = coin + x

(2)

The set of values of ‘f bigCoin’ is {2, 3, 4, 5}. By contrast,
‘fS bigCoin’ is a non-deterministic expression with two values,
{2, 3} and{4, 5}. These values are obtained when ‘bigCoin’ eval-
uates to2 and4, respectively. The non-determinism of ‘fS bigCoin’
originates entirely from ‘bigCoin’. In this case, it turns out that:

fS x = S(coin + c), wherec is a value ofx

This example suggests a simple approach for computing the values
of fS(t̄): for eachvalue c̄ of t̄, S(f(c̄)) is a value offS(t̄). This

approach works well for program (2), but it is inadequate in other
situations. For some operationf and argument̄t, fS(t̄) may have
values even if̄t has no values. For example, consider:

head (x:xs) = x
coinList = coin : coinList

(3)

The expression ‘coinList’ has no values, but‘headS coinList’
has two values,{0} and{1}. This example suggests an approach
for computing the values offS(t̄) more appropriate to a lazy
language: evaluatēt to some expression̄c such that inS(f(c̄))
there are no steps of̄c. This approach is consistent with a non-
strict order of evaluation, and it works well for program (3), but it
is still inadequate in some situations. For some operationf and
argumentt̄, there is no expression̄c derived from t̄, such that
S(f(c̄)) executes no steps ofc̄. For example, consider the program:

g x = x : g (x+1)
f (x:xs) = x ? f xs

(4)

It is easy to verify thatfS(g 0) = {0, 1, 2, . . .}. The computation
of ‘fS(g 0)’ executes infinitely many steps inside ‘g 0’. The notion
that a step is “inside” some expression is intuitive and it will be
formalized in Definition 3. Therefore, to computefS(t̄), for some
operationf and argument̄t, we cannot hope to evaluatet̄ once and
for all to some expression̄c and then to computeS(f(c̄)) without
touchingc̄ again. This fact shapes how we define and implement set
functions. We begin by formalizing the notion that a step is inside
or “originates from” some expression.

DEFINITION 3. LetR be a program,e an expression ofR, ands a
subexpression ofe rooted at some noden. LetA : e = e0 → e1 →
· · · be a derivation ofe. Weflag the nodes ofei in derivationA
with either of two flags,in or out, by induction oni as follows. Base
case:i = 0. By assumption,e0 = e. Noden and every other node
of e reachable fromn is flaggedin. Every other node ofe is flagged
out. Inductive case:i > 0. By assumption,ei−1 →ni−1

ei, for
some nodeni−1. By the induction hypothesis, every node ofei−1

is flagged. If a nodem of ei is also a node ofei−1, then the flag
of m in ei is the same as the flag ofm in ei−1, i.e., the flag of
every node is preserved by a step. Any node created3 by the step
ei−1 →ni−1

ei is flagged with the flag ofni−1, the root of the redex
replaced in the step. Finally, we say that a nodem of an expression
of A is insides iff m is flaggedin. We extend this notion ofinside
to a redex, if the redex is rooted by an inside node, and to a step, if
the step replaces an inside redex. We sayoutsideas a synonym of
not inside.

The notions of the above definition provided for an expression can
be applied to a tuple of expressions, such as the arguments of an
operation, because the tuple itself is an expression.

We are now ready for the key definition of our approach. This def-
inition references a set which could be infinite. This set is an ab-
straction used in the context of rewriting, but it is not produced by a
rewriting derivation. We will not implement or define a set function
by rewrite rules. Programs in lazy functional and functional logic
languages ordinarily compute with infinite structures, such as list,
trees, and sets, as long as only a finite number of elements of these
structure become explicit. The following definition only discusses
whether a few elements belong to this potentially infinite set.

3 These are the nodes introduced by the replacement [15, Def. 23]. Each
such node is isomorphically mapped [15, Defs. 10-12] to a non-variable
node of the right-hand side of the applied rule. See also [11,pag. 391].

DEFINITION 4. LetR be a program andf an operation ofR. We
call a new operationfS set function off if it satisfies the following
properties:

1. If f ⊆ A1×· · ·×An×B, thenfS ⊆ A1×· · ·×An×2B , i.e.,
the operationfS takes the same arguments asf and returns a
set whose elements are values returned byf .

2. For any arguments̄t of f and valuev, f(t̄)
∗
→ v iff there exists

a set of valuesV such thatV is a value offS(t̄) andv ∈ V .

3. For any arguments̄t of f and valuesv andw of f(t̄), v andw
belong to the same value offS(t̄) iff there exist an expression
c̄ derived fromt̄ such that any step of bothf(c̄)

+
→ v and

f(c̄)
+
→ w insidec̄ replaces a deterministic redex.

Display (2) is a very simple example showing all the components of
the above definition. An implementation, which can be regarded as
a constructive definition, of set functions is provided in Section 4.
It is immediate to see that set functions are deterministic.

COROLLARY 1. LetR be a program,f an operation ofR, andfS
a set function off . ThenfS is a deterministic operation.

Proof: For any list of values̄v, there is only one set of values of
f(v̄), hence only one value offS(v̄). ⊓⊔

To support infinite computations, Definition 4 is less direct than
we would like. For a list of arguments̄t, we are interested in
S(fS(t̄)) which is an element of2(2B). Definition 4 would be
simpler and more direct if we could impose the condition that
S(fS(t̄)) is a finite set offinite sets. Although the execution of a
program evaluates only a finite portion ofS(fS(t̄)), C(f(t̄)) could
be infinite and its traversal could generate an infinite set of infinite
sets. Every value ofC(f(t̄)) is an element of some element of
S(fS(t̄)). When a valuev of C(f(t̄)) is visited during a traversal
the devicemust determine the element ofS(fS(t̄)) to which v
belongs. This element is determined only in relation to other values
of C(f(t̄)). Definition 4 gives us a criterion to tell whether two
values ofC(f(t̄)) belong to the same element ofS(fS(t̄)). This
criterion may not appear operationally adequate, but with further
work presented in Section 4 it will lead us to a provably correct
implementation.

The above definition suggests to computefS(t̄) in two phases: first
evaluatēt to c̄, then compute the set of values off(c̄). The second
phase is relatively easy and, as we discussed, already available in
most implementations. The first phase, however, is problematic. We
do not know how far to evaluatēt to find a suitable (in the sense of
Definition 4) c̄. Before resolving this problem, in Section 4, we
present the crucial result of this paper: computing a set of values
through a set function is order independent. We begin with a key
lemma.

LEMMA 2. LetR be a program,e an expression ofR, s a subex-
pression ofe, v a value ofe and A : e

∗
→ v a derivation such

that every redex replaced inA is both insides and deterministic. If
e → e′ is a step insides, then there exists a derivatione → e′

∗
→ v

up to a renaming of nodes.

Proof: Consider the following reduction diagram, where the top
row and leftmost column of the diagram below represent the as-
sumptions of the claim:

e e0 //

��

e1

=��

en v

e′ e′0
=

// e′1 e′n v

(5)

To complete the diagram, by induction oni, for i = 1, . . . n, we:

1. define the horizontal step ofe′i−1 and vertical step ofei;

2. prove that eitherei = e′i up to a renaming of nodes orei → e′i
replaces a redex insides;

3. prove that the diagram commutes atei−1.

Point (1): leti be an index in{1, . . . n}. The horizontal step from
ei−1 is defined by the assumption and the vertical step fromei−1

is defined either by the assumption (fori = 1) or by the induction
hypothesis (fori > 1). We define the (horizontal) step frome′i−1

as the residual of the horizontal step fromei−1 by the vertical step
from ei−1. Likewise, we define the vertical step fromei as the
residual of the vertical step fromei−1 by the horizontal step from
ei−1.

Point (2): in graph rewriting, a node has exactly one residual (itself)
by a step, unless it is erased. Letn0 be the root node of the redex
replaced in the stepe0 → e′0. If the stepei−1 → ei erasesn0, then
ei = e′i up to a renaming of nodes. Otherwise, the stepei → e′i
will replace the redex atn0, which is insides by assumption.

Point (3): All the graph equalities in this paragraph are intended
up to a renaming of nodes. By point (2), ifei−1 = e′i−1 then
the steps atei−1 and e′i−1 are the same, consequentlyei = e′i
and the diagram commutes; otherwise letnh andnv be the roots
of the redexes of the horizontal and vertical steps atei−1, where
nv is inside s. If nh 6= nv, then, by Lemma 1, the diagram
commutes atei−1; otherwisenh = nv. By assumption every step
of e = e0

∗
→ en = v is deterministic. Hence, the two steps are

applied to the same term and they replace the same redex with the
same replacement. Thus,ei = e′i−1 = e′i up to a renaming of nodes
and the diagram trivially commutes in this case too.

Since the diagram commutes anden is a value,e′n is the same
value up to a renaming of nodes. Thus, the diagram constructs a
derivatione → e′

∗
→ v. ⊓⊔

The following result shows that “over-evaluating” the argument
of a set function during an evaluation of some expression does
not affect the result. Hence computing with set functions is order
independent.

THEOREM 1. Let R be a program,f an operation ofR, t̄ a list
of arguments off , andv a value off(t̄). Let c̄ be an expression
derived from̄t such that the computation off(c̄) to v replaces only
redexes that are insidēc and deterministic. If̄c′ is derived from̄c,
then there exists a derivationf(c̄′)

+
→ v such that each replaced

redex is insidēc′ and deterministic.

Proof: Consider the reduction diagram shown below.

f(t̄)
∗
// f(c̄) a00 //

��

a01

=��

a0n v

a10
=

// a11 a1n

f(c̄′) am0
=

// am1 amn v

(6)

The first row represents two assumptions of the claim:t̄
∗
→ c̄, hence

f(t̄)
∗
→ f(c̄) since rewriting is closed under context, andf(c̄)

+
→

v. Furthermore, every step insidēc of f(c̄) = a00
+
→ a0n = v is

deterministic. The first column,f(c̄) = a00
∗
→ am0 = f(c̄′),

is obtained from the assumption thatc̄′ is derived from c̄ and
the property that rewriting is closed under context. The derivation
a00

∗
→ a0n and every step ofa00

∗
→ am0 satisfy the conditions of

Lemma 2. Hence, a simple induction over the indexes of the rows
proves the commutativity of the diagram. Sincea0n = v is a value

anda0n
∗
→ amn, amn = v up to a renaming of nodes. Thus, the

last row of the diagram proves thatf(c̄′)
+
→ v. Every redex inside

c̄ of this derivation is a descendant of a deterministic redex, hence
it is deterministic as well. ⊓⊔

Our work discourages computing the set of values of an arbitrary
expression because in some cases the result is affected by the
order of evaluation. Therefore, it is interesting to ask whether it is
still possible to cast the computation of the set of values ofany
expression in terms of some set function. The following simple
result offers a positive answer.

LEMMA 3. If R is a program and ‘t’ is a nullary operation (a
possibly non-deterministic constant) ofR, thentS = S(t).

Proof: Vacuously, from Definition 4, since ‘t’ takes no argument.
⊓⊔

For example, to compute the set of values of ‘f bigCoin’ it suffices
to define:

t = f bigCoin

and to evaluatetS . We remark that there is a substantial difference
between evaluatingtS , as we are proposing in this paper, and eval-
uatingS(f bigCoin). The result of the latter depends on the order
of evaluation. If ‘bigCoin’ is evaluated beforeS, i.e., the traversal
of the computation space of ‘f bigCoin’ and the collection of the
values in the leaves, the result is not intended. Obviously, this unin-
tended evaluation cannot occur withtS since there is no argument
to evaluate.

4. Implementation
Given a functionf , it might be possible to definefS within the
language, i.e., with rewrite rules. However, we do not pursue this
approach because it is not appealing for a programmer. It would
be burdensome to codefS and it could lead to errors because the
mutual dependence between an operation and its set function is im-
plicit. If f is modified during program maintenance,fS must be
modified accordingly. Therefore, it is preferable to letthe device
compile or interpretfS from f automatically since all the informa-
tion necessary to computefS is already inf .

Given a functionf and an argument̄t, we want to compute the val-
ues offS(t̄). Any such value is a set of values off(t̄). For a correct
placement of the values off(t̄) into the values offS(t̄), we should
evaluatēt to somēc according to Definition 4. Unfortunately, we do
not know how much to evaluatēt. Thus, we take a different route.
We evaluatēt lazily, like any other expression of the program, and
we keep track of the non-deterministic steps insidet̄. We will use
this information to ensure the intended meaning.

Let us assume thatf(t̄) has some values, otherwise the only value
of fS(t̄) is ∅. We start with a few preliminary concepts and an
informal explanation. Given a setX andp andq subsets ofX, we
say thatp andq arecomparableiff one is contained in the other. We
say thatp andq areincomparableif they are not comparable. The
comparability relation is an equivalence. In the computation space
of f(t̄) we associate to every leafLv containing a valuev the set
NLv

of non-deterministic steps insidēt executed to derivev. Let
N = {NLv

| Lv is a leaf ofC(f(t̄)) containing a valuev}, i.e.,
N contains the sets of non-deterministic steps insidet̄ executed to
compute all the values off(t̄). Let [N] be the set of equivalence
classes ofN modulo the comparability relation. For each[n] ∈
[N], we defineV[n] = {v | v is a value off(t̄) andNLv

∈ [n]}.
V is a value offS(t̄) iff V = V[n], for some[n] ∈ [N].

A program, during its execution, will not compute[N] or the other
concepts discussed in the previous paragraph. Typically, it will

compute some portion of a set of values of some expression as
demanded by a context. Suppose that some context applies some
operation tofS(t̄), e.g., to check whether the resulting set is empty,
or some element belongs to it, or to compute its size. We have
discussed thatthe devicetraverses the computation space off(t̄)
as far as demanded by the context. When a value is visited, the
only potentially difficult task is to decide whether to place it in
a new value offS(t̄) or in some value offS(t̄) already partially
computed.

EXAMPLE 1. Consider the following program, where the symbols
f andbigCoin are defined in (2):

main = fS bigCoin

Fig. 1 shows the computations space of ‘main’. Symbols in the ex-
pressions of the computation space are decorated with two types
of information. The subscript of a symbols identifies the node la-
beled bys, e.g., the expression ‘main0’ tells us that0 is a node
of this expression (the only one) and the label of node 0 is the
symbolmain. Nodes are identified by0, 1, 2, . . . Operations sym-
bols flagged by• label nodes inside ‘bigCoin’, the argument
of the set function that we are considering. We flag these sym-
bols to detect non-deterministic steps. To improve readability, we
do not flag numbers even when they are inside ‘bigCoin’, since
numbers are never redexes and so they do not undergo any step
whether or not non-deterministic. The leaves of the computation
space of ‘main’ contain elements of the values ‘fS bigCoin’.
There are four such elements. The table to
the right associates these elements to the
non-deterministic steps inside ‘bigCoin’
that were executed to produce them. It is
simple to verify that ‘fS bigCoin’, hence
‘main’, has two values:{2, 3} and{4, 5}
becauseNL2

= NL3
6= NL4

= NL5
.

28 { R1 at ?•9 }

410 { R2 at ?•9 }

311 { R1 at ?•9 }

512 { R2 at ?•9 }

The computation space depicted in Fig. 1 shows the execution of
two steps at node?•9. In our depiction of the computation space,
the redexes of the two steps have the same root, but in practice
a more sophisticated mechanism to identify the roots would be
needed. Whether two steps are actually executed in the space of
Fig. 1 depends on the implementation. Implementations that tra-
verse the computation space depth-first with backtracking, such as
[21, 25], indeed executes this step twice. These implementations
are incomplete. A complete implementation may or may not execute
two steps. The conceptually simplest approach, which is shown in
Fig. 1, clones any expression that undergoes a non-deterministic
step. In this case, two steps would be executed at distinct nodes
that are clones of the same node. For the purpose of our discus-
sion, these steps should be considered the same step. More sophis-
ticated implementations, such as [8, 14], do not execute the same
step twice, since no information would be gained by repeating a
step. These implementations, for the example we are discussing,
execute the step at node?•9 only once and, therefore, they are not
only more efficient, but also conceptually simpler and in line with
our discussion. The details of concrete implementations cannot be
discussed in this paper.

The following simple lemma is instrumental for the proof of Theo-
rem 2.

LEMMA 4. LetR be a program,e an expression ofR, s a subex-
pression ofe, ande →o eo →i ei a 2-step derivation ofe where
the rooto of the first step is outsides and the rooti of the second
step is insides. There exists a 2-step derivatione →i e′i →o e′o
such thatei = e′o up to a renaming of nodes.

main0

fS1 bigCoin•2

coin3 +4 bigCoin•2

(05 ?6 17) +4 bigCoin•2

hhhhhhhhhh

VVVVVVVVVV

05 +4 bigCoin•2 17 +4 bigCoin•2

05 +4 (28 ?•9 410)

sssss
LLLLL

17 +4 (28 ?•9 410)

sssss
LLLLL

05 +4 28 05 +4 410 17 +4 28 17 +4 410

28 410 311 512

Figure 1. Computation space of ‘main’. The notation identifies the node of each symbol and tells whether the nodeis inside ‘bigCoin’, the
argument of ‘fS ’.

Proof: The nodeso andi are distinct, since one is outsides whereas
the other is insides. Furthermore, the step ati cannot erase the
redex ato, since, by Definition 3,o is not reachable fromi and,
hence, it cannot be matched by variables that may be erased by the
step ati. By Lemma 1,R is deterministically confluent. Hence, by
Definition 1, the two steps commute. ⊓⊔

DEFINITION 5. Let R be a program,f an operation ofR, t̄ an
argument off , andLv a leaf ofC(f(t̄)) containing a valuev. We
call fingerprintof Lv the set of non-deterministic steps insidet̄ in
the path ofC(f(t̄)) from the root toLv.

The next theorem states the correctness of an implementation that
uses fingerprints to compute set functions. Informally, letf be an
operation,̄t an argument (tuple) off . Each value off(t̄) must be
an element of some set computed byfS(t̄). When are two distinct
values off(t̄) elements of a same set computed byfS(t̄)? When
they have comparable fingerprints. The converse does not hold be-
cause a value off(t̄) may occur in several leaves of the compu-
tation space off(t̄) and two different leaves containing the same
value may have either comparable or incomparable fingerprints.

THEOREM 2. LetR be a program,f an operation ofR, fS a set
function off , t̄ an argument off , andLv andLw leaves ofC(f(t̄))
containing valuesv and w, respectively. If the fingerprints ofLv

andLw are comparable, then there exists a valueV of fS(t̄) such
thatv, w ∈ V .

Proof: Define a functionW : S → N, whereS is the set of
the finite derivations off(t̄), as follows. IfD is a derivation inS
executing exactlyn steps (numbered1, 2, . . . n), thenW (D) =
Pn−1

i=1

Pn
j=i+1 wij , wherewij = 1 if the i-th step ofD is outside

t̄ and thej-th step ofD is insidet̄; otherwisewij = 0. Informally,
W (D) counts the pairs of steps(i, j) of D, with i < j, such that
step i is outsidet̄ and stepj is inside t̄. Let NLv

and NLw
be

the fingerprints ofLv andLw, respectively. Since the fingerprints
are comparable, without loss of generality we assume thatNLw

⊆
NLv

. Since Lv is a leaf of C(f(t̄)), there exists a derivation
A : f(t̄)

+
→ v. We prove by induction onW (A) that there exists

an expression̄c derived fromt̄ such that there exists a derivation
B : f(t̄)

∗
→ f(c̄)

+
→ v where no step of the portionf(c̄)

+
→ v

of B is inside c̄. Informally, B brings to the front all the steps

of A inside t̄. Base case:W (A) = 0. By the definition ofW ,
W (A) = 0 implies that every step ofA insidet̄ precedes every step
of A outsidet̄. Sincef(t̄) is operation rooted,A executes at least
one step at the root, and this step is outsidet̄. Letk > 1 be the index
of the first step ofA outsidēt. The firstk−1 steps ofA are insidēt.

HenceA has the formf(t̄)
k−1
→ f(c̄)

+
→ v, for somec̄ derived from

t̄, andB = A witnesses the claim. Inductive case:W (A) > 0. By
the definition ofW , W (A) > 0 implies that some step ofA inside
t̄ follows some step ofA outsidet̄. Hence, there exists an index
k > 1 such that thek-th step ofA is outsidēt and thek +1-th step
of A is insidet̄. By Lemma 4, swapping these steps produces a new
derivationA′ : f(t̄)

+
→ v such thatW (A′) = W (A) − 1. By the

induction hypothesis, the claim holds forA′, hence it holds forA
as well. In particular, starting fromA, by swappingW (A) adjacent
steps such that the first is insidet̄ and the second is outsidēt we
obtain the desired derivationB. To complete the proof, we show
the existence of a derivationC : f(t̄)

∗
→ f(c̄)

+
→ w such that

every step ofC in the portionf(c̄)
+
→ w is deterministic. Consider

the following diagram:

f(t̄) a00 //

��

a01

=��

a0n w

a10
=

// a11 a1n

f(c̄) am0
=

// am1 amn

(7)

The top row is the derivation inC(f(t̄)) from the root to leaf
Lw which is assumed by the claim. The leftmost column is the
portion of a derivationB, whose existence has just been proved,
which derivesf(t̄) into f(c̄). The remaining entries of the diagram
are defined by induction exactly as in diagram (5) point 1. To
prove that the diagram commutes ataij , for 0 6 i < m and
0 6 j < n, let nh and nv be the roots of the redexes in the
horizontal and vertical, respectively, steps ataij . If nh andnv are
distinct, then the commutativity of these steps is a consequence of
the deterministic confluence of the program. Ifnh = nv, then if
the redex is deterministic, the steps are the same and obviously they

commute; otherwise the redex is non-deterministic. Remember that
by constructionnv is insidet̄, hence in the fingerprint ofNLv

and
thatNLw

⊆ NLv
. Hence, the steps are the same in this case too,

and they commute in all cases. Now we prove that every step inside
c̄ of the bottom row is deterministic. Fori = 0, 1, . . . n − 1, the
stepami → am(i+1) is the descendant bya00

∗
→ am0 of a0i →

a0(i+1). If the latter step is non-deterministic, it is in the fingerprint
of NLw

which is contained inNLv
, hence it is executed ina00

∗
→

am0 because by construction this derivation executed all the steps
in the fingerprint ofNLv

. This implies thatami = am(i+1) up
to a renaming of nodes. Thus, there are no non-deterministic steps
insidec̄ in the bottom row of the diagram. Finally, by construction
a0n = w. Sincew is a value, fori = 0, 1, . . . m, ain = w up to
a renaming of nodes. Thus, by concatenating the leftmost column
and the bottom row, we have a derivationf(t̄)

∗
→ f(c̄)

+
→ w

such that every redex insidēc replaced in the portionf(c̄)
+
→ w

is deterministic. By Definition 4, this proves thatv andw belong to
someV = fS(t̄). ⊓⊔

A reader concerned with an actual implementation may wonder
how a fingerprint could be represented. Conceptually, a fingerprint
is a set of non-deterministic steps. Because our programs areLOIS
systems, a step is non-deterministic iff it is applied to a node labeled
by thechoiceoperation. Thus, a fingerprint is a set of a pairs〈n, r〉,
wheren is a node identifier andr is either one of the two rules of ‘?’
displayed in (1). In some implementations, a node is conveniently
identified by the memory location of its representation.

5. Programming
We apply the approach presented in the previous sections to a
problem. The problem is solving then-queens puzzle: placen
queens on ann × n board so that no queen captures any other
queen according to the rules of chess. This is a classic example of
problem solving bybacktrackingin an imperative language [30].
Of course, no backtracking is coded in a functional logic language.

A typical implementation of this problem represents a placement
of queens on the board as a permutation of1, 2, . . . n, where the
i-th element of the permutation is the row of the queen placed in
column i. Representing a placement as a permutation pays off to
determine whether a placement is safe since it makes it impossible
to place two queens in the same row and/or the same column. Thus,
to determine whether two queens capture each other it suffices to
determine whether they are on a same diagonal. This condition
occurs only if the distance between two queens’ rows is the same
as the distance between the two queens’ columns. This condition
must be tested for any set of two queens on the board.

The program adopts a generate-and-test algorithm. The program
generates (lazily) every permutation of1, 2, . . . n and tests whether
it represents a safe placement of the queens. Coding the genera-
tion of every set of two queens and the control to test whether they
capture each other is laborious. Since functional logic languages
have built-in searching capability, we code an operation that takes
a placement as its argument and searches two queens in the place-
ment that captures each other. If two such queens are found, the
placement is discarded since it isnot a solution of the problem.

In the following code,abs returns the absolute value of an inte-
ger,length the length of a list, ‘[1..n]’ the list 1, 2, . . . n, and
permute a permutation of its argument. The program is executed
by narrowing, which was not considered in our treatment, but con-
ceptually narrowing can be replaced by rewriting if generator func-
tions [7] are used instead of variables. Some compiler/interpreters,
e.g., KICS [14], indeed translate source code with variables into ex-

ecutable code without variables so that variables are considered as
syntactic sugar for generator functions.

unsafe (_++[x]++y++[z]++_)
= abs (x-z) =:= length y + 1

The argument is matched against the concatenation of five lists
(here we use the convenient notation of functional pattern [6]), two
of which contain a single element. Each such element stands for
the row of a queen. The list between these elements represents
the portion of the placement between the two queens. Hence the
right-hand side succeeds iff the number of columns between the
two queens is the same as the number of rows between the two
queens

Now, a placementp is a solution of the puzzle iff ‘unsafe p’
fails, i.e., there is no pair of queens ofp capturing each other.
Using the concepts of the previous sections, this is equivalent to
‘unsafeS p’ = ∅. Thus, our program is:

queens n | isEmpty (unsafeS p) = p
where p = permute [1..n]

(8)

All current implementations of the functional logic language Curry
[20], e.g., [14, 21, 25], cannot execute the above code because
they lack set functions. A published implementation of this prob-
lem with the same algorithm [9] replacesunsafeS with unsafe.
This could (likely would) produce an unintended result depending
on the order of evaluation. The reason is that the execution of the
program invokesunsafe with a non-deterministic argument, but
the programmer intention is to exclude the non-determinism of this
argument from the evaluation ofunsafe. The program in [9] pro-
duces the correct result because it forces the complete evaluation of
p before computingS(unsafe p) to separate the non-determinism
of p from that ofunsafe. This programming technique is quite un-
desirable in a declarative language since it requires the programmer
to think about the order of evaluation.

As a final example, consider the definition ofitinerary given in
Section 1. Using set functions, we can provide the following exe-
cutable definition of an itinerary with shortest air time: an itinerary,
‘it’, is the shortest one if there is no itinerary shorter than ‘it’:

shortestItin s e
| isEmpty (shorterItinThanS (duration it))
= it
where it = itinerary s e

shorterItinThan itduration
| duration its < itduration
= its
where its = itinerary s e

where ‘duration’ is a trivial function that computes the total time
in the air of an itinerary.

Note that the distinction between the different sets of values (e.g.,
to compute all values ofit and all values ofits) is essential to
compute the intended results. The above code directly reflects the
formal definition of a shortest itinerary, but it is highly inefficient
from an operational point of view since for each itinerary we
have to compute other itineraries to check the “shortest” property.
Another alternative is to compute all the itineraries and select the
shortest by comparing pairwise the durations of itineraries. In the
following code, ‘minSet’ computes the minimal element of a set
w.r.t. a total ordering provided as the first argument:

shortestItin s e
= minSet shorter (itineraryS s e)
where

shorter it1 it2
= duration it1 <= duration it2

6. Related work
A satisfactory approach to computing with sets of values in a
demand-driven non-deterministic functional logic language such
as Curry [20] has been elusive. This situation prompted, over a
decade, several proposals that we briefly review in this section.
Let S(e) be the set of values of some expressione. A difficulty
of computations involvingS(e) originates from subexpressions of
e that are needed both byS(e) and independently ofS(e). An
expression of this kind is said to be shared inside and outside
the set. In (8), the expression ‘p’ is shared in this sense because
it is returned by the operation ‘queens’ (outside S(p)) and it
is needed (insideS(p)) as the argument of ‘unsafeS ’. Every
approach proposed to date—except ours—computes all the values
of an expression inside the set, but only one value outside the set.

One of the first approaches [19] was intended to control the traver-
sal of the computation space of an expression. This approach is
based on a primitive operator, called ‘try’, that evaluates an ex-
pression until a non-deterministic step is executed. The ‘try’ al-
lows to easily program different search strategies [29]. This ap-
proach is based on term rewriting and, thus, does not easily ac-
commodate sharing in general and sharing inside and outside a
set of values in particular. Lux [26] presents a sophisticated im-
plementation of the ‘try’ operator and discusses the problem of
evaluating subexpressions shared inside and outside the set of val-
ues. He proposes a “weak encapsulation” view where sharing in-
side and outside of sets of values is preserved. As a consequence,
non-deterministic steps on subexpressions shared inside and out-
side a set are never performed inside the set. Similarly to our ap-
proach, this leads to the intended behavior in the queens example
(8). In contrast to our approach, the set of subexpressions covered
by the ‘try’ operator depends on the concrete syntactic structure
of expressions so that apparently equal expressions yield different
results (see [12] for details). No formal properties are stated for his
approach.

[12] presents a detailed discussion of various options and pitfalls
to computing set of values in the presence of sharing. The authors
propose a “strong encapsulation” view where sharing inside and
outside sets is severed and the search primitive is put into the I/O
monad. The latter restriction is relaxed in [13] where a demand-
driven implementation of the search primitive is presented. Since
the implementation is based on the strong encapsulation view, it
does not support a distinction between different levels of non-
determinism, i.e., non-determinism caused by arguments vs. non-
determinism caused by operations. A consequence of this design
decision is that in various situations, e.g., that shown in Section 5,
unintended results are produced.

[5] presents a formal abstract treatment of computations with sets
of values and proposes another primitive, ‘getAllValues’, to
compute all the values of an expression. Although some interesting
properties are stated for this primitive, the authors acknowledge a
weakness of this approach due to the fact that some applications
demand the sharing of non-deterministic expressions inside and
outside a set of values. Our new approach solves this problem by
introducing set functions that allow a clear distinction between
different sources of non-determinism in a computation.

The computation of sets of values has been also considered in
works related to computing with failures in functional logic pro-
gramming [24, 28]. In these works, an operationfails is proposed
that computes the set of all values of its argument expression and

returns true, if this set is empty, or false, otherwise. The semantics
is defined by an extension of the rewriting calculus CRWL [17] and
implementations are given by computing the set of all values of an
expression. Similarly, our approach enables such an implementa-
tion of constructive negation, as shown by various examples above.
In contrast to the works on constructive failure, we also support
the further processing of the collected sets (as shown in the final
example of Section 5) in order to extract information from them.

7. Conclusion
We presented an approach to computing the set of values of an
expression. The key contribution of our approach is the form of
this expression, a set function—a novel concept introduced by this
work—applied to some argument(s). The form of this expression
allows the separation of the non-determinism of a function from
that of its argument(s). This separation ensures the order indepen-
dence of our approach which we proved within the framework of
graph rewriting.

We defined an abstract implementation of our approach based on
fingerprints—a novel concept introduced by this work—and we
proved the correctness of this implementation. We showed, through
a textbook example, that our approach easily and naturally solves
problems that previous approaches could not solve or could solve
only with some tricks.

The independence of the order of evaluation is an essential property
of declarative languages. Consequently, our approach positively
solves a long-standing problem. For this reason, we believe that
our approach will eventually replace all the previously proposed
approaches found in current implementations of functional logic
languages.

References
[1] S. Antoy. Definitional trees. In H. Kirchner and G. Levi, editors,

Proceedings of the Third International Conference on Algebraic and
Logic Programming, pages 143–157, Volterra, Italy, September 1992.
Springer LNCS 632.

[2] S. Antoy. Optimal non-deterministic functional logic computations.
In Proceedings of the Sixth International Conference on Algebraic
and Logic Programming (ALP’97), pages 16–30, Southampton, UK,
September 1997. Springer LNCS 1298.

[3] S. Antoy. Constructor-based conditional narrowing. InProceedings
of the Third ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, pages 199–206, Florence,
Italy, 2001. ACM Press.

[4] S. Antoy. Evaluation strategies for functional logic programming.
Journal of Symbolic Computation, 40(1):875–903, 2005.

[5] S. Antoy and B. Braßel. Computing with subspaces. InPPDP ’07:
Proceedings of the 9th ACM SIGPLAN international conference on
principles and practice of declarative programming, pages 121–130,
New York, NY, USA, 2007. ACM.

[6] S. Antoy and M. Hanus. Declarative programming with function
patterns. In15th Int’nl Symp. on Logic-based Program Synthesis
and Transformation (LOPSTR 2005), pages 6–22, London, UK,
September 2005. Springer LNCS 3901.

[7] S. Antoy and M. Hanus. Overlapping rules and logic variables
in functional logic programs. InTwenty Second International
Conference on Logic Programming, pages 87–101, Seattle, WA,
August 2006. Springer LNCS 4079.

[8] S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machinefor
functional logic computations. InProc. of the 16th International
Workshop on Implementation and Application of Functional Lan-
guages (IFL 2004), pages 108–125, Lubeck, Germany, September
2005. Springer LNCS 3474.

[9] Sergio Antoy. Evaluation strategies for functional logic programming.
In Bernhard Gramlich and Salvador Lucas, editors,Electronic Notes
in Theoretical Computer Science, volume 57. Elsevier Science
Publishers, 2001.

[10] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge
University Press, 1998.

[11] M. Bezem, J. W. Klop, and R. de Vrijer (eds.).Term Rewriting
Systems. Cambridge University Press, 2003.

[12] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism
in functional logic computations.Journal of Functional and Logic
Programming, 2004(6):1–28, 2004.

[13] B. Braßel and F. Huch. On a tighter integration of functional and
logic programming. InProc. APLAS 2007, pages 122–138. Springer
LNCS 4807, 2007.

[14] B. Brassel and F. Huch. The Kiel Curry System KiCS. In Dietmar
Seipel, Michael Hanus, and Armin Wolf, editors,Applications of
Declarative Programming and Knowledge Management, pages 195–
205, Springer LNAI 5437, 2009.

[15] R. Echahed and J.-C. Janodet. On constructor-based graph rewriting
systems. Technical Report 985-I, IMAG, 1997. Available athttp://
www-lsr.imag.fr/Les.Publications/c-graph-rewriting.
ps.

[16] Rachid Echahed. Inductively sequential term-graph rewrite systems.
In Graph Transformations, 4th International Conference, ICGT
2008, Leicester, United Kingdom, volume 5214 ofLecture Notes
in Computer Science, pages 84–98. Springer, 2008.

[17] J. C. Gonźalez Moreno, F. J. Ĺopez Fraguas, M. T. Hortalá Gonźalez,
and M. Rodŕıguez Artalejo. An approach to declarative programming
based on a rewriting logic.The Journal of Logic Programming,
40:47–87, 1999.

[18] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential
and inductively sequential term rewriting systems.Information
Processing Letters, 67(1):1–8, 1998.

[19] M. Hanus and F. Steiner. Controlling search in declarative programs.
In Principles of Declarative Programming (Proc. Joint International
Symposium PLILP/ALP’98), pages 374–390. Springer LNCS 1490,
1998.

[20] M. Hanus (ed.). Curry: An integrated functional logic language (vers.
0.8.2). Available athttp://www.curry-language.org, 2006.

[21] M. Hanus (ed.). PAKCS 1.9.1: The Portland Aachen Kiel Curry
System. Available athttp://www.informatik.uni-kiel.de/
~pakcs, 2008.

[22] G. Huet and J.-J. Ĺevy. Computations in orthogonal term rewriting
systems. In J.-L. Lassez and G. Plotkin, editors,Computational
logic: essays in honour of Alan Robinson. MIT Press, Cambridge,
MA, 1991.

[23] H. Hussmann. Nondeterministic algebraic specificationsand
nonconfluent rewriting.Journal of Logic Programming, 12:237–
255, 1992.

[24] F.J. Ĺopez-Fraguas and J. Sánchez-Herńandez. A proof theoretic
approach to failure in functional logic programming.Theory and
Practice of Logic Programming, 4(1):41–74, 2004.

[25] W. Lux. An abstract machine for the efficient implementation of
Curry. In H. Kuchen, editor,Workshop on Functional and Logic Pro-
gramming, Arbeitsbericht No. 63. Institut für Wirtschaftsinformatik,
Universiẗat Münster, 1998.

[26] W. Lux. Implementing encapsulated search for a lazy functional logic
language. InProc. 4th Fuji Intl. Symposium on Functional and Logic
Programming (FLOPS ’99), pages 100–113. Springer LNCS 1722,
1999.

[27] M. J. O’Donnell. Equational Logic as a Programming Language.
MIT Press, 1985.

[28] J. Śanchez-Herńandez. Constructive failure in functional-logic
programming: From theory to implementation.Journal of Universal
Computer Science, 12(11):1574–1593, 2006.

[29] C. Schulte and G. Smolka. Encapsulated search for higher-
order concurrent constraint programming. InProc. of the 1994
International Logic Programming Symposium, pages 505–520. MIT
Press, 1994.

[30] N. Wirth. Algorithms and Data Structures. Prentice Hall, 1976.

