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Abstract of the functional logic language Curry [20] for the examples in this

We propose a novel approach to encapsulate non-deterministicpaper)'

computations in functional logic programs. Our approach is based flight = (LH469, Portland, Frankfurt,10:.15)

on set functions that return the set of all the results of a correspond- flight = (NWA92, Portland, Amsterdam,10:.00)

ing ordinary operation. A characteristic feature of our approachis  flight = (LH10, Frankfurt,Hamburg, 1:.00)

the complete separation between a usually-non-deterministic oper- flight = (KL1783,Amsterdam,Hamburg, 1:.52)

ation and its possibly-non-deterministic arguments. This separation

leads to the first provably order-independent approach to comput- )

ing the set of values of non-deterministic expressions. The proof is FOr €xample, flight Lufthansa 469 connects Portland, Oregon, to
provided within the framework of graph rewriting in constructor- Frankfurt, Germany, in 10 hours and 15 minutes.

based systems. We propose an abstract implementation of our apap, gperation that computes an itinerary constrained by at most one
proach and prove its independence of the order of evaluation. Our;tarmediate stop is defined as:

approach solves easily and naturally problems mishandled by cur-

rent implementations of functional logic languages. itinerary orig dest
. . . . | flight =:= (num,orig,dest,len)
Categories and Subject Descriptors D.3.1 [Programming Lan- = [num]

guage§ Semantics—Subspaces; D.3.Brggramming Langua-
geg: Language Constructs and Features—Non-determinism; D.3.3 itinerary orig dest

[Programming LanguagégsLanguage Constructs and Features— | flight =:= (numl,orig,stop,lenl)
Control structures; F.4.2Mathematical Logic and Formal Lan- & flight =:= (num2,stop,dest,len2)
guage§ Grammars and Other Rewriting Systems—Term Graph

3 = [numl,num2]
Rewriting Systems where numl, lenl, num2, len2, stop free

where num, len free

General Terms  Algorithms, Design, Languages In an interactive environment, the programmer can obtain all the

Keywords Functional Logic Programming Languages, Non-De- itineraries one after another in some non-deterministic order. Cod-
terminism, Subspaces, Rewrite Systems ing the operatioritinerary using the operatiofilight is much
simpler than if the flights were represented using an adjacency ma-
. trix or adjacency lists. Usinglight avoids defining these struc-
1. Introduction tures and coding and invoking operations to extract information
Non-determinism is one of the most characterizing features of from them.
T;' r}ﬁg?ngr:%gfxﬁggg%%e;aé ﬁgczer?]tiﬂ;z 8;322 -dheetﬁ(r:rglrsuosm eHowever, a drawback of this simplicity is that, without additional

computation may produce multiple results. The programmer cannot ;nuiggg‘ﬁréll_’r:;'sre'rgspoonsfs't;fatﬁﬁgmﬁJUtgégagééa?éggs{;%r?fhzhsorztgito_
select a specific value of a non-deterministic expression, but cant. f I.I the flight d pdpt . tp It of i
constrain a value for a specific purpose. For example, consider the 1on ofall the Tlights and any non-deterministic resutt ot operation
problem of computing a flight itinerary between two cities. Flights tinerary IS independent of any other result. What is needed is
are represented by the non-deterministic operatibhght that a way to accesall the values of a non-deterministic expression.

stores flight information in a simple tabular form (we use the syntax _Ir_] the a_lbove example, we would like a function that returns all the
itineraries from Portland to Hamburg in a set so that some element

*This work was partially supported by the German Research €bun with m'”'”."'a' duratl_on can be Cpmpu_ted. This functlon WOF“d also

(DFG) under grant Ha 2457/5-2 and the DAAD grants D/06/29488 be use_ful in other situations whlch_ arise freqL_Jent_Iy in practice, e.g.,

D/08/11852. detecting if a constraint has solutions. We will discuss an example
of this kind in some detail in Section 5.

Primitive operations for the purpose discussed above have been
available in functional logic languages since the early days. Un-
Permission to make digital or hard copies of all or part of this work for personal fortunately, every proposal so far suffers from one or more major

classroom use is granted without fee provided that copies are not made outbstrib flaws, in particular the behavior of the primitive operation is un-
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on the first page. To copy otherwise, to republish, to post on servers or ttritedis natural in Some cases and/or its result depends on the evaluation
to lists, requires prior specific permission and/or a fee. order. [5, 12] discuss at length these problems. In this paper, we
PPDP’09, September 7-9, 2009, Coimbra, Portugal. propose a novel approach characterized by the separation of the
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prove that our approach is independent of the order of evaluation where %’ is a variable and+’ is the integer addition. By design,
and that it exhibits a natural behavior in situations in which previ- functional logic programs are not confluent. Thus, some expres-
ous approaches misbehave. sion ¢ matching ¥’ may have two values (normal forms), say 0
and 1. Since there is only one node labeled bythe values of
‘doublet’ are only 0 and 2. In other formal models of functional
logic programs, e.g., [17], this stipulation is referred to ascthile
etime choicesemantics [23].

We assume some familiarity with functional logic programming
and term graph rewriting. Section 2 tersely recalls key concepts and
notations. Section 3 motivates our definitions, formalizes our ap-
proach, and proves the key result of this paper—the independenc
of the order of evaluation. Section 4 describes an abstract imple- A component of a graph is a set of nodes labeled by variables and
mentation of our approach and proves its correctness. Section 5the symbols of (the signature of) the program. Every time a non-
shows that our approach easily and naturally solves a problem out-collapsing rule, i.e., a rule whose right-hand side is not a variable,
side the domain of previous approaches. Section 6 compares oulis applied, some nodes are introduced by the replacement. These
proposal with previous proposals. Section 7 offers our conclusion. nodes ardreshor new i.e., are nodes that do not appear anywhere
else in the expression being replaced and in other expressions dis-
2. Background cussed in the same context. In some situations, e.g., when we rea-

. . i . son about commutative diagrams, this difference matters. Some-
Functional logic programs define data types and operations throughtime’ we will apply twice the same step to the same term. The two

a rich set of syntactic and semantics features that include modulesermg resulting from the two equal steps are not equal. They are
with visibility control, nested declarations with local scope, par-  «grcturally” equal, but the identities of some of their nodes differ
tially applied and higher-order functions, and monadic 1/0. The pacayse the nodes introduced by one step are not the same as the
compilation of asourceprogram produces &rget program, Se-  odes introduced by the other step. Graphs that differ only for the

mantically equivalent to the source one, in which these features jjentities of some nodes are said todsal up to a renaming of
have been removed. The target program belongstwelanguage nodeg15, Def. 15].

that is simpler to both reason about and implement. We define the

core language below and describe our results and prove them forA redex isdeterministidff it is an instance of the left-hand side of
this language. only one rule. Hence, in BOIS system, a redex is deterministic iff

it is not rooted by the choice operation. A stepeterministiciff

it replaces a deterministic redex, otherwise ih@-deterministic

We use &xpressiohas a generic name for a term graph over the
signature of a program. An irreducible expression is callzdlare

if it has occurrences of defined operations, otherwise it is called a
value

The core language is modeled by a class of graph rewriting sys-
tems calledimited overlapping inductively sequentjalbbreviated
LOIS[4]. In the rest of this paper,@ogramwill be a system in this
class. In theLOIS systems, each rule defining an operatjfphas

the fornt £ (%) =7 and is required to be left-linear (i.e., there are no
multiple occurrences of variables #ipand constructor-based (i.e.,

t does not contain any operation symbol). Moreover, the left-hand Without loss of generality, we discuss the computation of all the
sides of all the rules defining each operation are organized in a hier-values of some expressions only for rewriting, as opposed to nar-
archical structure called a definitional tree [1] that guides the eval- rowing. [7, Th. 2] shows that narrowing computations in the in-
uation strategy [4]. This class of programs is the intersection [18] ductively sequential programs with extra variables are equivalent
of the strongly sequential systems [22] and the constructor-basedto rewriting computations in the overlapping inductively sequen-
systems [27]. In order to support non-deterministic operations, as tial programs without extra variables [7, Th. RDIS systems, our
desired for functional logic programmingL®IS system addition- programs, are a subset of the latter.

ally contains a single operation whose rules’ left-hand sides are
overlapping [2]. This operation is callezhoice It is denoted by

the infix symbol ?” and defined by the following rules:

In the following, we writee; —,, ez for a rewrite step that
performs a replacement at nodein e;, where the index: is
omitted if it is irrelevant. In reasoning about a computation space,
I we will need to determine if two steps are “substantially” equal.

xr_=x s (1) This concept is similar to the equality we consider for graphs.

-7y =y Ry Let e; andes be graphs equal up to a renaming of nodes and let

¢ : e1 — ez be a graph isomorphism witnessing this equality.

LOIS systems are an adequate core language for functional logic et ¢, —,,, ¢} andey —,, €, be steps at nodes; andn.,
programming since any functional logic program (i.e., constructor- respectively, that apply the same ruleglfn1) = n2, we say that
based conditional rewrite system) can be translated int®Es these steps arequal up to a renaming of nodesr more simply
system [3]. that they are equal.

The treatment of graph rewriting is non-trivial. For lack of space,
we are unable to recall graph rewriting in this paper. Instead, for
the conve_nience of the reader, we strictly adhere to the definitions (%) has two or more values (up to renaming of node), otherwise it
and notations of [15] (see also [16]). Below, we recall a couple of is deterministic For instance, the operatio®?' is non-deterministic
essential concepts. Graph rewriting stipulates that a variable labEIsWhereanouble' is deterministic

at most one node of a graph [15, Def. 2, cond. 5]. This is relevant '

when a variable occurs repeatedly in the right-hand side of a rule. A strategy defines the steps to be executed on an expression. A
For example, consider the rule (for consistency with the programs strategy denoted byy, maps each expression intofiaite set
presented later, functional application is curried): of expressions. The meaning is that the steps (multisteps, if the
strategy is parallel) that can be executedeoare all and only

e — €', foranye’ € o(e). A strategyy is completg(normalizing

1 Throughout this paper, we writdor a list of (argument) terms , . . . , t5, iff, for any expressione and any valuev of e, there exists a

and use notions defined for terms also for list of terms. Thigstified by derivation ofe into v consisting only of steps computed by A

the equivalence ofi-ary functions and unary functions with tuple argu-  strategyy is sensibleiff, for all expressionse, distinct elements
ments. of p(e) originate from distincinon-deterministicsteps ofe. If a

We callv avalue of an expressioaif v is a value withe = wv.
An operationf is non-deterministigff, for some list of valuesy,

double x = x + X




strategy is nosensiblea value of an expression could be repeatedly essence of non-determinism, a feature that we highly value in the
computed. For example, a strategy that maps 1*2+3*4 into language. The following result is from [5].

S = {2+3%4, 1x2+12} would not be sensible. A sensible strategy
would mape into either element ofS, or into {2+12}, if it is
parallel.

LEMMA 1. Any program is deterministically confluent.

Proof.If e is an expression angh
A strategy controls the computations. To keep the notation lighter, andnz are the roots of distinct re- €
we assume a fixed strategy and refrain from parameterizing with dexes ofe, then, since all rules are 1 n2
the strategy concepts defined in this paper, in particular, the com- constructor-based, node; is not

€1 €2

putation space. The computation space of an expressibstracts  in the redex pattefnof the redex
all the computations of with a given strategy, and consequently ~atni and vice versa. Thus, if the
all the expressions derived from Thecomputation spacef e, de- redex atn, is replaced, and node nz/n\l\— —%/nz
notedC(e), according to a (fixed) strategyis a possibly-infinite, 72 is not erased [11, pag. 391] by
finitely-branching tree inductively defined by: the reduction, the redex pattern at e
ng is unchanged. Thus, the rede!
C(e) = {e,{C(e1),...,Clen)}), atn, is replaced exactly in the same way whether or not the redex
whenep(e) = {e1,...,en} atn; has been replaced. As for the Parallel Moves Lemma [22] in

. . - orthogonal systems, the diagram of the two steps commutes, with
For a sensiblestrategy, a branch has a single child if the step ihe implification that in graph rewriting a redex has at most one

is deterministic and has multiple children if the step is non- gegcendant, whereas in orthogonal systems it can have multiple de-
deterministic. A leaf o’ (e) is an expression that cannot be further ¢ andants. O

evaluated (according to the given strategy). Foompletestrategy, ] ] o
a leaf is either a value aof or is an expression that cannot be de- Since every program is deterministically confluent, we say that the

rived to value, i.e., a failure. Aomputatiorof e is a path inC'(e) language of these programsagder independentlo date, all the

starting at the root. approaches to compute all the values of some expression are based
) . ) on a primitive operation [5]. Thus, we begin with formalizing this

A goal of our work is the formulation of aorder-independerap- concept and showing its potential pitfall.

proach to computing all the values of some expression. Informally, )

this means that the order in which the steps of a computation are DEFINITION 2. Let’R be a program and an expression dR. We
executed does not affect the computed result. This property is de-define theset of values ok asS(e) = {v | e — v, v is avalug,
sirable in programming languages: it frees the programmer from i.€.,S(e) is the set of all the values that can be derived fram

considering a particular order of evaluation for reasoning about a 1 steps executed to compuiée) depend on the strategy. How-
program and makes_ it easier to perform computations in parallel to ever, for every expressian every complete strategy computes the
exploit the opportunities provided by current and future hardware. sameS|(e), since it computes the same valueg of

Formalizing the concept of “order independence” for a functional

logic language takes a bit of work. In a rewriting-based framework, Unfortunately, a language aug

order independence can be formalized by confluence. Typically, mented with an unrestricted “se| (co

many steps can be applied to an expression. The confluence of #f values” operation is not orde / l

program ensures that the choice of the applied step does not affecindependent. To see this, assume

the value of the expression. Unfortunately, this is not true for some that such an operation takes an 5 13 g
{0

S(coin)

0 S
functional logic programs. Consider the program: argument and returns the corre-
sponding value. Thus, e.g., if w l
coin =0 7 1 replaceS(coin) at the root we
obtain {0, 1}, whereas if we re-

Any complete strategy must mapoin’ into {0, 1} which shows
that the choice of the step does affect the result. Therefore, a mor
specialized concept of confluence is needed for a functional logic

} {1}
ghlace the argumentcobin’ with
one of its values we end up with eithgh} or {1}. The popularity

language. We recall the following concept from [5]. of computing the sets of values of an expression through a primi-
tive operation, despite the loss of order independence, is justified

DEFINITION 1. A program is deterministically confluentff for by the following paragraphs.

every expressionand steps —, t1 andt —n, t2 Withny # no A compiler or interpreter of a functional logic language, which we

there exist expressions andu, such thatt; — u; andta — us will refer to asthe deviceis intended to compute all the values of

andu; = uz up to a renaming of nodes. an expression regardless of our treatment. In an interactive environ-

ment,the devicdoads a program and executes a “read-eval-print”
loop that reads an expression input by the user, evaluates it to a
value, and prints this value. Similar to a logic language device, and
in contrast to a functional language device, a computation can pro-
" : - . . ... duce more than one value. For this reason, after printing a value of
rewrite relation. This second difference is only apparent. Condition 5, expressiorthe devicegives the user the option to either com-

5 of [15, Def. 2], i.e., any variable labels at most one node of an 16 and print another value of the same expression, if it exists, or
expression, ensures that both a node and a redex have at most ong) raad and process a new expression.

descendent (residual) by a step.

Our definition differs from the standard notion of confluence [10,
11] in two aspects: (1) we explicitly excludéfferentsteps at the
samenode, and (2) to complete the diagram we use the reflexive

closure () instead of the reflexive transitive closuré>] of the

L . . o To accomplish this behaviothe device on input an expression
Deterministic confluence is an appropriate formalization of the e, traversesC(e), the computation space ef When it visits a
notion of independence of the order of evaluation. Steps at different

nodes can be executed in any order without affecting the result of a2 These are [11, Def 2.7.3] the nodes of the redex isomorphicadipped
computation. We have shown that different steps at the same nodg15, Defs. 10-12] to the non-variable nodes of the left-haitk of the
may break the (ordinary) confluence of a program, but this is the applied rule.




leaf containing a value, it presentsv to the user and waits for ~ approach works well for program (2), but it is inadequate in other
instructions. Thusthe devicemust be capable of enumerating, in  situations. For some operatighand argument, fs(#) may have
some order implicitly defined by the strategy and/or the traversal, values even if has no values. For example, consider:

the set of values on an input expressiormand to present these

elements incrementally and interactively to the user. Therefore, the head (x:xs) = x

same device can be used to compute the set of valuesadth coinList = coin : coinList @)

one small change: every value found during the traversél (@f)

is placed in a structure suitable for representing a set rather thanThe expressioncoinList’ has no values, butheads coinList’
being presented to the user. This behavior only approximates thehas two values{0} and{1}. This example suggests an approach
computation of a set of values. For example, consider the definition: for computing the values Ofs(f) more appropriate to a lazy
language: evaluaté to some expression such that inS(f(c))
there are no steps @ This approach is consistent with a non-
Itis easy to see thadi(zs) = {0}. However, the computation space strict order of evaluation, and it works well for program (3), but it
of ‘zs’ is infinite. Hence, the traversal and accumulation of the is still inadequate in some situations. For some operafiand
values of this space does not terminate. This is an asset rather thamrgumentt, there is no expressioa derived from#, such that

a liability. In a programming environment in which computations S(f(¢)) executes no steps &fFor example, consider the program:
are non-strict, infinite structures are common. Thus, the behavior
of the devices not only acceptable, but even desirable. A program
computes a set of values lazily as demanded by its context like any
other expression evaluated during an execution.

Within a program, a set of values is an instance of an algebraically It is easy to verify thats (g0) = {0,1,2,...}. The computation
defined data type suitable for abstracting a set and it is defined Of ‘fs (g 0)’ executes infinitely many steps insidgo’. The notion
entirely within the language. The program manipulates instances of that a step is “inside” some expression is intuitive and it will be
this type through operations that, e.g., check whether a set is empty,formalized in Definition 3. Therefore, to compufe(#), for some

or some element belongs to a set, or some set is contained in somé@perationf and argument, we cannot hope to evaluat@nce and
other set, etc. Instances of this type are evaluated lazily as any otheffor all to some expressionand then to comput§(f(¢)) without
instance of any other type. The rewriting framework that we use to touchinge again. This fact shapes how we define and implement set
formulate and prove properties of our approach effortlessly handles functions. We begin by formalizing the notion that a step is inside
potentially infinite expressions, if the strategy is complete, and itis Or “originates from” some expression.

therefore adequate to model the behavior of a lazy programming

zs =0 7 zs

=x : g (x+1) @)

g x
f (x:x8) = x 7 f xs

language. DEFINITION 3. LetR be a programe an expression R, ands a
subexpression efrooted at some node. LetA : e = eg — e1 —
3. Formalization -+ be a derivation ok. Weflag the nodes o#; in derivation A

) ) _ ) with either of two flagsin or out, by induction on as follows. Base
Since an unrestricted operation to compute sets of values is ordercase:; = 0. By assumptiorg, = e. Noden and every other node
dependent, as the example &{coin) shows, we are interested  of ¢ reachable fromm is flaggedin. Every other node afis flagged
in more advanced concepts. For instance, one can only check forout Inductive casei > 0. By assumptiong;_1 —n,_, e, for
emptiness of sets of values [24, 28] or try to define a “computation some node:;_;. By the induction hypothesis, every node:of;
barrier” to strongly separate non-deterministic and deterministic s flagged. If a noden of e; is also a node o#;_1, then the flag
computations [12, 13] (see also the discussion in Section 6). We areof m in e; is the same as the flag of in e;_1, i.e., the flag of
interested in a more flexible approach that supports the separationevery node is preserved by a step. Any node créabgtthe step
of different regions of non-determinism without being dependent ¢, , —, . e isflagged with the flag of;_, the root of the redex
on an evaluation order. For this purpose, we propose to associateeplaced in the step. Finally, we say that a nedef an expression
to any operationf of a program a new operation, denoted by of A isinsides iff m is flaggedin. We extend this notion dhside
fs and called set function of, intended to compute the set of  to a redex, if the redex is rooted by an inside node, and to a step, if

values computed by. This concept is delicate because we wantto the step replaces an inside redex. We eajsideas a synonym of
capture the non-determinism fbut exclude any non-determinism  not inside.

originating from the argument(s) to whighis applied. Obviously,

the operationfs, which is deterministic, is interesting only when  The notions of the above definition provided for an expression can
[ is non-deterministic. We begin with a contrived example whose pe applied to a tuple of expressions, such as the arguments of an

merit is only its simplicity. Consider the following definitions,  operation, because the tuple itself is an expression.
where ‘coin’ was defined earlier: o )
We are now ready for the key definition of our approach. This def-

bigCoin = 2 7 4 2 inition references a set which could be infinite. This set is an ab-
2) straction used in the context of rewriting, but it is not produced by a
rewriting derivation. We will not implement or define a set function

f x = coin + x

The set of values off'bigCoin’ is {2,3,4,5}. By contrast, by rewrite rules. Programs in lazy functional and functional logic
‘fsbigCoin’ is a non-deterministic expression with two values, languages ordinarily compute with infinite structures, such as list,
{2,3} and{4, 5}. These values are obtained whetigCoin’ eval- trees, and sets, as long as only a finite number of elements of these
uates t and4, respectively. The non-determinism 6f bigCoin’ structure become explicit. The following definition only discusses
originates entirely frombigCoin’. In this case, it turns out that: whether a few elements belong to this potentially infinite set.

fs x = S(coin + ¢), wherec is a value of x

) ) ) 3These are the nodes introduced by the replacement [15, DefEagh
This example suggests a simple approach for computing the valuessuch node is isomorphically mapped [15, Defs. 10-12] to a rexiafle
of fs(t): for eachvaluec of ¢, S(f(c)) is a value offs(t). This node of the right-hand side of the applied rule. See alsogag, 391].



DEFINITION 4. LetR be a program angf an operation ofR. We
call a new operatiorys set function off if it satisfies the following
properties:

1LIffC A x---xA,xB,thenfs C Ay x---x A, x28 e,
the operationfs takes the same arguments Asnd returns a
set whose elements are values returned by

. For any arguments of f and valuev, f(£) = v iff there exists
a set of valued’ such thatl” is a value offs(¢) andv € V.

. For any arguments of f and valuesy andw of f(¢), v andw
belong to the same value ¢§(¢) iff there exist an expression
¢ derived from¢ such that any step of botfi(¢) — v and
f(&) = winsidec replaces a deterministic redex.

Display (2) is a very simple example showing all the components of
the above definition. An implementation, which can be regarded as
a constructive definition, of set functions is provided in Section 4.
It is immediate to see that set functions are deterministic.

COROLLARY 1. LetR be a program,f an operation ofR, and fs
a set function off. Thenfs is a deterministic operation.

Proof: For any list of valuew, there is only one set of values of
f(v), hence only one value ¢fs (7). |

To support infinite computations, Definition 4 is less direct than
we would like. For a list of arguments we are interested in

S(fs(f)) which is an element o2(”). Definition 4 would be
simpler and more direct if we could impose the condition that
S(fs(t)) is afinite set offinite sets. Although the execution of a
program evaluates only a finite portion®ffs(¢)), C(f(t)) could

be infinite and its traversal could generate an infinite set of infinite
sets. Every value of’(f(%)) is an element of some element of
S(fs(t)). When a valuey of C(f(#)) is visited during a traversal
the devicemust determine the element &% fs(¢)) to which v
belongs. This element is determined only in relation to other values
of C(f(%)). Definition 4 gives us a criterion to tell whether two
values of C(f(t)) belong to the same element &f fs(f)). This
criterion may not appear operationally adequate, but with further
work presented in Section 4 it will lead us to a provably correct
implementation.

The above definition suggests to compyig€t) in two phases: first
evaluatet to ¢, then compute the set of values ffc). The second

1. define the horizontal step ef_; and vertical step of;;

2. prove that eithe¢; = ¢; up to a renaming of nodes er — ¢
replaces a redex inside

3. prove that the diagram commutesat; .

Point (1): let: be an index in{1,...n}. The horizontal step from
e;—1 is defined by the assumption and the vertical step fepm

is defined either by the assumption (fo= 1) or by the induction
hypothesis (for > 1). We define the (horizontal) step froe)_,
as the residual of the horizontal step frem ; by the vertical step
from e;_;. Likewise, we define the vertical step froem as the
residual of the vertical step from_1 by the horizontal step from
€i—1.

Point (2): in graph rewriting, a node has exactly one residual (itself)
by a step, unless it is erased. ket be the root node of the redex
replaced in the stegy — ej. If the stepe;—1 — e; erasesio, then
e; = e, up to a renaming of nodes. Otherwise, the step- e
will replace the redex ato, which is insides by assumption.

Point (3): All the graph equalities in this paragraph are intended
up to a renaming of nodes. By point (2),df_; = e}_, then

the steps at;_; ande;_; are the same, consequently = ¢

and the diagram commutes; otherwisengtandn, be the roots

of the redexes of the horizontal and vertical steps;at, where

n, is inside s. If np, # n,, then, by Lemma 1, the diagram
commutes at;_1; otherwisen;, = n,. By assumption every step
of e = ey = e, = v is deterministic. Hence, the two steps are
applied to the same term and they replace the same redex with the
same replacement. Thus,= e;_; = e} up to arenaming of nodes
and the diagram trivially commutes in this case too.

Since the diagram commutes angd is a value,e,, is the same
value up to a renaming of nodes. Thus, the diagram constructs a
derivatione — ¢’ 5 v. O

The following result shows that “over-evaluating” the argument

of a set function during an evaluation of some expression does
not affect the result. Hence computing with set functions is order
independent.

THEOREM 1. Let R be a program,f an operation ofR, ¢ a list
of arguments off, andv a value off(%). Lete be an expression
derived fromi such that the computation ¢f¢) to v replaces only
redexes that are insideand deterministic. I’ is derived frone,

phase is relatively easy and, as we discussed, already available irthen there exists a derivatiofi() — v such that each replaced
most implementations. The first phase, however, is problematic. We redex is inside&’ and deterministic.

do not know how far to evaluateto find a suitable (in the sense of
Definition 4) ¢. Before resolving this problem, in Section 4, we
present the crucial result of this paper: computing a set of values
through a set function is order independent. We begin with a key
lemma.

LEMMA 2. Let'R be a programe an expression oR, s a subex-
pression ofe, v a value ofe and A : e ~ v a derivation such
that every redex replaced i is both insides and deterministic. If
e — ¢’ is a step inside, then there exists a derivatien— ¢’ = v
up to a renaming of nodes.

Proof: Consider the following reduction diagram, where the top
row and leftmost column of the diagram below represent the as-
sumptions of the claim:

e — € —> €1 e €n — U
l l ®)
¢ =y = b =

To complete the diagram, by induction grfori = 1,...n, we:

Proof: Consider the reduction diagram shown below.

Ji0) . f(@) = aoo — ao1 - Aon =— v
a;o ; (111: a;n (6)
f(EI) — amo — Am1 Amn — U

The first row represents two assumptions of the clais®: ¢, hence
f(®) = £(@) since rewriting is closed under context, afitf) —

v. Furthermore, every step insidef f(¢) = aoo — aon = v is
deterministic. The first columnf(¢) = aoo 5 Gmo = f@,

is obtained from the assumption théit is derived fromé and

the property that rewriting is closed under context. The derivation
a0 — aon and every step afoo — amo Satisfy the conditions of
Lemma 2. Hence, a simple induction over the indexes of the rows
proves the commutativity of the diagram. Singg, = v is a value



andaon, — Gmn, amn = v UP to @ renaming of nodes. Thus, the compute some portion of a set of values of some expression as

last row of the diagram proves thate') — v. Every redex inside ~ demanded by a context. Suppose that some context applies some

¢ of this derivation is a descendant of a deterministic redex, hence Operation tofs(t), e.g., to check whether the resulting setis empty,
it is deterministic as well. O or some element belongs to it, or to compute its size. We have

. . . discussed thahe deviceraverses the computation spacef¢f)
Our work discourages computing the set of values of an arbitrary 55 far as demanded by the context. When a value is visited, the

expression because in some cases the result is affected by theyniy potentially difficult task is to decide whether to place it in

order of evaluation. Therefore, it is interesting to ask whether itis 5 pew value offs(#) or in some value offs(f) already partially
still possible to cast the computation of the set of valuesrof computed.

expression in terms of some set function. The following simple

result offers a positive answer. EXAMPLE 1. Consider the following program, where the symbols

LEMMA 3. If R is a program and t’ is a nullary operation (a f andbigCoin are defined in (2):

possibly non-deterministic constant)®f thents = S(t). main = fs bigCoin
=1Is

Proof: Vacuously, from Definition 4, since' takes no argument.

Fig. 1 shows the computations spacemfin’. Symbols in the ex-

For example, to compute the set of valuestafigCoin’ it suffices pressions of the computation space are decorated with two types
to define: of information. The subscript of a symboldentifies the node la-
t = f bigCoin beled bys, e.g., the expressiomainy’ tells us that0 is a node

) o of this expression (the only one) and the label of node O is the
and to evaluates. We remark that there is a substantial difference  sympolmain. Nodes are identified by, 1,2, ... Operations sym-
between evaluatings, as we are proposing in this paper, and eval- 5|5 flagged bye label nodes insidebigCoin’, the argument
uatingS(f bigCoin). The result of the latter depends on the order of the set function that we are considering. We flag these sym-
of evaluation. If bigCoin’ is evaluated beforé, i.e., the traversal - pos 1o detect non-deterministic steps. To improve readability, we
of the computation space of bigCoin’ and the collection of the 0 not flag numbers even when they are insistgzCoin’, since
values in the leaves, the result is not intended. Obviously, this unin- nympers are never redexes and so they do not unde'rgo any step
tended evaluation cannot occur with since there is no argument  yhether or not non-deterministic. The leaves of the computation

to evaluate. space of main’ contain elements of the valuess bigCoin'.
. There are four such elements. The table to

4. Implementation the right associates these elements to thes | { Ri at?§ }

Given a functionf, it might be possible to defings within the non-deterministic steps insideigCoin’ |4 | { R, at?g }

language, i.e., with rewrite rules. However, we do not pursue this that were executed to produc;el them. It i 3 | {Riat?) }
approach because it is not appealing for a programmer. It would Simple to verify thatf s bigCoin’, hence -2
be burdensome to codgs and it could lead to errors because the main’,hastwovalues{2,3}and{4,5} |5.> | { R2at?] }

mutual dependence between an operation and its set function is im-PecauseV., = N, # Nr, = Ni;.

plicit. If f is modified during program maintenangg; must be  The computation space depicted in Fig. 1 shows the execution of
modified aCCOrdlngly. Therefore, itis preferab|e to tle¢ device two StepS at nodeal In our depiction of the Computation space,

compile or interpref's from f automatically since all the informa-  the redexes of the two steps have the same root, but in practice
tion necessary to compuf is already inf. a more sophisticated mechanism to identify the roots would be

Given a functionf and an argumerit we want to compute the val- ~ needed. Whether two steps are actually executed in the space of
ues offs (£). Any such value is a set of values ff). Foracorrect ~ Fig. 1 depends on the implementation. Implementations that tra-
placement of the values gf(7) into the values of's (), we should verse the computation space depth-first with backtracking, such as
evaluate to some according to Definition 4. Unfortunately, we do ~ [21, 25], indeed executes this step twice. These implementations
not know how much to evaluafe Thus, we take a different route. ~ are incomplete. A complete implementation may or may not execute
We evaluaté lazily, like any other expression of the program, and tWo steps. The conceptually simplest approach, which is shown in

we keep track of the non-deterministic steps ingidé/e will use Fig. 1, clones any expression that undergoes a non-deterministic
this information to ensure the intended meaning. step. In this case, two steps would be executed at distinct nodes

i that are clones of the same node. For the purpose of our discus-
Let us assume that(t) has some values, otherwise the only value sjon, these steps should be considered the same step. More sophis-
of fs(t) is @. We start with a few preliminary concepts and an tjcated implementations, such as [8, 14], do not execute the same
informal explanation. Given a séf andp andq subsets of(, we step twice, since no information would be gained by repeating a
say thap andq arecomparabléff one is contained in the other. We  step. These implementations, for the example we are discussing,
say thap andq areincomparablef they are not comparable. The  execute the step at nod4 only once and, therefore, they are not
comparability relation is an equivalence. In the computation space only more efficient, but also conceptually simpler and in line with

of f(t) we associate to every ledf, containing a value the set our discussion. The details of concrete implementations cannot be
N, of non-deterministic steps insideexecuted to derive. Let discussed in this paper.

N = {N., | L, isaleaf ofC(f(¢)) containing a value}, i.e.,
N contains the sets of non-deterministic steps insidrecuted to The following simple lemma is instrumental for the proof of Theo-
compute all the values of (t). Let [V] be the set of equivalence  rem 2.

classes ofV modulo the comparability relation. For eafh] €

) . ; LEMMA 4. LetR be a programe an expression oR, s a subex-
[N], we defineV},) = {v | visavalue off(f) andNi, € [n]}. pression ok, ande —, e, —; e; a 2-step derivation of where

Vis avalue offs(t) iff V = V), for somefn] & [N]. the rooto of the first step is outside and the root; of the second
A program, during its execution, will not comput¥] or the other step is insides. There exists a 2-step derivatien—; e, —, e,
concepts discussed in the previous paragraph. Typically, it will such thate; = e}, up to a renaming of nodes.
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Figure 1. Computation space ohain’. The notation identifies the node of each symbol and tells whether theisigt®de bigCoin’, the

argument of £s’.

Proof: The node® and: are distinct, since one is outsidehereas
the other is insides. Furthermore, the step atcannot erase the
redex ato, since, by Definition 3p is not reachable from and,

of A insidet. Base caseW (A) = 0. By the definition of W,
W (A) = 0implies that every step ol insidet precedes every step
of A outsidet. Sincef(t) is operation rooted4 executes at least

hence, it cannot be matched by variables that may be erased by thene step at the root, and this step is outgideet & > 1 be the index

step ati. By Lemma 1,R is deterministically confluent. Hence, by
Definition 1, the two steps commute. O

DEFINITION 5. Let R be a program,f an operation ofR, ¢ an
argument off, and L,, a leaf of C(f (%)) containing a value). We
call fingerprintof L, the set of non-deterministic steps insidia
the path ofC(f(t)) from the root toL,,.

of the first step ofd outsidet. The firstk — 1 steps ofA are inside.

HenceA has the formf(f)kl}f(é) = v, for somez derived from

t, andB = A witnesses the claim. Inductive ca3€i(A) > 0. By

the definition ofili7, W (A) > 0 implies that some step of inside

t follows some step ofd outsidet. Hence, there exists an index

k > 1 such that thé:-th step ofA is outsidef and thek + 1-th step

of A is insidet. By Lemma 4, swapping these steps produces a new

The next theorem states the correctness of an implementation thaijerivationA’ : f(f) = v such thati?’ (A’) = W (A) — 1. By the

uses fingerprints to compute set functions. Informally,fléte an
operationt an argument (tuple) of. Each value off () must be
an element of some set computed f3y(¢). When are two distinct
values off(t) elements of a same set computed fBy(z)? When

they have comparable fingerprints. The converse does not hold be
cause a value of (f) may occur in several leaves of the compu-
tation space off (¢) and two different leaves containing the same

value may have either comparable or incomparable fingerprints.

THEOREM2. Let R be a program,f an operation ofR, fs a set
function off, ¢ an argument of , and L, and L., leaves of”'(f(¢))
containing values and w, respectively. If the fingerprints df,
and L,, are comparable, then there exists a valdef fs(t) such
thatv,w € V.

Proof: Define a functionW : S — N, whereS is the set of
the finite derivations off (¢), as follows. If D is a derivation inS
executing exactlyn steps (numbered, 2, ...n), thenW (D) =
YL, wij, wherew;; = 1 if the i-th step ofD is outside
t and thej-th step ofD is insidet; otherwisew;; = 0. Informally,
W (D) counts the pairs of steffs, j) of D, with i < j, such that
steps is outsidet and stepj is insidet. Let N, and N, be
the fingerprints ofL,, and L., respectively. Since the fingerprints
are comparable, without loss of generality we assumeNhat C
Nr,. Since L, is a leaf of C(f(%)), there exists a derivation
A : f(f) = v. We prove by induction ofi’ (A) that there exists
an expressiom derived fromt such that there exists a derivation
B : f(t) = f(é) = v where no step of the portiofi(c) = v
of B is insidec. Informally, B brings to the front all the steps

induction hypothesis, the claim holds fdr, hence it holds ford
as well. In particular, starting from, by swappingV (A) adjacent
steps such that the first is insidend the second is outsideve
obtain the desired derivatioB. To complete the proof, we show

the existence of a derivatiofi : f(f) = f(¢) — w such that

every step of” in the portionf(¢) = w is deterministic. Consider
the following diagram:

f(i) = apo —> aop1 - aon =— w
alo — a;fr ain @
f(é) == amo ; Al Amn

The top row is the derivation i€ (f (%)) from the root to leaf
L., which is assumed by the claim. The leftmost column is the
portion of a derivationB, whose existence has just been proved,
which derivesf (¢) into f(¢). The remaining entries of the diagram
are defined by induction exactly as in diagram (5) point 1. To
prove that the diagram commutesay, for 0 < i < m and

0 < j < n, letn, andn, be the roots of the redexes in the
horizontal and vertical, respectively, steps:gt If n, andn, are
distinct, then the commutativity of these steps is a consequence of
the deterministic confluence of the programnlf = n,, then if
the redex is deterministic, the steps are the same and obviously they



commute; otherwise the redex is non-deterministic. Remember thatecutable code without variables so that variables are considered as
by constructiom,, is insidet, hence in the fingerprint oV, and syntactic sugar for generator functions.
that N, € Ni,. Hence, the steps are the same in this case too,

and they commute in all cases. Now we prove that every step inside  tsafe (_++[xl++y++[z]++)

¢ of the bottom row is deterministic. Fér= 0,1,...n — 1, the = abs (x-2) =:= length y + 1

StePam; — @m(it1) is the descendant byho — amo of ag; — The argument is matched against the concatenation of five lists
ag(i+1)- I the latter step is non-deterministic, it is in the fingerprint  (here we use the convenient notation of functional pattern [6]), two
of Ny, which is contained iV, , hence it is executed ity — of which contain a single element. Each such element stands for
amo because by construction this derivation executed all the stepsthe row of a queen. The list between these elements represents
in the fingerprint of N,. This implies thatam: = ami1+1) UP the portion of the placement between the two queens. Hence the

to a renaming of nodes. Thus, there are no non-deterministic stepgight-hand side succeeds iff the number of columns between the
insidec in the bottom row of the diagram. Finally, by construction two queens is the same as the number of rows between the two

aon = w. Sincew is a value, fori = 0,1,...m, a;n, = w up to queens

a renaming of nodes. Thus, by concatenating t*he Ieftm0+st columnnow, a placemenp is a solution of the puzzle iffunsate p’

and the bottom row, we have a derivatigtt) — f(¢) — w fails, i.e., there is no pair of queens pfcapturing each other.
such that every redex insidereplaced in the portiorf(¢) — w Using the concepts of the previous sections, this is equivalent to
is deterministic. By Definition 4, this proves thatndw belong to ‘unsafes p’ = &. Thus, our program is:

someV = fs(t). O

A reader concerned with an actual implementation may wonder queens n | isEmpty (unsafes p) = p (8)

how a fingerprint could be represented. Conceptually, a fingerprint where p = permute [1..n]

is a set of non-deterministic steps. Because our programsCife ) ) ) )
systems, a step is non-deterministic iff it is applied to a node labeled All current implementations of the functional logic language Curry

by thechoiceoperation. Thus, a fingerprint is a set of a pdirsr), [20], e.g., [14, 21, 25], cannot execute the above code because
wheren is a node identifier andis either one of the two rules of* they lack set functions. A published implementation of this prob-
displayed in (1). In some implementations, a node is conveniently em with the same algorithm [9] replacessafes with unsafe.
identified by the memory location of its representation. This could (likely would) produce an unintended result depending

on the order of evaluation. The reason is that the execution of the
program invokesinsafe with a non-deterministic argument, but

: the programmer intention is to exclude the non-determinism of this
5. Programming argument from the evaluation ahsafe. The program in [9] pro-

We apply the approach presented in the previous sections to aduces the correct result because it forces the complete evaluation of
problem. The problem is solving the-queens puzzle: place p before computingS (unsafe p) to separate the non-determinism
queens on am x n board so that no queen captures any other of p from that ofunsafe. This programming technique is quite un-
queen according to the rules of chess. This is a classic example ofdesirable in a declarative language since it requires the programmer
problem solving bybacktrackingin an imperative language [30].  to think about the order of evaluation.

Of course, no backtracking is coded in a functional logic language. aq g final example, consider the definitionitfinerary given in

A typical implementation of this problem represents a placement Section 1. Using set functions, we can provide the following exe-
of queens on the board as a permutatiorl &, . .. n, where the cutable definition of an itinerary with shortest air time: an itinerary,
i-th element of the permutation is the row of the queen placed in ‘it’, is the shortest one if there is no itinerary shorter thati:*
columni. Representing a placement as a permutation pays off to
determine whether a placement is safe since it makes it impossible
to place two queens in the same row and/or the same column. Thus,
to determine whether two queens capture each other it suffices to
determine whether they are on a same diagonal. This condition
occurs only if the distance between two queens’ rows is the same
as the distance between the two queens’ columns. This condition
must be tested for any set of two queens on the board.

shortestItin s e
| isEmpty (shorterItinThans (duration it))
= it
where it = itinerary s e
shorterItinThan itduration
| duration its < itduration
= its
where its = itinerary s e
The program gdopts a generate_-and-test algorithm. The Programhere duration’ is a trivial function that computes the total time
generates (lazily) every permutationiof2, .. . n and tests whether in the air of an itinerary.
it represents a safe placement of the queens. Coding the genera-
tion of every set of two queens and the control to test whether they Note that the distinction between the different sets of values (e.g.,
capture each other is laborious. Since functional logic languagesto compute all values oft and all values ofits) is essential to
have built-in searching capability, we code an operation that takes compute the intended results. The above code directly reflects the
a placement as its argument and searches two queens in the placdormal definition of a shortest itinerary, but it is highly inefficient
ment that captures each other. If two such queens are found, thefrom an operational point of view since for each itinerary we
placement is discarded since itrist a solution of the problem. have to compute other itineraries to check the “shortest” property.
Another alternative is to compute all the itineraries and select the
shortest by comparing pairwise the durations of itineraries. In the
following code, minSet’ computes the minimal element of a set
w.r.t. a total ordering provided as the first argument:

In the following codeabs returns the absolute value of an inte-
ger, length the length of a list, [1..n]" the list 1,2,...n, and
permute a permutation of its argument. The program is executed
by narrowing, which was not considered in our treatment, but con-
ceptually narrowing can be replaced by rewriting if generator func-  shortestItin s e

tions [7] are used instead of variables. Some compiler/interpreters, = minSet shorter (itinerarys s e)
e.g., Kics[14], indeed translate source code with variables into ex- where



shorter itl it2
= duration itl <= duration it2

6. Redated work

A satisfactory approach to computing with sets of values in a
demand-driven non-deterministic functional logic language such

as Curry [20] has been elusive. This situation prompted, over a
decade, several proposals that we briefly review in this section.

Let S(e) be the set of values of some expressiorA difficulty
of computations involvingS (e) originates from subexpressions of
e that are needed both h§(e) and independently of(e). An

returns true, if this set is empty, or false, otherwise. The semantics
is defined by an extension of the rewriting calculus CRWL [17] and
implementations are given by computing the set of all values of an
expression. Similarly, our approach enables such an implementa-
tion of constructive negation, as shown by various examples above.
In contrast to the works on constructive failure, we also support
the further processing of the collected sets (as shown in the final
example of Section 5) in order to extract information from them.

7. Conclusion

We presented an approach to computing the set of values of an
expression. The key contribution of our approach is the form of

expression of this kind is said to be shared inside and outside
the set. In (8), the expressiop’‘is shared in this sense because
it is returned by the operatiomuteens’ (outside S(p)) and it

is needed (insideS(p)) as the argument ofuhsafes’. Every
approach proposed to date—except ours—computes all the value
of an expression inside the set, but only one value outside the set.

this expression, a set function—a novel concept introduced by this
work—applied to some argument(s). The form of this expression
allows the separation of the non-determinism of a function from
that of its argument(s). This separation ensures the order indepen-
Hence of our approach which we proved within the framework of
graph rewriting.

One of the first approaches [19] was intended to control the traver-
sal of the computation space of an expression. This approach is
based on a primitive operator, calletlry’, that evaluates an ex-
pression until a non-deterministic step is executed. Thg' al-

lows to easily program different search strategies [29]. This ap-
proach is based on term rewriting and, t_hus,_ dc_)es not easily ac'only with some tricks.

commodate sharing in general and sharing inside and outside a

set of values in particular. Lux [26] presents a sophisticated im- The independence of the order of evaluation is an essential property
plementation of thetry’ operator and discusses the problem of of declarative languages. Consequently, our approach positively
evaluating subexpressions shared inside and outside the set of valsolves a long-standing problem. For this reason, we believe that
ues. He proposes a “weak encapsulation” view where sharing in- our approach will eventually replace all the previously proposed
side and outside of sets of values is preserved. As a consequencegpproaches found in current implementations of functional logic
non-deterministic steps on subexpressions shared inside and outlanguages.

side a set are never performed inside the set. Similarly to our ap-

proach, this leads to the intended behavior in the queens exampleRefer ences

(8). In contrast to our approach, the set of subexpressionsambver
by the ‘try’ operator depends on the concrete syntactic structure
of expressions so that apparently equal expressions yield different
results (see [12] for details). No formal properties are stated for his
approach.

We defined an abstract implementation of our approach based on
fingerprints—a novel concept introduced by this work—and we

proved the correctness of this implementation. We showed, through
a textbook example, that our approach easily and naturally solves
problems that previous approaches could not solve or could solve
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