
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
CScopes Describe Frames: A Uniform Model for
Memory Layout in Dynamic Semantics
Casper Bach Poulsen1, Pierre Néron2, Andrew Tolmach3, and
Eelco Visser4

1 Delft University of Technology
c.b.poulsen@tudelft.nl

2 French Network and Information Security Agency (ANSSI)
pierre.neron@ssi.gouv.fr

3 Portland State University
tolmach@pdx.edu

4 Delft University of Technology
visser@acm.org

Abstract
Semantic specifications do not make a systematic connection between the names and scopes in the
static structure of a program and memory layout, and access during its execution. In this paper,
we introduce a systematic approach to the alignment of names in static semantics and memory
in dynamic semantics, building on the scope graph framework for name resolution. We develop
a uniform memory model consisting of frames that instantiate the scopes in the scope graph
of a program. This provides a language-independent correspondence between static scopes and
run-time memory layout, and between static resolution paths and run-time memory access paths.
The approach scales to a range of binding features, supports straightforward type soundness
proofs, and provides the basis for a language-independent specification of sound reachability-
based garbage collection.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Dynamic semantics, scope graphs, memory layout, type soundness, op-
erational semantics

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Name binding and memory management are pervasive concerns in programming language
design. There is clearly a connection between the names and scopes in the static structure of
a program and patterns of memory allocation, access, and deallocation during its execution.
However, existing semantic specifications of programming languages do not treat this con-
nection systematically, and take a wide variety of approaches to handling name binding and
memory management. For example, different type soundness proofs for Java-like languages
might model types and memory using simple states that map identifiers and references to
values [3], untyped frames that rely on traditional environments for typing [24], or ad-hoc
lookup functions (or visibility predicates) designed to resolve particular kinds of identifiers
such as classes or fields [6, 9]. Existing dynamic semantic specification frameworks (Redex [8],
Ott [21], K [20], funcons [2]) provide little guidance in formalizing the connection between
static names and dynamic memory.

In the language designer’s workbench project [27], we are pursuing high-level declarative
language specifications that are amenable to both verification and implementation using

© Casper Bach Poulsen, Pierre Néron, Andrew Tolmach, Eelco Visser;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Scopes Describe Frames

language-independent techniques. A particular goal is to separate the specifications into
distinct aspects so far as possible, such as syntax, binding, typing, run-time behavior, etc.
In this context we have developed scope graphs [14, 25] to provide a language-independent
framework for static name binding and name resolution. The framework holds promise for
dealing with name binding in a uniform way that scales to many binding-aware tools, such
as editor services, refactoring transformations, type checkers, interpreters, and compilers.

In this paper, we address the run-time aspect of specification, and develop the relationship
between static scope graphs and the dynamic semantics of name binding and run-time memory.
Specifically, we formalize a language-independent correspondence between static scopes and
heap-allocated frames. The approach is designed to support both verification of meta-theoretic
properties and generation of realistic interpreters using fairly low-level memory operations.
Our framework is language-independent in the sense of providing a generic set of facilities for
describing and implementing binding and memory operations for a wide range of languages.
We make the following contributions:

We introduce the scopes-as-frames paradigm as a language-independent approach to
dealing with name binding for both static and dynamic programming language semantics,
by organizing frames in a run-time heap in correspondence to the organization of scopes
in a scope graph, and relating static resolution paths to run-time memory access paths.
We show how frame operations can be used in formulating big-step dynamic semantics,
which resemble realistic interpreters. (The generation of high-performance frame-based
interpreters from specifications in the DynSem operational semantics DSL [26] is work in
progress.)
We show how phrasing the consistency between frames and scopes as an invariant gives a
language-independent principle that helps structure type soundness proofs by providing
generic lemmas about preservation of the invariant under various memory operations.
We demonstrate that scopes-as-frames is independent of particular language features by
applying it to a functional language (Section 3), an imperative language with records
(Section 4), and a class-based language with subtyping (Section 4.4). The same approach
(scopes describing frames) is applied systematically to describe call frames, records, and
objects instantiating a class.
We give a high-level, language-independent specification of sound garbage collection of
frames, and verify that several standard GC strategies refine this specification.
We provide a Coq development1 containing mechanized type soundness proofs for (su-
persets of) all languages in the paper. The type soundness proofs rely on a language-
independent library formalizing scope graphs and frame heaps.

In the next section we introduce the approach by means of an example. In Section 3 we
use the approach to specify and prove type soundness for a small language with first-class
functions. In Section 4 we extend the formalization to a language with records. In Section 5
we discuss the formalization of garbage collection. In Section 6 we discuss related work.
Section 7 summarizes this work and outlines ideas for future work.

2 Static Scopes Describe Dynamic Frames

Our approach builds on the theory of name resolution of Néron et al. [14, 25], which provides
the foundation for a language-independent representation of static name binding in programs

1 https://github.com/metaborg/scopes-describe-frames/

https://github.com/metaborg/scopes-describe-frames/

C. Bach Poulsen et al. XX:3

this paper

Constraints
AST

Resolved
Scope Graph

extract solve

Annotated
AST

+
eval

Heap

Frame

Frame
Frame

Frame

Figure 1 Architecture of the approach: static analysis of a program abstract syntax tree via
constraints leads to a representation with explicit name and type information, which is the input for
evaluation.

based on scope graphs. This section recalls the basics of scope graphs, and introduces a new
paradigm for name binding at run time based on scope graphs.

2.1 Architecture
We first discuss how this work ties in with previous work on scope graphs. Figure 1 shows
the overall architecture of the approach. We assume a program is represented by an abstract
syntax tree (AST) produced by a parser. First, a set of name and type constraints is extracted
from the AST. Second, a (language-independent) name and type resolution algorithm resolves
the constraints and produces an annotated abstract syntax tree and a resolved scope graph [25].
Third, an interpreter evaluates this data structure using a run-time heap consisting of frames
to represent the memory of the program.

This paper focuses on the third stage in Figure 1. Our starting point is a well-bound and
well-typed program, represented as an annotated AST (where each AST node is annotated
with scope- and type annotations) and a resolved scope graph (e.g., a scope graph produced
by name and type resolution as described in [25]). Section 3 defines these notions formally.
Before diving into the formal details, we illustrate the concepts of scope graphs and frame
heaps by example.

2.2 Scope Graphs
Scope graphs [14, 25] provide a language-independent framework for describing static name
binding and performing name resolution, which can support a wide variety of binding
constructs. We recall the basic concepts of scope graphs here, starting with a simple but
illustrative example.

Figure 2 presents a program that implements the factorial function and computes fac(2).
The figure also presents the scope graph of the program. The nodes of the scope graph repre-
sent three basic notions derived from the program abstract syntax tree: scopes, declarations,
and references:

A scope is an abstraction of a set of AST nodes that behave uniformly with respect to
name binding.
A declaration is an occurrence of an identifier that introduces a name.
A reference is an occurrence of an identifier referring to a declaration.

A declaration is only visible in the scope in which it is declared and in other scopes connected
to the declaration scope by a sequence of inter-scope edges. These edges represent visibility
idioms such as nesting in lexical scoping and imports in module systems. A key idea is that
scope graphs provide a means of resolving which declaration each reference in the AST refers

XX:4 Scopes Describe Frames

letrec fac =
 fun (n : Int) : Int {
 if (n == 0) {
 1
 } else {
 n * fac(n - 1)
 }
 }
in
 fac(2)

s1

s2

0

1

2

43

5

scope

declaration

reference

labeled
edge

l

s1

s2

P

n

fac

fac

nn

fac

n

scope

slot val

link

frame

ref

l

s2

n 2

P

s1

fac Cls

s2

n 1

s2

n 0

P P

facfacn nnn nn
n

1 3

0

4

fac

Figure 2 The left box contains an example program defining the factorial function. The boxes
surrounding code blocks represent scopes. The call-outs refer to points in the execution of the
program. The middle box shows the scope graph for this program; the graphical notation is explained
in the legend. Distinct occurrences of similarly named references are stacked for conciseness (e.g.,
scope s2 contains three distinct n references). The right box shows the evolution of the heap as the
program executes: there is one top-level frame and three call-frames for the fac function.

to, by finding a resolution path from a reference to a declaration. Thus, a reference represents
the use of a name in a scope and is resolved via a path along the edges of the scope graph.

In the example in Figure 2, n is both declared in and referenced from scope s2, which is
associated with the function body; the blue resolution paths involve only this scope. Lexical
nesting of s2 within the outer scope s1 is modeled by an edge labeled P (for lexical parent);
the reference fac in scope s2 resolves to declaration fac in scope s1 via the pink path.

If a given identifier is declared in more than one place, there may be multiple possible
resolution paths for references to that identifier. In such cases, we choose the preferred path
using a language-dependent specificity ordering and path well-formedness predicate. The
resolution calculus introduced in [14] and refined in [25] defines the semantics of resolution
and describes algorithms for finding most-specific resolution paths. In this paper, we assume
that we already have a resolved scope graph in which each reference has a unique path to a
corresponding declaration within the graph.

Records and field access. A key benefit of scope graphs is that they can describe many
different language binding constructs in a uniform way. As a small illustration of this, we
consider a language with records and named fields. Figure 3 shows an example program that
defines a record type A with a single field n. The program declares two local variables, x and
y. Each of these variables is first assigned new record instances of A; subsequently, the fields
of the records stored in the variables are initialized.

The scope graph of the program in Figure 3 contains five scopes. The program scope
s1 contains the record type declaration A, where A has an associated scope s2, which is the
record scope containing the record field declaration. Scope s3 declares the local variables x
and y. The two scopes s4 and s5 are import scopes containing the field references x and y,
respectively. These scopes do not contain any declarations, but instead provide access to the
fields of records via I-labeled edges. (Building these edges requires resolving the types of x

C. Bach Poulsen et al. XX:5

program
 record A {
 n : Int
 }
begin
 var x : A;
 var y : A;
 x = new A;
 y = new A;
 x.n = 1;
 y.n = 2;
end

s1

s2

s3

0

1

2

3

4 5

6 7

s1 s2A

s3

P
s4 s5

n n

n

x

y
x

yy

AAA I I

A

x

s2

n 1

s4 n

s1

A

s3

y Rec
s2

n 2

s5

I

n

P

xx

0

1
I

3

4

7

5

6

Recx 2

xy

Figure 3 An example program using records (left) with its scope graph (center) and a picture of
the evolution of the heap during execution (right).

and y; again, in this paper we assume that this resolution has already occurred, e.g. using
the methods of [25].) Resolution of field names uses the same paradigm as for variables. For
example, the reference to n in s4 is resolved to the declaration in s2 via the pink path.

2.3 Dynamic Frames and Heaps
We have illustrated how scope graphs provide a uniform and language-independent model
for static name binding. In this paper, we propose a uniform and language-independent
model for the layout of memory and the binding of values to names at run time. In this
model, the static scope graph provides a blueprint for the layout of memory. The model is
based on the notions of frames, slots, and heaps. Frames and heaps provide building blocks
for structuring memory that are inspired by how realistic implementations of programming
languages organize memory using, e.g., stack frames (for function calls), and heap blocks (for
structured memory objects).

The memory of a program at run time is a heap consisting of frames.
A frame is a unit of memory consisting of slots mapping names to values, and links to
other frames.
A frame is described by a scope in the sense that each slot corresponds to a scope
declaration and each link corresponds to an outgoing scope edge.
Frames may be allocated when control passes to a program point in a new lexical scope
(e.g. on function entry) or when executing an explicit memory allocation command (e.g.
new). Frames can be garbage-collected when no longer referenced.
The path for a reference in the static scope graph can be applied directly to fetch the
referenced value at run time by interpreting it relative to the “current” frame.

The connection between scopes and frames enables us to define invariants that formally
guarantee the absence of run-time errors, as Sections 3 to 5 of this paper demonstrate. In the
rest of this section we illustrate how scopes-as-frames support a wide range of name binding
phenomena, including functions, let bindings, blocks with local variables, and records; all in
a systematic way that follows the same pattern.

Frames and heaps for lexical scoping. Returning to the factorial function example from
earlier, the rightmost illustration in Figure 2 shows the evolution of the heap as the example

XX:6 Scopes Describe Frames

program executes. In this example, all the frames contain lexically-scoped variables, and
correspond to stack frames in conventional language implementations. We examine the
execution steps of the program to illustrate how frames and heaps are used to structure
memory during run time, and how these correspond to the static scope graph.

The program frame for scope s1 is created at point (0); and the function closure is
assigned to the fac slot. This is the initial current frame.
The execution of the body of the letrec proceeds to initialize a new frame at point (1),
which has the same structure as the scope (s2) that it instantiates: it is linked to a lexical
parent frame that instantiates s1; and it has a single slot for n, the sole declaration of
scope s2, which is initialized to contain 2.
At point (2), the newly created frame becomes the current frame. Then the statically
computed resolution path for the n reference (colored blue in Figure 2) can be applied,
starting at the current frame, to fetch the value n = 2, whence a recursive call to fac is
made in the else branch of the example program. Again, fac is dereferenced using the
statically computed resolution path (highlighted in pink in Figure 2).
The recursive call at point (3) creates another frame, and results in another recursive call
and frame at point (4). At this point, n evaluates to 0, and the recursive calls return at
point (5).

At each step of execution, references are dereferenced relative to the current frame. The
run-time memory access path for each reference is the same as its static resolution path.

Records and field access. Just as scopes provide a static model for many kinds of binding,
frames support a wide range of patterns for binding at run time (not just stack-like binding).
In particular, frames can be used to model structured memory objects, such as the records in
our second example. These frames are allocated by an explicit new operator in the language.

The rightmost illustration in Figure 3 shows the evolution of the heap during program
evaluation. Step-by-step:

The program frame is created at point (0). This frame has a single slot for A, matching
the declaration in scope s1.
At point (1), the frame for the local variables x and y is created.
Points (2) and (3) populate the slots for x and y with record values which point to freshly
allocated record frames (indicated by the dotted lines at points (2) and (3) in Figure 3).
These record frames instantiate the scope (s2) associated to the declaration of record
type A.
Next, the field slots of the record frames are filled in. The slot names are declared in
record scope s2, but references to them are placed in intermediate scopes s4 and s5,
which import s2. To maintain a consistent relationship between static and run-time
paths, we create an intermediate frame corresponding to s4 at point (4). Then at point
(5) we use the static path for n to locate the relevant slot in the record frame for x and
set the value of n to 1. Points (6) and (7) proceed similarly to (4) and (5).

Once more, the static and run-time resolution paths coincide, as illustrated by the colored
paths in the scope graph and heap frame in Figure 3. Note that maintaining this corre-
spondence leads to some infelicities in the dynamic frame layout. The slot created for A in
the program frame is actually unused and could have been omitted; declarations of purely
static things, like the type name A, do not need a run-time correlative. Similarly, the frames
corresponding to the declaration-free scopes s4 and s5 are empty, and having to traverse

C. Bach Poulsen et al. XX:7

them to reach the record frame is inefficient. We could avoid both of these problems in a real
system by using a more nuanced definition of correspondence between static and run-time
paths; in this paper, we have elected to keep the scopes-as-frames correspondence as simple
as possible.

sa

d v1

sb

e v2

sa

sb

d

e

Figure 4 Frames instantiate scopes.

Invariants. We have sketched how the layout of
memory in frames follows the scope graph, and
how this applies uniformly to a range of binding
patterns. We can phrase the systematic correspon-
dence between static scopes and dynamic frames
as an invariant. Doing so gives a basis for stati-
cally checking and ruling out run-time errors. In a
nutshell, the scopes and frames considered in this
section all satisfy invariants that can be summa-
rized as:

Binding invariant: (a) the slots of a frame are in one-to-one correspondence with the
declarations in the frame’s scope; (b) the links of a frame are in one-to-one correspondence
with the labeled edges of the frame’s scope, and the scope of each link target matches the
corresponding edge target. Figure 4 illustrates the resulting commuting diagram.
Typing invariant: assuming declarations and values are typed, each slot value has the
same type as its corresponding declaration.

These invariants extend to heaps by requiring that all frames in a heap satisfy the invariant.
A consequence of these invariants is that each static resolution path can be used to perform
corresponding run-time lookups, and (again assuming everything is typed) the values obtained
from such lookups will be correctly typed.

In the next sections we formalize the framework and invariants outlined above. Concretely,
we show how to define the static and dynamic semantics of a number of model languages
with typical programming language binding patterns, and demonstrate and discuss how the
scopes-as-frames invariant provides a basis for straightforward type soundness proofs and
sound garbage collection.

3 Dynamic Frames for a Simple Functional Language

In this section we formalize our approach using L1, a language with arithmetic expressions
and first-class, simply-typed functions, as a running example (Figure 8). We first present the
language-independent framework of scope graphs to represent the (resolved) name binding
and type facts of programs, and we formalize well-bound and well-typed L1 programs in
terms of scope graphs. Then we introduce a language-independent framework of frames and
heaps for modeling memory layout, and formalize the dynamic semantics of L1 in terms of it.
Finally, we will see how phrasing the consistency between frames and scopes as an invariant
gives a language-independent principle for proving type soundness, which we apply to prove
the type soundness of L1.

3.1 Scope Graphs
We use scope graphs [14] extended with types [25] to provide a uniform (language-independent)
treatment of name binding and type assignment in the definition of the static semantics of

XX:8 Scopes Describe Frames

Scope graph
ScopeId 3 s

Vertex 3 v ::= s | xD
i | xR

i

Edge 3 e ::= s l s | s xD
i

| xR
i s | xD

i s

Label 3 l ::= P | I
TypeAnn 3 ta ::= xD

i : t

G ∈ ScopeGraph , ℘(Vertex)× ℘(Edge)×
℘(TypeAnn)

Projection functions
K(s) = {l 7→ {s′ | s l s′}}
D(s) = {xD

i | s xD
i }

R(s) = {xR
i | xR

i s}

Figure 5 Scope graphs

Resolution paths
Path 3 p ::= D(xD

i) | E(l, s) · p

Path consistency
`G s xD

i

`G D(xD
i) : s s7−→ (s, xD

i)
[ResD]

`G s l s′ `G p : s′ s7−→ (s′′, xD
i)

`G E(l, s′) · p : s s7−→ (s′′, xD
i)

[ResE]

`G xR
i s `G p : s s7−→ (s′, xD

j)

`G p : xR
i

r7−→ (s′, xD
j)

[ResR]

Figure 6 Resolution paths

programming languages. We introduced scope graphs by example, including their graphical
notation, in the previous section. Here we formalize scope graphs and resolution.

Vertices and edges. Figure 5 formally defines what we mean by a scope graph, consisting
of vertices and edges. A scope graph vertex is either a scope (s), a declaration (xD

i), or a
reference (xR

i). We assume that each scope identifier, declaration, and reference is unique in
the graph. For a declaration xD

i there is exactly one scope s which contains the declaration,
represented as an edge s xD

i in the scope graph; similarly, for a reference xR
i there is

exactly one scope s which contains the reference, represented as an edge xR
i s.

In addition to edges relating scope identifiers to references or declarations, there are
labeled edges connecting two scopes. A labeled edge s P s′ means that s has s′ as its lexical
parent, and an edge s I s′ means that s imports s′. For language L1, we only need lexical
scoping, but in Section 4 we consider a language with records which relies on imports.

The bottom of Figure 5 defines some useful projection functions for a given scope graph:
K(s) is a map from labels l to the set of scopes to which s is connected via label l; D(s) is
the set of all declarations contained in a scope; and R(s) is the set of all references contained
in a scope.

The last kind of edge defined in Figure 5 is an associated scope edge: xD
i s connects

the declaration xD
i of a named collection of names (e.g., a module or a record) to the scope

s which declares the constituent names (e.g., the body of a module or a record). Again,
language L1 does not rely on associated scopes, but the language in Section 4 does.

Finally, in a typed scope graph, declarations are annotated with a type (xD
i : t).

Resolution paths. Figure 6 defines resolution paths. We use the `G turnstile for predicates
and relations that query an underlying scope graph G. A path p is interpreted relative to
an initial scope, and is given by a sequence of resolution steps. The resolution step D(xD

i)
checks that the declaration xD

i is available in the initial scope, while E(l, s) checks that
resolution continues by following the edge labeled by l from the initial scope to scope s.
The path consistency relation `G p : s s7−→ (s′, xD

i) checks that a path p is consistent with
the underlying scope graph, i.e. that there is an actual path in the graph from scope s to
declaration xD

i in scope s′. The relation `G p : xR
i

r7−→ (s′, xD
j) checks that there is a path p

from the initial scope that contains xR
i to a scope s′ containing xD

j .

C. Bach Poulsen et al. XX:9

fun (xD
1 : Int) {

(fun (xD
2 : Int) {

fun (yD
3 : Int) {xR

4 + yR
5}

})(xR
6 + 3)

}

s1

s2

x1

x2

s3 y3

x4

x6

y5

P

P

Figure 7 Example program with nested functions and its scope graph

In this paper, we assume that scope graphs have been resolved, following the resolution
calculus of [14, 25], so that each reference is associated with a unique and consistent path to
a declaration. In other words, a resolved scope graph includes a mapping from each reference
xR

i to a path p which corresponds to an actual resolution, i.e. there exist s′ and xD
j such

that `G p : xR
i

r7−→ (s′, xD
j). When there are multiple possible resolution paths for a reference,

the resolution calculus uses language-specific well-formedness and specificity ordering rules
to choose which path to prefer. Since we are assuming resolution has already occurred, we
ignore the details of these rules in this paper.

An example scope graph. Figure 7 defines the scope graph for an L1 expression which nests
three functions (where we have replaced identifiers with unique references and declarations).
Here, the P edges connect the inner scope of each function to its enclosing (lexical)
scope. For example, the reference xR

6 has a trivial path in the scope graph. We write
p6 = D(xD

1) : xR
6 7−→ xD

1 for this resolution path, which says that the declaration xD
1 is

found in the same scope as the reference xR
6. Similarly, the resolution path for yR

5 is
p5 = D(yD

3) : yR
5 7−→ yD

3. In contrast, there are two possible paths from reference xR
4 to

matching declarations: p4 = E(P, s2) ·D(xD
2) and p′4 = E(P, s2) · E(P, s1) ·D(xD

2). In this
case, the shorter path p4 would be preferred over the longer path p′4 according to L1’s path
specificity ordering rules, which encode lexical scoping (shadowing). Thus, the complete
resolution mapping for this graph is {xR

6 7→ p6, y
R
5 7→ p5,x

R
4 7→ p4}.

3.2 Well-Bound and Well-Typed Terms
Scope graphs provide a language-independent data structure for representing name binding
and typing facts about the declarations and references in a program. To reason about the
relation of this model to the program that it represents, we define a well-boundness and a
well-typedness predicate on abstract syntax trees annotated with scope and type information.
Figure 9 defines annotated terms for L1, ranged over by a, where expressions are annotated
by their scope s and their type t. Identifiers have been replaced with unique references and
declarations. We define well-boundness and well-typedness as separate predicates that check
the consistency of (the annotations of) a term with respect to its scope graph. In definitions
of these predicates, we omit the annotation that is not relevant for the property checked by
the rule; that is, we leave out the type annotation in the well-boundness rules, and the scope
annotation in the well-typedness rules. All rules are implicitly parameterized by a common
underlying scope graph G; all occurrences of `G query this G.

The well-boundness rules in Figure 10 check that a term is well-bound relative to a
resolved scope graph G. That is, the scope graph is consistent with the scoping patterns
of the term, and each reference is bound, i.e., resolves to a declaration with a path that
is consistent with the scope graph. Rules [WbArithOp, WbApp] check that the child terms

XX:10 Scopes Describe Frames

t ::= Int | t → t

e ::= z | x | e ⊕ e | fun(x : t){ e } | e(e)
z ∈ Z

Figure 8 Syntax of L1

t ::= Int | t → t

e ::= z | xR
i | a ⊕ a | fun(xD

i : t){ a } | a(a)
a ::= es,t

Figure 9 Annotated syntax of L1

Well-boundness b a
b
zs [WbInt]
`G xR

i s

b (xR
i)

s
[WbRef]

b
es

1
b
es

2
b (es

1 ⊕ es
2)s

[WbArithOp]

b
es1 `G s1

P s2
`G D(s1) = {xD

i }
b (fun (xD

i : t){ es1})s2
[WbFun]

b
es

1
b
es

2
b (es

1(es
2))s

[WbApp]

Figure 10 Well-boundness of L1 terms

Well-typedness t a
t
zInt [WtInt]

`G p : xR
i

r7−→ (s′, xD
j) `G xD

j : t
t (xR

i)
t

[WtRef]

t
eInt1

t
eInt2

t (
eInt1 ⊕ eInt2

)Int [WtArithOp]

`G xD
i : t1

t
et2

t (fun(xD
i : t1){ e

t2 })t1→t2
[WtFun]

t
et1→t2

1
t
et1

2
t (
et1→t2

1 (et1
2)

)t2
[WtApp]

Figure 11 Well-typedness of L1 terms

of arithmetic operator applications and function applications reside in the same scope as
the parent term. Rule [WbRef] checks that the reference xR

i is declared in the scope s of its
annotation (`G xR

i s). Rule [WbFun] checks that the scope s1 of the body of a function is
a lexical child of the scope s2 of the function expression, and that the set of declarations
of the function scope is exactly the singleton set containing the formal parameter of the
function.

The well-typedness predicate on annotated terms checks that (1) expressions are consis-
tently typed according to the rules of the language, and (2) that each reference is typed
consistently with its declaration. Figure 11 specifies well-typedness rules for L1. The
Rules [WtInt, WtArithOp, WtFun, WtApp] check that the type of an expression is consistent
with the types of its direct sub-expressions. Note the absence of environment threading in
the well-typedness rules; scope management is taken care of by the well-boundness rules.

3.3 Frames and Heaps
We now develop the formalization of the language-independent system of heaps and frames
to represent memory at run-time. Figure 12 defines frames, heaps, and some operations on
them that we will use in the dynamic semantics of L1. The framework is parameterized with
a domain Val of values.

A heap h is a finite map from frame identifiers (pointers) to frames. A frame consists
of a scope identifier, a collection of dynamic links, and a collection of slots. The scope
identifier refers to the scope that the frame instantiates. The dynamic links are defined as a
two-dimensional mapping from labels and scopes to frame identifiers. These links are the
dynamic counterparts of labeled edges in the scope graph and implement the link from a

C. Bach Poulsen et al. XX:11

Frames and heaps
f ∈ FrameId = {f1, f2, . . .}

ks ∈ DynLinks = Label fin−→ ScopeId fin−→ FrameId
σ ∈ Slots = Decl fin−→ Val

〈s, ks, σ〉 ∈ Frame = ScopeId ×DynLinks × Slots
h ∈ Heap = FrameId fin−→ Frame

Projection functions
Sh(f) = s where h(f) = 〈s, ks, σ〉
Kh(f) = ks where h(f) = 〈s, ks, σ〉
Dh(f) = σ where h(f) = 〈s, ks, σ〉

Operations on frames initFrame(s, ks, σ)/h⇒ f ′/h′

f ′ 6∈ Dom(h)

initFrame(s, ks, σ)/h⇒ f ′/h[f ′ 7→ 〈s, ks, σ〉]
[InitFrame]

Dynamic address lookup lookup(f, h, p)⇒ Addr(f ′, xD
i)

xD
i ∈ Dom(Dh(f))

lookup(f, h,D(xD
i))⇒ Addr(f, xD

i)
[DLookupD]

Kh(f)(l)(s) = f ′ lookup(f ′, h, p)⇒ Addr(f ′′, xD
i)

lookup(f, h,E(l, s) · p)⇒ Addr(f ′′, xD
i)

[DLookupE]

Fetching and mutating slot values get(f, h, xD
i)⇒ v set(f, h, xD

i , v)⇒ h′

Dh(f) = σ σ(xD
i) = v

get(f, h, xD
i)⇒ v

[GetSlot]

xD
i ∈ Dom(Dh(f))

set(f, h, xD
i , v)⇒ h[f 7→ (Dh(f)[xD

i 7→ v])]
[SetSlot]

Figure 12 A language-independent formalization of frames and heaps

Values
Val 3 v ::= NumV(z) | ClosV(xD

i , a, f)

Annotation projections
S(es,t) = s T (es,t) = t

Dynamic semantics f ` a/h⇒ v/h′

f ` z/h⇒ NumV(z)/h [EvInt]

`G p : xR
i

r7−→ (s′, xD
j) lookup(f, h, p)⇒ Addr(f ′, xD

j) get(f ′, h, xD
j)⇒ v

f ` xR
i/h⇒ v/h

[EvRef]

f ` a1/h1 ⇒ NumV(z1)/h2 f ` a2/h2 ⇒ NumV(z2)/h3

f ` a1 ⊕ a2/h1 ⇒ NumV(⊕(z1, z2))/h3
[EvArithOp]

f ` fun(xD
i : t){ a }/h⇒ ClosV(xD

i , a, f)/h [EvFun]

f ` a1/h1 ⇒ ClosV(xD
i , a
′, f ′)/h2 f ` a2/h2 ⇒ v/h3

initFrame(S(a′), {P 7→ {Sh3(f ′) 7→ f ′}}, {xD
i 7→ v})/h3 ⇒ f ′′/h4

f ′′ ` a′/h4 ⇒ v′/h5

f ` a1(a2)/h1 ⇒ v′/h5
[EvApp]

Figure 13 Dynamic semantics of L1

XX:12 Scopes Describe Frames

frame to the frame that represents its lexical context or an imported module. The slots of a
frame are defined as a finite map from declarations to values.

We define operations on heaps to construct new frames and retrieve slot values. Note
that all operations will refer to frames using their frame identifier (f). Accessing frames is
done via a lookup in the heap (h(f)) and using the projection functions S_(_), K_(_), or
D_(_). We will write ‘frame f ’ as shorthand for ‘the frame referred to by frame identifier
f ’. The initFrame(s, ks, σ) operation adds a new frame with scope identifier s, links ks,
and slots σ, to the heap at a fresh frame identifier. The operation is defined as a relation
initFrame(s, ks, σ)/h ⇒ f ′/h′, using the notation t/h to represent the pair of a term (or
value) t and a heap h. We use this notation throughout to explicitly represent heap threading.
(We could use a state monad to implicitly thread the heap, but we prefer to make semantic
rules explicit for this presentation.)

The lookup operation lookup(f, h, p) ⇒ Addr(f ′, xD
i) dereferences a path p relative to

frame f , resulting in an address, consisting of a pair of a frame f ′ and a slot xD
i in that

frame. The operation get(f, h, xD
i) ⇒ v retrieves the value v of slot xD

i from frame f ; and
set(f, h, xD

i , v)⇒ h′ sets the value of slot xD
i of frame f to v, resulting in a new heap h′.

3.4 Dynamic Semantics

Figure 13 specifies the big-step dynamic semantics for L1 using a heap to represent the
memory during execution. The value domain Val consists of numbers NumV(z) and closures
ClosV(xD

i , a, f). The judgment f ` a/h ⇒ v/h′ specifies that evaluating an annotated
expression a in the context of frame f in heap h gives a value v and heap h′. We discuss the
rules and use the example in Figure 14 as illustration:

The Rules [EvInt,EvArithOp] for arithmetic are standard and do not affect memory other
than passing the current frame to evaluation of arguments and threading the heap.
Rule [EvFun] constructs a closure which records the formal parameter, the body of the
function, and the lexical context at the point of function definition, which is exactly
represented by the current frame f . In Figure 14, the result of evaluating the function in
the body of the function at (3) leads to a closure with frame s3 as lexical context.
Rule [EvApp] defines the evaluation of a function application. The function argument a1
should evaluate to a closure. Using initFrame a new frame instantiating the scope of the
function body (S(a′)) is constructed to represent the call frame of the function call. The
frame from the closure (f ′) is used as the lexical parent of the call frame. The argument
value (v) is assigned to the slot for the formal parameter of the function (xD

i). The body
of the function (a′) is evaluated in the context of the new frame. In Figure 14, in the
application f(1), f evaluates to a closure with a pointer to the s3 frame. The call frame
for the body then constructs a frame for s4 with the s3 frame as its parent.
Rule [EvRef] defines the evaluation of a variable xR

i . The frame f represents the lexical
context of the variable and the static scope graph path of the (reference representing the)
variable is the offset into that context. The lookup happens in multiple steps: first, we
find the path associated with xR

i in the resolved scope graph; second, we dynamically
follow the path to compute the dynamic memory address for the reference; lastly, we
get the value of the dynamic memory address. In Figure 14, the evaluation at (5) of
variable x in the s4 frame follows the path defined for x in the scope graph. (Note how
the call-time context of f is not accessible to the evaluation of the closure in frame s4.)

C. Bach Poulsen et al. XX:13

fun(f: Int -> Int): Int {
 f(1)
}(
 fun(x: Int){
 fun(y: Int) {
 x + y
 }
 }(3)
)

2

4

3

1

5

s1

s3 x

s4 y

x

y

P

P

s2f

P

f

s1

s2

f Cls

s3

3

s4

y 1
x

x

1

2

3

4

5

P

P

P

Figure 14 Example L1 program with scope graph and heap.

3.5 Intermezzo

What have we learned from this exercise so far? (1) There is a systematic correspondence
between static name binding and binding at run-time. Static scopes are collections of declara-
tions. Dynamic frames are units of memory allocation, holding values for the declarations
in a scope. Static name binding is about visibility of declarations following a path from
reference through the scope graph. Binding at run-time is about paths from evaluation
frame to storage frame. This correspondence provides a guiding principle for the definition
of the dynamic semantics. Evaluating a binding construct requires creation of a frame that
instantiates the corresponding static scope. Evaluating a reference requires looking up its
value in the heap using its static path as offset. (2) We can mostly separate the specification
of binding and typing rules. Binding rules are concerned with describing the structure of
and the access to memory. Typing rules are concerned with the types of the arguments and
results of operations. In the dynamic semantics this corresponds to factoring out (and making
systematic and uniform) the treatment of memory from other ‘domain-specific’ operations
(such as arithmetic). We have seen that typing depends on binding in order to establish the
types of references. In the next section we will see that binding depends on typing exactly
when types are used to describe memory in data type definitions.

In conclusion: defining name binding in terms of scope graphs provides a uniform
methodology (an API if you want) for the treatment of memory in static and dynamic
semantics. This scales to a range of language features: in Section 4 we show that the
approach scales to imperative features and records, and in Section 4.4 we discuss how to
deal with classes and subtyping.

What other benefits does the approach provide? The design of this uniform memory model
is just the start of a study of making language-independent those aspects of programming
language design that are usually treated as language-specific. In Section 3.6 we will see
how phrasing the consistency between frames and scopes as an invariant gives a language-
independent principle for proving type soundness, i.e. that well-bound and well-typed
programs cannot go wrong. Later, in Section 5 we discuss a high-level language-independent
specification of sound reachability-based garbage collection of frames, and verify that several
standard GC strategies refine this specification.

3.6 Type Soundness

We have argued that the structure of frames follows the structure of scopes. Now we make this
argument precise by defining the correspondence between frames and scopes, and discuss how
that supports a language-independent formulation and systematic proof of type soundness.

XX:14 Scopes Describe Frames

Good frame
For any definition of types t, values v, and value typing relation v :
wellBound(h, f) ,
∃s. s = Sh(f) ∧ D(s) = Dom(Dh(f)) ∧

(∀l s′. s′ ∈ K(s)(l) ⇐⇒ Sh(Kh(f)(l)(s′)) = s′)
wellTyped(h, f) ,

∀t xD
i ∈ D(Sh(f)). `G xD

i : t =⇒ ∀v. Dh(f)(xD
i) = v =⇒ h

v v : t
goodFrame(h, f) ,

wellBound(h, f) ∧ wellTyped(h, f)

Good heap
goodHeap(h) , (f ∈ Dom(h) =⇒ goodFrame(h, f))

Value typing h
v
v : t

h
v NumV(z) : Int [VtInt]

b
fun(xD

i : t1){ a }
Sh(f) t

fun(xD
i : t1){ a }

t1→t2

h
v ClosV(xD

i , a, f) : t1 → t2
[VtClo]

Figure 15 Good frames, good heaps, and value typing

Good frames. The goodFrame property defined in Figure 15 formally captures the corre-
spondence between frames and scopes. The definition relies on two auxiliary properties:

1. wellBound: Maintains the binding invariant that frames have the same structure as their
scopes. Specifically, the slots Dh(f) of each frame f are in one-to-one correspondence
with the declarations of scope s = Sh(f), and the links Kh(f) of f are in one-to-one
correspondence with the edges {l 7→ s′} ∈ K(s), such that Kh(f)(l)(s′) = f ′ iff Sh(f ′) = s′.

2. wellTyped: Maintains the typing invariant that slots contain values of the type that their
declarations expect. Specifically, for each declaration and its corresponding slot (if it
exists) in the frame, the value in the slot is of the same type as the declaration.

These properties are language-independent, i.e. define a generic correspondence between
scopes and frames, but are parameterized by a language-specific value typing judgment
h

v
v : t (also defined in Figure 15) which asserts that the value v has type t in the heap h.

The value typing of closures (Rule [VtClo]) checks that the closure corresponds to an actual
well-typed and well-bound function relative to the scope of the lexical frame recorded in the
closure, using the rules from Figure 10 and Figure 11.

Good heaps. The goodHeap property also defined in Figure 15 generalizes the goodFrame
property to the entire heap; that is, a heap h is good iff every frame in h satisfies the
goodFrame property.

Language-independent lemmas. The scopes-as-frames approach provides structure to type
soundness proofs by using a small suite of language-independent helper lemmas about dynamic
memory operations, such as looking up a path, initializing a new frame, etc. For example,
Lemma 1 formalizes the property that each static resolution path has a corresponding
run-time memory access path.

C. Bach Poulsen et al. XX:15

I Lemma 1 (Good paths). Suppose goodHeap(h) and Sh(f) = s. For any reference xR
i where

`G xR
i s, it holds for any p, s′, and xD

i that `G p : xR
i

r7−→ (s′, xD
j) implies that there exists

a frame f ′ such that lookup(f, h, p)⇒ Addr(f ′, xD
j) and Sh(f ′) = s′.

This, along with a number of other lemmas, provides structure to the type preservation proof
that we discuss next. We refer the reader to our Coq development for the full details.

Type preservation. Theorem 2 proves type preservation, i.e., that if evaluation of a well-
bound and well-typed program in a frame that is in a good heap succeeds, then the resulting
value is of the expected type, and the resulting heap is good.

I Theorem 2 (Type preservation for L1). Suppose goodHeap(h1) and Sh1(f) = s, as well as
b
es and t

et hold. Then, for any v and h2, f ` es,t/h1 ⇒ v/h2 implies goodHeap(h2) and
h2

v
v : t.

There are several ways to extend type preservation proofs to type soundness proofs.
A traditional approach [11] to proving type soundness using big-step semantics is to add
explicit “wrong” rules to a big-step semantics anywhere evaluation can get stuck. This
allows distinguishing between getting stuck and diverging, which is otherwise impossible
using the inductively defined big-step rules in Figure 13. Our accompanying technical report
summarizes the rules that need to be added to the language. The rules and full type soundness
proof can also be found in our Coq development. Adding wrong rules to a language does not
alter the structure of the cases for the preservation proof. Section 6 recalls and discusses
alternative means of proving type soundness using big-step semantics.

4 Dynamic Frames for Records

In this section we apply our approach to L2, an extension of L1 with records and imperative
features. This shows that frames-as-scopes scales to model the memory layout for records,
and that the invariants about frames and heaps given in the previous section also provide a
basis for type soundness proofs for languages with such features.

Figure 16 defines the well-formed terms of L2 with changes from L1 highlighted. A
program in L2 consists of a sequence of record type definitions d, and a program expression
e, enclosed in a begin . . . end block. A record type definition declares the type name and
the record’s field names. Records are constructed using the new construct, which takes
a reference that resolves to a record type name declaration. L2 also adds an assignment
operation (_ := _), which assigns a value to a memory address. Memory addresses (or
L-values [23]) consist of frame-declaration pairs (f, xD

i), and are computed by left-hand side
(lhs) expressions, namely variables (xR

i) and record field access (a.xR
i). Finally, L2 has a

sequential composition operator (_; _).

4.1 Well-Bound and Well-Typed Terms
Figure 17 specifies the well-boundness rules for the newly introduced L2 terms. The well-
boundness of L1 expressions from Figure 10 carry over to L2. Well-boundness checking in
L2 uses three new kinds of judgments: b

p ,
t
p for programs, b

d ,
t
d for declarations, and b

l ,
t
l for

lhs expressions. The well-typedness of terms in L1 also carries over to L2. Figure 18 defines
rules for checking the well-typedness of the new programs and terms in L2.

Rule [WbProg] defines the well-boundness of programs and checks that the record defini-
tions ds are well-bound, and that the expression e of a program is well-bound.

XX:16 Scopes Describe Frames

t ::= Int | t → t | Rec(xD
i)

p ::= d∗ begin e end

d ::= record xD
i { (xD

i : t)∗ }

e ::= z | lhs | a ⊕ a | fun(xD
i : t){ a } | a(a) | new xR

i | lhs := a | a; a

lhs ::= xR
i | a.xR

i

a ::= es,t

Figure 16 Annotated syntax of L2 with distinguished references and declarations

Well-bound programs b
p p

(∀d ∈ ds. b
d d

s) b
es

b
p ds begin e

s end
[WbProg]

Well-bound declarations b
d ds

`G s xD
i `G xD

i s′

∀(xD
j : t) ∈ flds. `G s′ xD

j

b
d (record xD

i { flds })s
[WbRD]

Well-bound expressions b
es

`G xR
i s `G p : xR

i
r7−→ (s′, xD

j)
`G xD

j srec `G K(srec) = ∅
b (new xR

i)
s

[WbNew]

b lhss b
es

b (lhs := es)s
[WbAsgn]

b
es

1
b
es

2
b (es

1; e
s
2)s

[WbSeq]

b
l lhss

b lhss
[WbLhs]

Well-bound lhs expressions b
l lhss

b
es `G xR

i s′

`G s′ I srec `G D(s′) = ∅
b
l (es.xR

i)
s

[WbLFAcc]

`G xR
i s

b
l (xR

i)
s

[WbLVar]

Figure 17 Well-boundness in L2

Well-typed programs t
p p

(∀d ∈ ds. t
d d) t

et

t
p ds begin e

t end
[WtProg]

Well-typed declarations t
d d

t

∀(xD
j : t) ∈ flds. `G xD

j : t
t
d record xD

i { flds }
[WtRD]

Well-typed expressions t
et

`G p : xR
i

r7−→ (s′, xD
j)

t (new xR
i)
Rec(xD

j)
[WtNew]

t
l lhst t

et

t (lhs := et)t
[WtAsgn]

t
et1

1
t
et2

2
t (
et1

1 ; et2
2

)t2
[WtSeq]

t
l lhst

t lhst
[WtLhs]

Well-typed lhs expressions t
l lhst

t
eRec(xD

j) `G xD
j srec

`G xR
i s′ `G s′ I srec

`G p : xR
i

r7−→ (s′′, xD
i) `G xD

i : t
t
l

(
eRec(xD

j).xR
i

)t
[WtLFAcc]

`G p : xR
i

r7−→ (s′, xD
i) `G xD

i : t
t
l (xR

i)t
[WtLVar]

Figure 18 Well-typedness in L2

C. Bach Poulsen et al. XX:17

Rule [WbRD] in Figure 17 checks that the type name xD
i is declared in the surrounding

scope s, that it is associated with scope s′, which has the surrounding scope s as its
lexical parent, and that each field of the record is declared in scope s′.

Rule [WbNew] checks that the record name resolves to a record declaration. Also, the
associated record scope does not have any edges, a fact which is needed when initializing
a matching record frame.

Rules [WbAsgn] and [WtAsgn] simply check that both the lhs expression and the value
expression are well-bound and well-typed. Rules [WbLhs,WtLhs] in turn rely on a separate
judgment for checking that an lhs expression (either a field access or a variable) is
well-bound and well-typed.

Rules [WbLFAcc] and [WtLFAcc] describe the static semantics of field access. In a field
access expression such as a.xR

i , the annotated expression a computes a record, and the
reference xR

i refers to a field declared in this record. The field reference is installed in an
auxiliary scope s′ that imports the scope srec associated with the record type Rec(xD

j).

4.2 Dynamic Semantics

The dynamic semantics of most existing constructs from L1 is unchanged in L2. Figure 19
gives the dynamic semantics of the new constructs in the L2 extension and replaces the rule
for variables since variables are now lhs expressions. We describe these changes.

Rule [EvNew] says that evaluating a new expression constructs a record frame via
initDefault(s, ks). Here, s is a scope identifier and ks is the map of dynamic links for
the frame. As specified in Figure 20, initDefault instantiates all slots of the frame with default
values. The d

v judgment in Figure 20 defines default values for all types in L2. We introduce
a special default function (DFun(v)) which, when applied to anything, returns the value v.
Rule [EvAppDef] specifies the semantics for applications involving this value.

We also introduce the null value, NullV, as the default value for record types. Trying to ac-
cess a NullV value as a field results in a null-pointer exception being raised (Rule [LhsFAccNull]).
Not shown in Figure 19 are the straightforward rules for propagating such exceptions, which
can be found in the accompanying technical report [17]. We choose to let frames contain null
values by default for several reasons: firstly, null values (or a variant thereof) are required if
we want to construct self-referential records. Secondly, using default values and null values
ensures that frames are always well-typed, which makes reasoning about type soundness
easier.

The rules in Fig. 19 closely follow the static semantics for binding and typing. For
example, Rule [LhsFAcc] initializes an import frame which is used as the basis for dynamic
resolution. In order to evaluate lhs expressions, a new judgment f lhs lhs/h ⇒ u/h′ is
introduced that evaluates a lhs to an address, or throws a null-pointer exception if the lhs
expression attempts to access a field of a null value. Lhs expressions compute auxiliary values
ranged over by u, as defined in Figure 19.

Rule [EvAsgn] uses set(f, h, xD
i , v)⇒ h′ for updating frame f in heap h by assigning v to

slot xD
i to produce a new frame h′. Setting a slot fails if the slot has not been allocated. Note

that Rule [EvAsgn] defines assignment not just for record fields but also for variables, which
makes variables bound by functions mutable. Our framework currently does not distinguish
between mutable and immutable variables, but we expect it would be straightforward to
introduce such a distinction, e.g. by classifying declarations into separate namespaces.

XX:18 Scopes Describe Frames

Values
Val 3 v ::= . . . | RecordV(f) | NullV | ExcV(X) | DFun(v)

Exc 3 X ::= NullPointer

Auxiliary values
AuxVal 3 u ::= Addr(f, xD

i)
| ExcV(X)

Program evaluation p
p⇒ v/h′

initDefault(s, ∅)/∅ ⇒ froot/h froot ` e/h⇒ v/h′

p
ds begin es end⇒ v/h′

[EvProg]

Expression evaluation f ` a/h⇒ v/h′

f
lhs lhs/h1 ⇒ Addr(f ′, xD

i)/h2 get(f ′, h2, x
D
i)⇒ v

f ` lhs/h1 ⇒ v/h2
[EvLhs]

`G p : xR
i

r7−→ (s′, xD
j) `G xD

j s initDefault(s, ∅)/h1 ⇒ f ′/h2

f ` new xR
i/h1 ⇒ RecordV(f ′)/h2

[EvNew]

f
lhs lhs/h1 ⇒ Addr(f ′, xD

i)/h2 f ` e/h2 ⇒ v/h3 set(f ′, h3, x
D
i , v)⇒ h4

f ` lhs := e/h1 ⇒ v/h4
[EvAsgn]

f ` a1/h1 ⇒ DFun(v1)/h2 f ` a2/h2 ⇒ v2/h3

f ` a1(a2)/h1 ⇒ v1/h3
[EvAppDef]

Lhs evaluation f
lhs lhs/h⇒ u/h′

`G p : xR
i

r7−→ (s′, xD
j) lookup(f, h, p)⇒ Addr(f ′, xD

j)

f
lhs

xR
i/h⇒ Addr(f ′, xD

j)/h
[LhsVar]

f ` e/h1 ⇒ RecordV(frec)/h2 `G xR
i s

initDefault(s, {I 7→ {Sh2(frec) 7→ frec}})/h2 ⇒ f ′/h3

`G p : xR
i

r7−→ (s′, xD
j) lookup(f ′, h3, p)⇒ Addr(f ′′, xD

j)

f
lhs

e.xR
i/h1 ⇒ Addr(f ′′, xD

j)/h3
[LhsFAcc]

f ` e/h1 ⇒ NullV/h2

f
lhs

e.xR
i/h1 ⇒ ExcV(NullPointer)/h2

[LhsFAccNull]

Figure 19 Dynamic semantics of L2

Frame operations initDefault(s, ks)/h⇒ f ′/h′

defaults(D(s))⇒ σ initFrame(s, ks, σ)/h⇒ f ′/h′

initDefault(s, ks)/h⇒ f ′/h′
[InitDefault]

Default slots defaults(ds)⇒ σ

defaults(∅)⇒ ∅ [DNil]

xD
i ∈ ds `G xD

i : t dv
v : t

defaults(ds− {xD
i })⇒ σ

defaults(ds)⇒ σ[xD
i 7→ v]

[DCons]

Default values dv
t : v

dv 0 : Int [DefaultInt]
dv
v : t2

dv DFun(v) : t1 → t2
[DefaultFun]

dv NullV : Rec(xD
i) [DefaultRec]

Figure 20 Frame operations for updating slots and initializing frames with default values

C. Bach Poulsen et al. XX:19

`G xD
i Sh(f)

h
v RecordV(f) : Rec(xD

i)
[VtRec]

h
v
v : t2

h
v DFun(v) : t1 → t2

[VtDefFun]

h
v NullV : Rec(xD

i) [VtNullRec]

h
v ExcV(NullPointer) : t [VtNullPointer]

Figure 21 Value-typing of records and null-values

4.3 Type Soundness
The rules in Figure 21 summarize the value typing judgment for L2. Here, null-pointer
exceptions are viewed as well-typed values of any kind, which allows such exceptions to occur
anywhere in well-typed programs. Theorem 3 states type preservation for L2.

I Theorem 3 (Type preservation for L2). Suppose goodHeap(h1) and Sh1(f) = s, as well as
b
es and t

et hold. Then, for any v and h2, f ` es,t/h1 ⇒ v/h2 implies goodHeap(h2) and
h2

v
v : t.

As argued in connection with the proof of Theorem 2 in Section 3.6, we can extend this
proof to a proof of type soundness by adding cases for “going wrong”. The wrong cases,
which are given in the accompanying technical report [17] follow along the same lines as the
cases in the preservation proof.

4.4 From Records to Classes
Our accompanying technical report [17] describes L3, an extension of L2 which replaces
records by classes with inheritance, sub-typing, and overriding. Inheritance and sub-typing
are modeled by representing run-time objects as a hierarchy of frames, one frame for each
super-class in the hierarchy. Paths to object fields may contain edges that traverse this
hierarchy. This poses interesting challenges for looking up fields at run time.

Figure 22 provides a small but illustrative example L3 program, its scope graph, and its
object frame structure. Consider the expression: (fun (a : A) { a.x })(new B). The
path of the field access expression a.x is calculated based on a being an object of type A;
i.e., E(I, s2) ·D(x), where s2 is the scope for the class A. But applying this path to the
actual field of the value gets us to a subtype of A, namely the scope of the B object, which
only provides an x slot via its import edge! The actual path to the desired x slot is thus:
E(I, s3) ·E(I, s2) ·D(x). In order to deal with this mismatch between the statically computed
path and the actual path, we upcast the B frame (instantiating scope s3) bound to a before
attempting to access fields through it. Upcasting follows a chain of import edges until it
arrives at a frame that instantiates the statically expected type, in this case the A frame
(instantiating scope s2). The technical report [17] and Coq development provide the full
details.

5 Garbage Collection

So far, we have described how the heap grows by adding frames. Any realistic language
implementation also needs to consider how unused frames can be reclaimed. To this end, we

XX:20 Scopes Describe Frames

class A {
x : Int := 0

}
class B extends A {

y : Int := 0
}

s1

s3

P

s2

P

x

A B

y
I

s1

s2

x 0

s3

0y

P P

I

A

B

Figure 22 An example program, its scope graph, and its object frame structure

now give a high-level specification of sound reachability-based garbage collection of frames in
our setting, and verify that several standard GC strategies refine this specification. We leave
actual implementation of concrete collectors as future work.

We model garbage collection as removal of frames from the heap map; the removed frame
identifiers then become fresh again for subsequent frame allocations. It is safe to remove a
frame exactly when doing so would not change subsequent observable program behavior [12].
Since this is an undecidable criterion, collectors instead use an approximation based on
whether there are live pointers to the frame; if not, the frame certainly cannot be accessed
again (assuming pointers are unforgeable) and hence may be safely removed.

A frame may be referenced in one of two ways, either (i) from a root pointer in the
execution state of the program, or (ii) from another frame. We focus first on category (ii),
for which we can give a simple and largely language-independent characterization. All our
formal definitions are in Figure 23.

Frame-to-frame pointers. We write h ` f f ′ if frame f in heap h makes a direct
reference to frame f ′, either through a link or via a slot value v. The latter case, which we
write v f ′, depends on the definition of values in our language. A frame f ′ is reachable
from another frame f if there is a sequence of direct references from f to f ′; this is just
the reflexive transitive closure of the reference relation, so we write it h ` f ∗f ′. We write
h ` 6 f if no frame in h references f .

The key observation is that it is safe to remove any set of frames fs from a heap h provided
that no frame in fs is referenced from the resulting heap h′, written safeRemoval(h, fs, h′). In
other words, a safe removal is one that does not produce any new dangling pointers. We
then have the following easy lemma:
I Lemma 4 (Safe removal preserves heap invariants). Suppose goodHeap(h) holds. Then, for
any set of frames fs and heap h′, safeRemoval(h, fs, h′) implies goodHeap(h′).

Roots. How to track roots into the heap from the program state depends on the details of
the language and the semantic approach. For the big-step semantic style used in this paper,
most live frames are reachable from the “current” frame (f in the judgments f ` a/h⇒ v/h′).
However, evaluation of certain big-step rules may introduce other frames, not reachable
from the current frame, that must be temporarily registered as roots. To handle these, we
add an additional root frame set component rs to the configurations described by the rules.
Figure 23 shows the revised rule for application to illustrate how the auxiliary root set is
used, here in two different ways: to save the closure frame while evaluating the argument
and to save the calling context frame while evaluating the function body.

Several other rules also augment the root set; the need for auxiliary roots is unfortunately
a bit ad-hoc and language-specific. We could limit the number of auxiliary roots by requiring

C. Bach Poulsen et al. XX:21

References from values
ClosV(xD

i , a, f) f [RefClos]
RecordV(f) f [RefRecord]

References from frames
get(f, h, xD

i)⇒ v v f ′

h ` f f ′
[RefSlot]

Kh(f)(l)(s) = f ′

h ` f f ′
[RefLink]

Unreferenced frames h ` 6 f , ∀f ′ ∈ Dom(h). h ` f ′ 6 f

Removing frames from heaps
safeRemoval(h, fs, h′) , h′ = (h− fs) ∧ ∀f ∈ fs. h′ ` 6 f
removeUnreferenced(h, f, h′) , h′ = (h− {f}) ∧ h ` 6 f
removeAllUnreachable(h, rs, fs, h′) , h′ = (h− fs) ∧ fs = {f | ∀f ′ ∈ rs. h ` f ′ 6 ∗f}

where (h− fs) is the result of removing all frames in fs from h

Expression evaluation (selected rules) f, rs ` a/h⇒ v/h′

f, rs ` a1/h1 ⇒ ClosV(xD
i , a
′, f ′)/h2 f, {f ′} ∪ rs ` a2/h2 ⇒ v/h3

initFrame(S(a′), {P 7→ {Sh3(f ′) 7→ f ′}}, {xD
i 7→ v})/h3 ⇒ f ′′/h4

f ′′, {f} ∪ rs ` a′/h4 ⇒ v′/h5

f, rs ` a1(a2)/h1 ⇒ v′/h5
[EvApp]

safeRemoval(h, fs, h′) fs ∩ ({f} ∪ rs) = ∅ f, rs ` a/h′ ⇒ v/h′′

f, rs ` a/h⇒ v/h′′
[EvGC]

Figure 23 Definitions for Garbage Collection

source programs to be in A-normal form or continuation-passing style, which both have the
effect of putting more rule-internal values into named variables, and hence into the current
frame.

Type-safe collection. Finally, we can add Rule [EvGC] for garbage collection shown in
Figure 23, which can be applied non-deterministically prior to any of the syntax-directed
rules. The resulting system still enjoys type soundness. The proof is straightforward once
we strengthen the inductive invariant at each big step to say that {f} ∪ rs ⊆ Dom(h). The
proof case for Rule [EvGC] relies on Lemma 4.

Refinements. To show that safeRemoval is a reasonable specification, we note that it can
be refined to specifications of two well-known GC algorithms. removeUnreferenced specifies
removal of a single unreferenced frame; it models one step in a reference counting collection.
removeAllUnreachable specifies removal of all frames unreachable from an arbitrary root set;
it models a complete tracing-based collector, such as a mark-and-sweep or copying collector.

I Lemma 5 (Unreferenced and unreachable frames are safe to remove). It holds that:
(a) removeUnreferenced(h, f, h′) implies safeRemoval(h, {f}, h′); and
(b) removeAllUnreachable(h, rs, fs, h′) implies safeRemoval(h, fs, h′).

We have not yet developed a concrete GC implementation, but writing one should be
straightforward. The heap-traversal part of an implementation can be language-independent
except for determining references from values. Note that, for many languages, an imple-
mentation can use the scope labels on frames to detect all references efficiently, without the

XX:22 Scopes Describe Frames

need for tagging individual pointers. This follows from the goodFrame property, which states
that every frame slot corresponds to a statically known typed declaration in the scope; if
the language is sufficiently monomorphic or restricts polymorphism to boxed types, we can
consult the scope description to determine whether or not the slot contains a pointer.

6 Discussion

This paper presents a systematic correspondence between static name binding and binding
at run time. We have also proposed the correspondence as a guiding principle for dynamic
semantic specification, and a language-independent principle for proving type soundness. In
this section we discuss our approach and compare with previous work on type soundness
and, more generally, on representing and reasoning about semantics and memory layout.

Type soundness. Milner [11] summarized the essence of type soundness in his famous
catch-phrase: “well-typed programs cannot go wrong”. The common point of type soundness
proofs is that they provide this guarantee. Other than that, type soundness proofs come in
many different varieties and flavours, depending on both the underlying semantic style (such
as big-step vs. small-step) and the underlying language being specified.

Semantic specification and type soundness. Wright and Felleisen’s syntactic approach to
type soundness [28] argues in favor of using small-step reduction semantics and evaluation
contexts for type soundness proofs. This avoids some of the shortcomings of big-step
semantics, namely that big-step rules do not distinguish getting stuck and diverging. The
small-step style is also better suited for formalizing semantics with concurrency and/or
interleaving. However, this kind of specification does not correspond to how programming
language interpreters are typically implemented.

This paper uses big-step semantics (or natural semantics [7]) for type soundness. In order
to prove type soundness we have been following in the footsteps of Milner [11] and added
explicit rules for going wrong to our language. An inherent danger of this approach is that
leaving out such a wrong rule may render the type soundness theorem vacuous. We stress
that the approach of using scopes to describe frames is by no means limited to big-step
semantics: we expect it to be equally applicable to other styles of semantic specification,
including small-step SOS [16], reduction semantics [5], definitional interpreters [18], and
abstract machines. We chose big-step semantics because it corresponds to how programming
language interpreters are typically implemented. In the future, we plan to use I-MSOS [13]
and DynSem [26] to make our big-step rules even more concise. We also plan to investigate
ways of alleviating some of the drawbacks of big-step type soundness proofs proposed in the
literature, such as:

using coinductive big-step semantics to represent diverging computations and proving
big-step progress, following Leroy and Grall [10];
checking that wrong rules are correctly defined either by using a coverage lemma as
proposed by Ernst et al. [4] or using Charguéraud’s pretty-big-step style [1] with a novel
big-step progress predicate, which subsumes explicit wrong rules in a safe way (e.g.,
failure to add sufficient rules for progress makes it impossible to prove type soundness);
using a functional definitional interpreter instrumented with a clock (or “fuel”) which
counts down with each function call [22, 15, 19].

The modularity of the small-step approach in [28] comes from the use of reduction
semantics, which supports localizing new patterns of name binding to particular constructs,

C. Bach Poulsen et al. XX:23

such that proofs of existing constructs do not need to change. In contrast, our approach using
scopes to describe frames scales to deal with name binding of both functional and imperative
features in a uniform manner. Thus, there is no need to use different stores or notions of
substitution or to localize these to particular constructs: name binding is uniformly handled
both in the dynamic semantics and in the proof.

A selling point of the syntactic approach is that it scales to prove the type soundness of
an ML-like language with Hindley-Milner polymorphism such that the structure of proofs
change relatively little as new features are added. Indeed, many of the challenges with
substitution in [28] stem from dealing with polymorphism and references. We believe that
describing scopes as frames will scale to deal with polymorphic type inference, and suspect it
might alleviate some of the difficulties inherent to substitution lemmas, but leave it to future
work to verify this.

Default values. A shortcoming of our approach compared with, e.g., Wright and Felleisen
[28], is our use of default values. Default values make the proofs easy, but introduce the risk
of dereferencing null values. In order to deal with function types, we proposed to generate
“default functions” too, but this approach is restricted to simple type systems, since the
problem of finding inhabitants of a given type quickly becomes undecidable. In the future,
we plan to investigate extending our type soundness principle to temporarily allow a frame
to be ill-typed, so long as it is initialized when it is accessed. Nipkow et al.’s [9] formalization
of Java’s definite assignment analysis could provide a useful guide to this end.

Modeling memory in programming language semantics. In addition to the different
semantic specification styles, there is a proliferation of ways to deal with name binding and
memory management in semantic specifications. For example, consider a type soundness
proof for Java-like languages, where formalization of name binding and memory ranges from
simple states mapping identifiers and references to values, as used by Drossopoulou and
Eisenbach [3], to untyped frames [24] relying on traditional environments for typing, to use
of ad-hoc lookup functions (or visibility predicates) uniquely defined to resolve a specific
kind of identifiers (e.g. classes or fields) as used in Featherweight Java [6] or Jinja [9].

Similarly, considering the state of affairs in semantic specification frameworks gives a
similarly muddled picture. These frameworks can be roughly categorized into two camps:
those that deal with binding via substitution (redex [8], Ott [21]), and those that provide
support for ad hoc binding via auxiliary entities (K [20], funcons [2]).

None of these pre-existing approaches hits the same sweet spot as our framework: it
corresponds to how memory is often organized in real implementations (as also remarked by
Syme [24, page 7]); it scales to deal with various models of name binding and memory in a
uniform manner; and it provides a language-independent principle for proving the absence of
binding and typing errors.

We also remark that our compartmentalization of binding and typing as separate concerns
and separate sets of rules in theory allows us to prove the absence of binding errors and
typing errors separately. This may be useful for dynamically-typed languages, where proving
the absence of typing errors might not be a concern, but the absence of binding errors is.

7 Conclusion

This paper presented a systematic and uniform correspondence between static scopes and
dynamic frames. This correspondence provides a mostly separate specification of binding

XX:24 Scopes Describe Frames

and typing. This is a novelty compared to traditional approaches, where typing rules usually
describe both name binding and typing, occasionally relying on ad hoc predicates (such as
those found in, e.g., Featherweight Java). The scopes-as-frames paradigm supports uniform
and straightforward type soundness proofs for a number of different language features, as
demonstrated by applying it to a simple functional language (Section 3) and a language
with first-class functions and records (Section 4). Section 5 shows how the invariants also
support verifying the safety of a number of different garbage collection schemes. Section 4.4
discusses, and our accompanying tech report [17] shows, how the approach also scales to a
class-based object-oriented language with sub-typing and run-time upcasting.

In future work, we plan to investigate how the approach scales to larger languages including
languages with type-level polymorphism; generating Coq infrastructure for mechanizing
type soundness proofs using the language-independent framework for well-boundness and
well-typedness developed for this paper; and how to derive efficiently executable prototype
interpreters based on dynamic semantic specifications in DynSem.

Acknowledgments. We thank Sebastian Erdweg, Peter D. Mosses, and the anonymous
reviewers for their feedback on previous versions of this paper. This research was partially
funded by the NWO VICI Language Designer’s Workbench project (639.023.206). Andrew
Tolmach was partly supported by a Digiteo Chair at Laboratoire de Recherche en Informatique,
Université Paris-Sud.

References
1 Arthur Charguéraud. Pretty-big-step semantics. In Matthias Felleisen and Philippa Gard-

ner, editors, ESOP’13, volume 7792 of LNCS, pages 41–60. Springer, 2013.
2 Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Torrini. Reusable compo-

nents of semantic specifications. Transactions on Aspect-Oriented Software Development,
12:132–179, 2015.

3 Sophia Drossopoulou and Susan Eisenbach. Java is type safe - probably. In Mehmet Aksit
and Satoshi Matsuoka, editors, ECOOP’97, volume 1241 of LNCS, pages 389–418. Springer,
1997.

4 Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In J. Gregory
Morrisett and Simon L. Peyton Jones, editors, POPL’06, pages 270–282. ACM, 2006.

5 Matthias Felleisen. The Calculi of λ-v-cs Conversion: A Syntactic Theory of Control and
State in Imperative Higher-order Programming Languages. PhD thesis, Indiana University,
1987.

6 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. TOPLAS, 23(3):396–450, 2001.

7 Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and
Martin Wirsing, editors, STACS’87, volume 247 of LNCS, pages 22–39. Springer, 1987.

8 Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen,
Matthew Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and Robert Bruce
Findler. Run your research: on the effectiveness of lightweight mechanization. In John
Field and Michael Hicks, editors, POPL’12, pages 285–296. ACM, 2012.

9 Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language,
virtual machine, and compiler. TOPLAS, 28(4):619–695, 2006.

10 Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf. Comput.,
207(2):284–304, 2009.

11 Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978.

C. Bach Poulsen et al. XX:25

12 J. Gregory Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of memory
management. In FPCA’95, pages 66–77, 1995.

13 Peter D. Mosses and Mark J. New. Implicit propagation in structural operational semantics.
ENTCS, 229(4):49–66, 2009.

14 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name
resolution. In Jan Vitek, editor, ESOP’15, volume 9032 of LNCS, pages 205–231. Springer,
2015.

15 Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. Functional big-
step semantics. In ESOP’16, volume 9632 of LNCS, pages 589–615. Springer, 2016.

16 Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–139, 2004.

17 Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco Visser. Scopes describe
frames: A uniform model for memory layout in dynamic semantics. Technical Report TUD-
SERG-2016-010, Delft University of Technology, Programming Languages Research Group,
Delft, The Netherlands, 2016.

18 John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

19 Tiark Rompf and Nada Amin. From F to DOT: Type soundness proofs with definitional
interpreters. 2015. http://arxiv.org/abs/1510.05216.

20 Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

21 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnisa. Ott: Effective tool support for the working semanticist. Journal
of Functional Programming, 20(1):71–122, 2010.

22 Jeremy G. Siek. Type safety in three easy lemmas, May 2013. http://siek.blogspot.co.
uk/2013/05/type-safety-in-three-easy-lemmas.html.

23 Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13(1/2):11–49, 2000.

24 Don Syme. Proving Java type soundness. In Jim Alves-Foss, editor, Formal Syntax and
Semantics of Java, volume 1523 of LNCS, pages 83–118. Springer, 1999.

25 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, editors, PEPM’16, pages 49–60. ACM, 2016.

26 Vlad A. Vergu, Pierre Néron, and Eelco Visser. DynSem: A DSL for dynamic semantics
specification. In Maribel Fernández, editor, RTA’15, volume 36 of LIPIcs, pages 365–378.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

27 Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A. Vergu, Au-
gusto Passalaqua, and Gabriël D. P. Konat. A language designer’s workbench: A one-
stop-shop for implementation and verification of language designs. In Andrew P. Black,
Shriram Krishnamurthi, Bernd Bruegge, and Joseph N. Ruskiewicz, editors, Onward!’14,
pages 95–111. ACM, 2014.

28 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, November 1994.

http://arxiv.org/abs/1510.05216
http://siek.blogspot.co.uk/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.co.uk/2013/05/type-safety-in-three-easy-lemmas.html

	Introduction
	Static Scopes Describe Dynamic Frames
	Architecture
	Scope Graphs
	Dynamic Frames and Heaps

	Dynamic Frames for a Simple Functional Language
	Scope Graphs
	Well-Bound and Well-Typed Terms
	Frames and Heaps
	Dynamic Semantics
	Intermezzo
	Type Soundness

	Dynamic Frames for Records
	Well-Bound and Well-Typed Terms
	Dynamic Semantics
	Type Soundness
	From Records to Classes

	Garbage Collection
	Discussion
	Conclusion

