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Abstract

In recent years, there has been an explosion of research in AI into pro-

positional satis�ability (or Sat). There are many factors behind the in-

creased interest in this area. One factor is the improvement in search pro-

cedures for Sat. New local search procedures like Gsat are able to solve

Sat problems with thousands of variables. At the same time, implement-

ations of complete search algorithms like Davis-Putnam have been able to

solve open mathematical problems. Another factor is the identi�cation of

hard Sat problems at a phase transition in solubility. A third factor is

the demonstration that we can often solve real world problems by encoding

them into Sat. There has also seen an improved theoretical understanding

of Sat, particularly in the analysis of such phase transition behaviour. This
paper reviews the state of the art for research into satis�ability, and discuss

applications in which algorithms for satis�ability have proved successful.

http://dream.dai.ed.ac.uk/group/tw/sat/

Other survey articles and many online papers can be found at the above
address.

1



1 Introduction

Consider the following diplomatic problem proposed by Brian Hayes [45]:

\You are chief of protocol for the embassy ball. The crown prince
instructs you either to invite Peru or to exclude Qatar. The queen
asks you to invite either Qatar or Romania or both. The king, in a
spiteful mood, wants to snub either Romania or Peru or both. Is there
a guest list that will satisfy the whims of the entire royal family?"

This problem can be represented as a propositional satis�ability problem. We
can express the three constraints by means of a propositional formula,

(P _ :Q)&(Q _R)&(:R _ :P )

where P , Q and R are Boolean variables which are true if and only if we invite,
respectively, Peru, Qatar, and Romania. A solution to the problem is a satisfying
assingment, an assignment of truth values to the Boolean variables that satis�es
the propositional formula. In this case, there are just two satisfying assignments
(out of the eight possible). These either assign P and Q to true and R to false,
or assign P and Q to false and R to true. That is, we can either invite both Peru
and Qatar and snub Romania, or we can invite just Romania and snub both Peru
and Qatar.

Whilst propositional satis�ability is a very simple problem, it is a cornerstone
of the theory of computational complexity. Propositional satis�ability was the
�rst problem shown to be NP-complete [10]. Despite a quarter century of e�ort, it
remains an open question whether problems in this class can be solved in polyno-
mial time in the worst case. Many consider this question, the P=NP problem, to
be one of the most important open problem facing theoretical computer science.
As the best complete algorithms are exponential, NP-completeness is generally
considerable to mark the boundary between tractability and intractability. Nev-
ertheless, a large amount of research in recent years has shown that satis�ability
problems can often be solved e�ciently in practice. In this paper, we survey this
research, reporting the considerable improvements in our understanding of the
computational complexity of propositional satis�ability, as well in algorithms to
solve satis�ability problems.

2 Satis�ability

Propositional satis�ability (Sat) is the problem of deciding if there is an assign-
ment for the variables in a propositional formula that makes the formula true.
Many AI problems can be encoded quite naturally into Sat (eg. planning [61],
constraint satisfaction, vision interpretation [82], diagnosis, . . . ). In addition,
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satis�ability is closely related to theorem proving; refutation procedures, for ex-
ample, call upon the fact that a formula ' is derivable from a set of formulae �
i� � [ :' is not satis�able.

Much research into Sat considers problems in conjunctive normal form (CNF).
A formula is in CNF i� it is a conjunction of clauses; a clause is a disjunction
of literals, where a literal is a negated or un-negated Boolean variable. A clause
containing just one literal is called a unit clause. A clause containing no literals
is called the empty clause and is interpreted as false. We can place restrictions
on the size of clauses in the problem. For example, k-Sat is the class of decision
problems in which all clauses are of length k. k-Sat is NP-complete for any k � 3
but is polynomial for k = 2 [26]. Other polynomial classes of Sat problems exist
including Horn-Sat (in which each clauses contains no more than one positive
literal), renameable Horn-Sat and several other generalizations.

Closely related to the Sat decision problem is the Max-Sat optimization
problem. Given a set of clauses, what is the maximum number of clauses that
can be satis�ed? Many of the complete and approximation procedures for Sat
can be adapted to solve Max-Sat problems by some simple modi�cations.

2.1 Random problems

There exist two popular models for random satis�ability problems: the �xed
clause length and the constant probability models. In the �xed clause length
model (often called the random k-Sat model), we generate problems with N
variables and L clauses as follows: a random subset of size k of the N variables
is selected for each clause, and each variable is made positive or negative with
probability 1

2
. All clauses are thus the same size. In the constant probability

model, we generate each of the L clauses in a problem by including each of
the 2N possible literals with probability p. Since the inclusion of empty or unit
clauses typically makes problems easier, many studies use a variant of the constant
probability model proposed in [48] in which if a clause is generated containing
either no literals or only one literal, it is discarded and another clause generated
in its place. We call this the \CP" model.

3 Complete procedures

3.1 Davis-Putnam procedure

Despite its simplicity and age, the Davis-Putnam procedure remains one of the
best complete procedure for satis�ability [19]. The original Davis-Putman pro-
cedure [17] was based on a resolution rule that eliminated the variables one-by-one
and added all possible resolvents to the set of clauses. Unfortunately, this pro-
cedure requires exponential space in general. Davis, Logemann and Loveland
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therefore quickly replaced the resolution rule with a splitting rule which divides
the problem into two smaller subproblems [16]. In much of the literature (includ-
ing here), this later procedure is rather inaccurately called the \Davis-Putnam"
or \DP" procedure.

procedure DP(�)
(Sat) if � empty then return satis�able
(Empty) if � contains an empty clause then return unsatis�able
(Tautology) if � contains a tautologous clause c then return DP(�� fcg)
(Unit propagation) if � contains a unit clause flg then

return DP(� simpli�ed by assigning l to True)
(Pure literal deletion) if � contains a literal l but not the negation of l then

return DP(� simpli�ed by assigning l to True)
(Split) if DP(� simpli�ed by assigning a literal l to True) is satis�able

then return satis�able
else return DP(� simpli�ed by assigning the negation of l to True)

Figure 1: The Davis-Putnam Procedure.

After applying the split rule, we simplify the set of clauses by deleting every
clause that contains the literal l assigned to True (often called unit subsumption)
and deleting the negation of l whenever it occurs in the remaining clauses (often
called unit resolution). Note that unit subsumption can be ignored if the DP
procedure is terminated when every variable has been assigned to a truth value.

Because of its cost, the pure literal rule is often deleted. Similarly, as tauto-
logies can only be eliminated at the start of search, the tautology rule is often
deleted. Neither rule is required for the soundness or completeness of the pro-
cedure. The unit propagation rule is also not necessary for the soundness or
completeness of the procedure as the split and empty rules achieve the same ef-
fect. However, the unit propagation rule contributes greatly to the e�ciency of
the Davis-Putnam procedure. For Horn-Sat problems, the unit propagation rule
is the basis for a complete procedure for determining satis�ability.

Hooker has shown how to adapt the Davis-Putnam procedure to determine
incremental satis�ability e�ciently [50]. Given a set of satis�able clauses �,
incremental satis�ability is the problem of deciding the satis�ability of � [ fCg
for some new clause C. Incremental satis�ability problems arise in a variety of
areas including hardware veri�cation and knowledge base updating.

3.2 Branching heuristics

The Davis-Putnam algorithm is non-deterministic as we can choose the literal
upon which to branch. A popular and cheap branching heuristic is Mom's heur-
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istic. This picks the literal that occurs most often in the minimal size clauses.
Ties are usually broken with a static or random ordering. In some cases, comput-
ing the literal that occurs most often is considered too expensive and we simply
branch on the �rst literal of a shortest size clause.

The Jeroslow-Wang heuristic [54] estimates the contribution each literal is
likely to make to satisfying the clause set. Each literal is scored as follows: for
each clause c the literal appears in, 2�jcj is added to the literal's score, where jcj
is the number of literals in c. The split-rule is then applied to the literal with the
highest score.

Hooker and Vinay have investigated the motivation behind the scoring func-
tion used in the Jeroslow-Wang heuristic [51]. They propose the \satisfaction
hypothesis", that it is best to branch into subproblems that are more likely to
be satis�able, but reject this in favour of the \simpli�cation hypothesis", that it
is best to branch into simpler subproblems with fewer and shorter clauses after
unit propagation. The simpli�cation hypothesis suggests a \two-sided" Jersolow-
Wang rule which performs better than the original Jersolow-Wang rule.

One of the best current implementations of the Davis-Putnam procedure, satz
uses a branching heuristic based on maximizing the amount of unit propagation
[69]. This adds further support to Hooker and Vinay's simpli�cation hypothesis.

3.3 Data structures and implementation

The performance of the Davis-Putnam procedure critically depends upon the care
taken in the implementation. Crawford and Auton present an algorithm that does
both unit resolution and subsumption in linear time [12]. For each variable, there
are lists of the clauses that contain the variable poistively and negatively. Each
clause has a counter which contains either the number of literals that have not
yet been assigned or an inactive 
ag if the clause has been subsumed. When a
variable is assigned to true, the counters of active clauses in which the variable
appears negatively are decremented, and of active clauses in which the variable
appears positively are set to inactive. When a variable is assigned to false,
the analogous changes are performed. Zhang and Stickel show how to improve
this slightly by performing unit resolution in amortized linear time, but unit
subsumption in amortized constant time [102]. This improvement can o�er a
speedup of two on average over Crawford and Auton's algorithm on various Sat
problems.

Discrimination trees (often called \tries") have proved useful for rapid in-
dexing in a variety of areas of automated reasoning like term rewriting and res-
olution theorem proving. Zhang and Stickel have compared their use in the
Davis-Putnam procedure with the list based methods described above [101]. In a
trie-based procedure, the set of clauses is stored as a tree data structure in which
edges are labelled by literals, and each path represents a the set of literals in one
of the clauses. Unit resolution can then be performed by a merging operation.
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Zhang and Stickel's experimental and theoretical results suggest a hybrid scheme
in which clauses are represented as tries but lists are used to identify rapidly
clauses in which the variable occurs positively and negatively. This scheme is
implemented in the SATO procedure [98].

3.4 Non-clausal problems

Our description of the Davis-Putnam procedure has assumed that problems are in
CNF or clausal form. This is not essential. For example, Otten has used a matrix
representation to extend the Davis-Putnam procedure to non-clausal formulae
[78]. Experiments on non-clausal problems show that this non-clausal Davis-
Putnam procedure performs better than a standard Davis-Putnam procedure
using the direct translation into clausal form (which is exponential in the worst
case) as well as the de�nitional translation (which is quadratic, but introduces
extra variables).

3.5 Intelligent backtracking and learning

The standard Davis-Putnam procedure performs chronological backtracking, ex-
ploring one branch of the search tree completely before backtracking and explor-
ing the other. We can improve upon this by adapting some of the well-developed
techniques from the constraint satisfaction community like con
ict-directed back-
jumping and nogood learning. Con
ict-directed backjumping backs up the search
tree to the cause of failure, skipping over irrelevant variable assignments. Nogood
learning records the cause of failure to prevent similar mistakes being made down
other branches. Bayardo and Schrag have described how both of these mechan-
isms can be implemented within the Davis-Putnam procedure [3, 4]. They show
that, with these enhancements (especially with relevance-bounded learning), the
Davis-Putnam procedure can perform as well or better than local search proced-
ures like Gsat and WalkSat on a wide variety of benchmark problems.

3.6 Early mistakes

One problem with a complete procedure like Davis-Putnam is that an early mis-
take can be very costly. In [33], we identi�ed Sat problems which were typically
easy but could occassionally trip up the Davis-Putnam procedure. For example,
on one CP problem, the �rst split led immediately to an unsatis�able subproblem
which took over 350 million branches to solve. On backtracking to the root of the
search tree, a satisfying assignment was found down the other branch without
any search. Gomes, Selman and Kautz have shown that a strategy of randomiz-
ation and rapid restarts can often be e�ectively at tackling such early mistakes
[43]. Meseguer and Walsh show that other modi�cations of the depth-�rst search
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strategy like limited discrepancy search and interleaved depth-�rst search can
also tackle these early mistakes [74].

3.7 Parallelization

The non-deterministic split rule suggests a simple mechanism for parallelizing
the Davis-Putnam procedure. Rather than explore one branch, backtrack, and
explore the other, we can explore the two branches in parallel. To be e�ective,
however, we must decide when to explore branches sequentially and when to ex-
plore branches in parallel. We must also balance loads on the di�erent processors
since the exploration of one branch can terminate before the exploration of the
other. Zhang, Bonacina and Hsiang have implemented a simple master-slave
distributed Davis-Putnam procedure and used it to solve some open quasigroup
existence problems [100]

3.8 Upper bounds

Various upper bounds have been derived for the performance of the Davis-Putnam
procedure and of other complete procedures on 3-Sat problems. The worst-
case time complexity of Davis-Putnam is O(1:696N), and a small modi�cation
improves this to O(1:618N) [11]. Rodosek presents an algorithm that takes
O(1:476N) by making binary decisions that eliminate at least two variables [83].
Beigel and Eppstein give an algorithm that reduces the 3-Sat problem to a 2-
Sat problem, and then tries to extend the solution of this to the original problem
[5]. In the worst case, this algorithm runs in O(1:381L). However, since the num-
ber of clauses L is usually much larger than the number of variables N , this is
often not an improvement. Indeed, the O(1:476N) bound of Rodosek's algorithm
is better for L=N > 1:206.

3.9 Resolution

van Gelder and Tsuji have augmented the Davis-Putnam procedure with a 2-
closure rule which uses a limited version of resolution to generate all possible
resolvents with 2 or fewer literals [94]. This algorithm was very competitive on
hard random 3-Sat problems and circuit-fault analysis problems. More recently,
Dechter and Rish have championed the original Davis-Putnam procedure [18].
They show that a variant of this procedure, which they call \directional resolu-
tion", performs well on various tractable classes like 2-Sat problems as well as on
certain types of structured problems. They also propose an approximation pro-
cedure called \bounded directional resolution" which limits the size of resolvents
to make the space complexity polynomial. This approximation procedure can be
useful as a pre-processing step for the DP procedure.
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3.10 Binary decision diagrams

Ordered binary decision diagrams (or OBDDs) are a mechanism for e�ciently
representing and manipulating Boolean expressions [6]. They have proved highly
successful in the model checking of �nite-state hardware. Uribe and Stickel found
that for solving satis�ability problems, OBDDs were often more sensitive to the
variable ordering than the Davis-Putnam procedure, and were less good on prob-
lems which have few solutions [93].

3.11 OR techniques

A variety of OR techniques have been used to determine the satis�ability of a
set of clauses. For example, Hooker has developed a cutting plane algorithm for
solving Sat problems [47]. He combined this with a branch-and-bound algorithm
to obtain a branch-and-cut algorithm that shows some promise [49]. Kamath et
al. have also had success with an interior point method [59].

3.12 Logical approaches

Much work on Sat solving techniques has been done by those implementing �rst
order theorem provers. Since Sat is a subclass of (classical) �rst order logic,
any theorem prover must inevitably contain a Sat solver, even if little conscious
thought has been put into its construction. Some of these provers, for example
the resolution based Otter [73], have had signi�cant successes and must be dealing
with propositional logic e�ectively. Often the line between propositional and �rst
order reasoning is blurred, for example in systems that allow quanti�ed formulae
over only �nite domains.

One appealing approach for dealing with propositional logic is Smullyan's
method of analytic tableaux [90]. This has the advantage of not needing input in
clausal form, and is extremely easy for humans reasoning on small formulas with
pen and paper. A related technique is the KE calculus, which can sometimes
improve exponentially on tableaux [15]. It is likely that there will be `convergent
evolution' of e�cient Sat methods based on other logical calculi. For example,
Crawford and Auton [12] report that, having started with a tableau calculus,
their program `tableau' could best be seen as an e�cient implementation of Davis-
Putnam.

4 Approximation procedures

4.1 A semi-decision procedure

Papadimitriou has proposed a semi-decision procedure for 2-Sat that repeatedly

ips the truth assignment for a variable in an unsatis�ed clause [79]. This satis�es
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the clause but may make other clauses unsatis�ed. Using an argument based upon
the gambler's ruin, Papadimitriou proves that, if the problem is satis�able then
this procedure will �nd a satisfying assingment in O(N2) 
ips with a probability
approaching 1.

procedure 2SAT(�)
T := random(�) ; random truth assignment
repeat until T satis�es �

v := variable in an unsatis�ed clause
T := T with truth assignment for v 
ipped

end

Figure 2: Papadimitriou's semi-decision procedure for 2-Sat

It is less well known that there is also a decision procedure for Horn-Sat
problems which 
ips variables in unsatis�able clauses and which takes at most
N 
ips [80]. This procedure has two phases. In the �rst phase, we start with
a truth assignment that assigns False to every variable. We then satisfy the
Horn clauses that contain a positive literal by 
ipping the truth assignments to
the positive literals. In the second phase, we simply test the remaining purely
negative clauses to determine if we have a satisfying assignment.

procedure HornSAT(�)
T := all-false(N) ; all N vars set to False
for v := positive literals in Horn clause do

T := T with truth assignment for v 
ipped
end

if T satis�es � return \satis�able"
else \unsatis�able"

Figure 3: Papadimitriou's decision procedure for Horn-Sat

4.2 A simple greedy algorithm

Koutsoupias and Papadimitriou have introduced a simple approximation pro-
cedure for satis�ability which they call the \greedy algorithm" [67]. In this
procedure, we choose a truth assignment at random. We then pick a variable
such that 
ipping its truth value increases the number of satis�ed clauses. We
do not allow sideways moves. We repeat until no improvement is possible. If
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this is a solution, we report success. Otherwise, we simply give up. Koutsoupias
and Papadimitriou prove that this procedure will �nd a satisfying assignment for
almost all satis�able problems with O(N2) clauses.

procedure greedy(�)
T := random(�) ; random truth assignment
repeat until no improvement possible

T := T with a truth assignment 
ipped that increases
number of satis�ed clauses

end

if T satis�es � return \satis�able"
else \no satisfying assignment found"

Figure 4: Koutsoupias and Papadimitriou's greedy algorithm

Gent has proposed that an even simpler greedy algorithm and shown an even
better bound on performance. In this algorithm, we simply assign a variable ac-
cording to which polarity it has most often. This will �nd a satisfying assignment
for almost all satis�able problems with O(N log(N)) clauses [29].

procedure greedy(�)
T := nil ; no truth assignments
for v := 1 to N

if v occurs more often positively in � then T := T [fv=Trueg
else T := T [fv=Falseg

end

if T satis�es � return \satis�able"
else \no satisfying assignment found"

Figure 5: Gent's greedy algorithm

4.3 GSAT

The Gsat procedure [88] essentially adds restarts and sideways 
ips to Kout-
soupias and Papadimitriou's greedy algorithm. Despite its simplicity, Gsat and
its variants give good performance on a wide variety of satis�ability problems.
Gsat starts with a randomly generated truth assignment, and hill-climbs by
changing the variable assignment which gives the largest increase in the number
of clauses satis�ed. If there exists no variable assignment that can be changed to
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procedure GSAT(�)
for i := 1 to Max-tries

T := random(�) ; random truth assignment
for j := 1 to Max-
ips

if T satis�es � then return T
else T := T with truth assignment 
ipped to maximize

number of satis�ed clauses
end

end

return \no satisfying assignment found"

Figure 6: The Gsat local search procedure

increase the score, a variable is 
ipped which does not change the score. Without
such sideways 
ips, the performance of Gsat degrades greatly. In [32] it is shown
that much of the search consists of the exploration of large "plateaus" where side-
ways 
ips predominate and only the occasional up 
ip is possible.

Local search procedures like Gsat's need to be implemented with some care.
Naively, one simply iterates through the variables, and for each one calculate
the number of clauses satis�ed if that variable is 
ipped. For N variables and
L clauses, the work involved is O(NL). However, if we store for each variable
the change in score that 
ipping it would make, it is possible to update this
information after each 
ip just by examining each clause that the 
ipped variable
appears in.

Sebastiani has described how to modify Gsat so that it can be used with
non-clausal formulae [39]. He shows how to compute the number of clauses that
would be satis�ed if the formulae was converted into CNF without constructing
the CNF conversion itself. This computation takes time linear in the size of the
input formula.

4.4 Gu's procedures

At around the same time as Gsat was introduced, several families of local search
procedures for Sat were proposed by Gu [44]. These procedures share many
similarities with Gsat. However, they have a di�erent control structure which
allows them, for instance, to make sideways moves when upwards moves are
possible. No direct comparison has yet been made between Gu's procedures and
the Gsat procedure and its variants.

11



procedure SAT1.0(�)
T := random(�) ; random truth assignment
while T does not satisfy � do

for i := 1 to number of variables
if T with vi 
ipped does not decrease score

then T := T with vi 
ipped
if local then 
ip some variables at random

end

Figure 7: The SAT 1.0 family of procedures introduced by Gu.

4.5 GenSAT

To study Gsat in more detail, we proposed the GenSat family of local search
procedures [28] (see Figure 4). Gsat is an instance of GenSat in which hill-
climb returns those variables which increase the score most by being 
ipped,
while pick chooses a random member of the set given to it, and initial simply sets
each variable independently to true or false with equal probability. We used the
GenSat family to support the conjectures made in [27] that neither greediness
nor randomness are essential for the e�ectiveness of Gsat. We also proposed a
new procedure, Hsat which often performs much better than Gsat, and which
has since been used by several other researchers [95, 60, 21]. Hsat modi�es
Gsat to take account of historical information concerning when variables were
last 
ipped. When o�ered a choice of variables, Hsat always picks the one that
was 
ipped longest ago (in the current try): if two variables are o�ered which
have never been 
ipped in this try, an arbitrary (but �xed) ordering is used to
choose between them. Hsat is otherwise like Gsat.

4.6 Weights

One modi�cation of the Gsat procedure that can be very e�ective on certain
classes of problems are the \clause weights" introduced in [84] and [76]. Associ-
ated with each clause is a weight which is varied during search to focus attention
on the hardest clauses. The score function is the sum of the weights of the sat-
is�ed clauses. Selman and Kautz originally only modi�ed weights at the end of
each try. Frank has shown that both Gsat and Hsat can be improved if weights
are modi�ed after every 
ip [21].
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procedure GenSAT(�)
for i := 1 to Max-tries

T := initial(�) ; initial truth assignment
for j := 1 to Max-
ips

if T satis�es � then return T
else Poss-
ips := hill-climb(�,T)

v := pick(Poss-
ips)
T := T with truth assignment to v 
ipped

end

end

return \no satisfying assignment found"

Figure 8: The GenSat family of local search procedures.

4.7 Random walk

The success of Papadimitriou's semi-decision procedure for 2-Sat and his decision
procedure for Horn-Sat illustrate the bene�ts of focusing search on variables
in unsatis�ed clauses (called, from now on, unsatis�ed variables). A variant
of Gsat, called Gsat with random walk [86] focuses some of its search e�ort
on unsatis�ed variables. With probability p, Gsat with random walk 
ips a
variable in an unsatis�ed clause, and otherwise hill-climbs normally. Gsat with
random walk can be seen as an instance of the GenSat family in which hill-climb
returns the unsatis�ed variables with probability p, or the variables that maximize
the score when 
ipped otherwise. Flipping an unsatis�ed variable can actually
decrease the number of satis�ed clauses. Nevertheless random walk improves the
performance of Gsat considerably. Flipping an unsatis�ed variable appears to
be a better strategy than 
ipping a variable at random with probability p. In all
satisfying assignments, at least one of the variables in an unsatis�ed clause must
have the opposite truth value. We must therefore 
ip at least one of them en route
to a satisfying assignment. Flipping an unsatis�ed variable is also guaranteed to
change the set of unsatis�ed clauses. Since Gsat's search is governed by the
variables in this set, 
ipping an unsatis�ed variable introduces diversity into the
search. In [36], we showed that one of the largest bene�ts of adding random walk
is the reduction in the sensitivity of performance to the Max-Flips parameter.

4.8 WalkSAT

The WalkSat procedure introduced in [86] takes the random walk idea one
step further and makes it the central component of the algorithm. WalkSat
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essentially adds restarts and a heuristic to choose between unsatis�ed variables
to Papadmitriou's semi-decision procedure for 2-Sat . WalkSat chooses an

procedure WalkSAT(�)
for i := 1 to Max-tries

T := random(�) ; random truth assignment
for j := 1 to Max-
ips

if T satis�es � then return T
else pick an unsatis�ed clause

v := var in clause chosen either greedily or at random
T := T with truth assignment to v 
ipped

end

end

return \no satisfying assignment found"

Figure 9: The WalkSat local search procedure.

unsatis�ed clause at random, and then picks an unsatis�ed variable to 
ip from
this clause using either a greedy or a random heuristic. WalkSat is an instance
of the GenSat family in which hill-climb returns the variables in an unsatis�ed
clause, and pick chooses between then either randomly or greedily. The exact
choice is as follows: if a variable can be 
ipped to satisfy the clause without
breaking any other clauses, then it is 
ipped, otherwise, with a probability p we

ip the variable that breaks the fewest number of clauses else we 
ip a variable at
random. Note that, unlikeGsat, the score function does not consider the number
of clauses satis�ed, only the number of clauses that are currently satis�ed which
become unsatis�ed.

4.9 Novelty

Inspired perhaps by the good performance of WalkSat and Hsat, the Novelty
algorithm [72] combines together a focus on unsatis�ed clauses with a mechanism
similar to that in Hsat for 
ipping variables that have not been 
ipped recently.
The Novelty algorithm also returns to Gsat's score function of the number of
satis�ed clauses. The Novelty algorithm choses an unsatis�ed clause at random.
It then 
ips the variable with the highest score provided it is not the last variable
in the clause to be 
ipped. If it is, then with probability p, Novelty 
ips the
variable with the next highest score, and with probability 1�p, the variable with
the highest score. The R-Novelty algorithm (also introducted in [72]) takes into
account the di�erence between the two highest scores. This makes the procedure
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entirely deterministic for p 2 f0; 0:5; 1g. To inhibit loops, the unsatis�ed variable
is therefore selected at random every 100 
ips.

4.10 Simulated annealing

Simulated annealing has not proved as popular as local search methods likeGsat.
Comparisons between local search methods like Gsat and simulated annealing
paint a rather muddled picture. For example, Selman and Kautz report that they
are unable to �nd an annealing schedule that performed better than Gsat [85].
On the other hand, Spears presents results that suggest that simulated annealing
scales better than Gsat on hard random 3-Sat problems [92]. We are unaware
of any comparisons between simulated annealing with local search methods like
WalkSat and Novelty which tend to perform better than Gsat on this problem
class.

4.11 Tabu search

Given the success of historical information in Hsat and Novelty, we might expect
tabu search to perform well on Sat problems. This is indeed the case. Mazure,
Sa�is and Gr�egoire propose Tsat, a basic tabu search algorithm for Sat [71].
This algorithm keeps a �xed-length chronologically ordered FIFO-list of 
ipped
variables. On hard random 3-Sat problems, they found that the optimal length
of this tabu list increased linearly with N . With such a list, they showed that
Tsat was highly competitive with WalkSat.

4.12 Hybrid methods

There has been some interest in hyrbid methods that combine together the best
feature of approximate and complete methods for Sat. Local search methods
can traverse the search space rapidly. Complete methods, on the other hand,
tend to follow much more restricted trajectories. They compensate for this by
powerful constraint propagation rules like unit propagation. Zhang and Zhang
have therefore proposed a hybrid method for Sat that combines together a local
search method based on Gsat and a systematic procedure based on the Davis-
Putnam procedure [104]. They report some promising result on certain satis�able
quaisgroup existence problems.

4.13 Other approaches

There has been a limited amount of work using neural networks and genetic
algorithms to solve Sat. One exception is [91] in which Spears proposes a Hop-
�eld network algorithm for solving Sat problems. The network is based on the

15



AND/OR parse tree of the Sat problem. Spears reports favourable results com-
pared to Gsat on hard random 3-Sat problems. Spears and de Jong have also
proposed a simple genetic algorithm for solving Sat problems [56]. However,
insu�cient results are reported to determine if this approach is competitive with
local search methods like Gsat.

Hogg and Williams have proposed quantum algorithms for solving Sat prob-
lem. For example, Hogg has proposed a simple quantum algorithm for satis-
�ability and constraint satisfaction problems [46]. He has observed similar phase
transition on random 3-Sat problems as seen in classical computational methods.

Finally, Lipton has shown how to Sat problems using DNA-based computing
methods [70].

5 Phase transition behaviour

Following [8], there has been considerable interest in \phase transition" beha-
viour in many di�erent NP-complete problems. Problems which are very over-
constrained are insoluble and it is usually easy to determine this. Problems which
are very under-constrained are soluble and it is usually easy to guess one of the
many solutions. A phase transition tends to occur inbetween when problems are
\critically constrained" and it is di�cult to determine if they are soluble or not.
Such behaviour has been extensively studied in Sat over the last �ve years.

5.1 Random k-Sat phase transition

For random 2-Sat, the phase transition has been proven to occur at L=N =
1 [9, 42]. For random 3-Sat, the phase transition has been shown to occur
experimentally around L=N = 4:3 [75, 12]. Theoretical bounds put the phase
transition for random 3-Sat in the interval 3:003 < L=N < 4:598 [23, 66]. For
random 4-Sat, the phase transition has been shown to occur experimentally
around L=N = 9:8 [35]. For large k, the phase transition for random k-Sat
occurs at a value of L=N close to �1= log2(1�

1

2k
) [65]. A recent result of Friedgut

proves that the width of the phase transition in the random 3-Sat model narrows
as problems increases in size [22]. Kamath et al. show that at the random 3-

Sat transition, the distribution in the number of satisfying assignments is very
skewed [58]. An exponentially small number of problems have an exponentially
large number of satisfying assignments. This makes it hard to calculate the exact
location of the transition.

A technique borrowed from statistical mechanics called �nite size scaling [1]
models the shape of the satis�ability transition [65, 87]. Around a critical value
of L=N , �nite size scaling predicts that maroscopic properties like the probability
of satis�ability are indistinguishable except for a simple power law scaling in N .
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The scaling of search costs can also be accurately modelled using this technique
[30].

5.2 Random k-Sat search cost

For complete methods like Davis-Putnam, median search cost has been observed
to peak in the random 3-Sat phase transition where approximately 50% of
problems are satis�able [75]. Crawford and Auton report simple exponential
growth for their Davis-Putnam procedure on the random 3-Sat problem class
at l=n = 4:2 (i.e. at the phase transition) and at l=n = 10 (i.e. in the over-
constrained region) [13]. They also record roughly linear growth at l=n = 1; 2 and
3 in the under-constrained region, but caution that \below the cross-over point
. . . there are some problems that are as hard as those at the cross-over point" [13].
We have reported similar behaviour in the constant probability model [35, 34].

The theoretical analysis of the Davis-Putnam procedure has largely been re-
stricted to the easier constant probability problem class. One exception is Yugami
who has developed an approximate theoretical model for the average case com-
plexity of the Davis-Putnam procedure across the random 3-Sat phase transition
[97]. Whilst the results agree well with experiment, the derivation is complex and
only yields recursion equations.

For local search methods, we reported a possible cubic growth in search cost
for Gsat at the random 3-Sat phase transition in [28]. Parkes and Walser
also record sub-exponential growth for several variants of the Gsat procedure
at the random 3-Sat phase transition [81]. Gent et al. extend these results to
model search cost across the whole random 3-Sat phase transition [31] They
were unable to �t their data for Gsat to an exponential model of search growth,
and used instead a simple two parameter power law model which grew no faster
than n4.

Recently, there has been more detailed analysis of the distribution of search
costs. Frost and Rish have proposed modelling discrete run-time distributions
with continuous probability functions [24]. They show that on hard unsatis�able
random 3-Sat problems, the run-time distribution of the Davis Putnam proced-
ure can be modelled by a lognormal density function. Hoos and Stutzle have
also modelled run-time distributions, focusing on individual problem instances
to reduce variance [53, 52]. They showed that the run-time distribution for al-
gorithms like WalkSat can often be modelled with an exponential distribution.
This supports experimental results in [36] that suggests that random restarting
o�ers little or no advantage with algorithms that perform random walk as such
algorithms tend not to be stuck in a local minimum.

17



5.3 Constant probability model

Various theoretical results have been shown for the constant probability model
without the deletion of empty and unit clauses. For example, Purdom and
Brown [57] show that average running time is polynomial if any of the following
hold asymptotically: (1) L �MlnN for some constant M ; (2) L � e�N for some
constant �; (3) p � �; or (4) p � M(lnN=N)3=2. It is important to note, however,
that these results do not cover all possible functions of p and L, and do not in
the limit cover the phase transition between satis�able and unsatis�able.

Most experimental studies have used the CP model in which empty and unit
clauses are deleted to prevent trivially insoluble problems. If the expected clause
length is kept roughly constant by varying p as 1=n then the solubility phase
transition occurs around an approximately constant value of L=N [35]. Whilst
problems from the CP model are typically much easier than random k-Sat prob-
lems of a similar size [75], occasional problems in the \easy" soluble region can
be much harder for the Davis-Putnam procedure than the hardest problems of
the \hard" region of the random k-Sat model [35, 34]. Such problems occur in a
region where constraint propagation is least e�ectively, search depth is maximal
and branching heuristics can make occasional very expensive mistakes [37].

6 Applications

If a problem is NP-complete, we can in theory translate it into Sat using an
encoding that is polynomially bounded in size. Research over the last decade has
shown that this approach is often surprisingly e�ective in practice.

6.1 Graph colouring

Graph colouring problems can be easily encoded into Sat. To encoding the
problem of k-colouring a graph of n nodes, we use kn variables, with vij true
i� node i takes the jth colour. A more compact encoding is possible that uses
n log2(k) variables in which vij is true i� node i has a colour with the jth bit set.
However, this encoding appears to be much harder to reason about. In addition,
we may choose not to specify the constraints that each node takes only one colour.
If a node is given two or more colours, we can simply pick one at random. This
is especially useful for local search methods. Although Selman et al. report that
Gsat is competitive with specialized graph colouring procedures [88], there has
been little other work reported in this area. One exception is Hoos, who has
looked at the e�ect of di�erent encodings of graph colouring problems into Sat
on local search algorithms likeWalkSat [52]. Another exception is the solution
of quasigroup existence problems, which can be viewed as a specialized type of
graph colouring problem.
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6.2 Quasigroup existence

A quasigroup is a Latin square, a n by n multiplication table in which each entry
appears once in every row and column. Quasigroups model a variety of practical
problems like tournament scheduling and designing drug tests. A variety of auto-
mated reasoning programs have been used to answer open questions about the
existence and non-existence of quasigroups with particular properties of interest
to mathematicians [25]. For example, the QG5 family of problems concern the
existence of idempotent quasigroups (those in which a �a = a for each element a)
in which (ba � b)b = a.

An order n problem can be encoded into Sat using n3 variables, with vijk true
i� i�j = k. Symmetry breaking to eliminate isomorphic solutions is crucial for the
e�cient solution of these problems. One symmetry breaking constraint often used
is that that a�n � a�1. Zhang has had considerable success solving encodings into
Sat of quasigroup existence problems using SATO, his e�cient implementation
of the Davis-Putnam procedure [99, 98]. Zhang, Bonacina and Hsiang have also
solved several open quasigroup existence problems with PSATO, a parallel version
of the Davis-Putnam procedure [100]. Finally, Stickel has solved some open
problems with various implementations of the Davis-Putnam procedure [89].

6.3 Hardware

Problems like the veri�cation and diagnosis of faults in hardware have proved
popular targets for encoding into Sat. Such problems often map into Sat in a
very direct and natural way, especially if the circuit model ignores timing issues.
The signal on a wire can be modelled with a Boolean variable which is True if
the signal is Hi and False otherwise. Logic gates like NAND are then modelled
by the logical connectives of the same name. For example, Larrabee has gener-
ated some challenging Sat problems based on a variety of faults in synchronous
digital circuits including \single stuck-at" and \bridge-faults" [68]. As another
example, Kamath, Karmarkar, Ramakrishnan and Resende have proposed some
benchmarks which encode circuit synthesis problems into Sat [59]. Whilst these
circuit synthesis problems have been used in a number of studies of local search
methods (for example, [88], [84] and [86]), they pose few challenges to complete
methods like Davis-Putnam. Even with a simple-minded branching heuristic, our
results show that the Davis-Putnam procedure solves these problems with little
search.

6.4 Planning

Kautz and Selman have had considerable success solve planning problems by en-
coding them into Sat and using both local search methods like Gsat and com-
plete procedures like Davis-Putnam with a randomization and restart strategy
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[61, 62, 43]. In general, planning is a more complex problem than Sat. With no
restrictions on the operators, planning is undecidable as we can represent a Tur-
ing machine using plan operators. Even restricted to propositional STRIPS-like
operators, planning is Pspace-complete. To encode planning problems into Sat,
we must therefore make additional restrictions. Kautz and Selman's proposal is
to bound the length of plan. This bound can be iteratively increased to retain
completeness.

A planning problem can be represented as a set of axioms, for which any
satisfying assignment corresponds to a valid plan. Each predicate in the planning
language is augmented with an extra time index. The bound on plan length limits
the number of time indices needed. For example, the predicate move(x; y; z; i)
is true i� we move x from y to z at time step i. Frame axioms are needed to
ensure that predicates continue to hold if they are not a�ected by the actions.
Kautz and Selman hand-crafted their original encodings with additional domain-
speci�c information that is not-expressible in the STRIPS action language (for
example, they add axioms to state that the 
uent on is irre
exive and non-
commutative). Ernst, Millstein and Weld therefore proposed theMedic planning
system in which the encoding is automatic and approaches the e�ciency of Kautz
and Selman's hand-crafted encodings [20]. Kautz and Selman build upon this
work, showing highly competitive performance with encodings into Sat that take
advantage of a simple declarative speci�cation of domain-speci�c knowledge [64].
Kautz and Selman have also investigated a di�erent way of encoding planning
problems into Sat based upon the planning representation used in the ground-
breaking Graphplan system [63].

6.5 Steiner trees

Network Steiner tree problems have been extensively studied in operations re-
search. A network Steiner tree problem consists of an undirected graph, where
each edge is assigned a positive integer cost, and a subset of the nodes, called the
Steiner nodes. The aim is to �nd a subtree of the graph that spans the Steiner
nodes, such that the sum of the costs of the edges of the tree is minimal. Such
problems have many applications in network design and routing. A simple encod-
ing into Sat uses a number of variables that is quadratic in the number of edges.
Since problem instances of interest have thousands of edges, such an encoding is
not of practical use. Jiang, Kautz, and Selman therefore developed an approx-
imate encoding that is essentially linear in the number of edges in the graph [55].
The encoding is approximate since it does not preserve all possible solutions. Nev-
ertheless, WalkSat on the encoding produced solutions that were competitive
with the best current specialized OR algorithms. Davenport (personal commu-
nication) subsequently showed that even a very simple Davis-Putnam procedure
found solutions to these encodings.
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6.6 Scheduling

Crawford and Baker have encoded machine-shop scheduling problems into Sat
[14]. The machine-shop scheduling problem consists of scheduling a set of jobs
subject to a set of resource constraints, start and due dates, and sequencing
constraints. Crawford and Baker reject a naive encoding of this problem in which
the Boolean variable vit is True i� operation i starts at time t as it gives a much
larger search space than necessary. Instead, they propose an encoding in which
the Boolean variable vij is True i� operation i starts before operation j. They
observed that Sadeh's sceduling benchmarks encode into large, under-constrained
Sat problems. Whilst their Davis-Putnam procedure performed poorly on some
of these encodings due to early-mistakes, a simple iterative sampling algorithm
was able to solve all of Sadeh's problems with very little search.

6.7 Diagnosis

Pandurang and Williams have constructed a propositional theory to monitor,
diagnose and repair the Deep Space One spacecraft [96, 77]. Using some complex
and domain-dependent compilation techniques, they are able to construct plans
of action in essentially constant time per plan step.

6.8 Benchmark libraries and other resources

Many of these problems have been collected into benchmark libraries. One of the
oldest is the benchmark library that was developed for the Second DIMACS
International Algorithm Implementation Challenge in 1993. Several hundred
problems from this challenge can be found at:

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/

This challenge also proposed a simple plain text format for specifying satis�ab-
ility problems which has since become a standard. A benchmark library was
also created for the International Competition and Symposium on Satis�ability
Testing held in Beijing in March 1996. Problems from this library are available
from:

http://www.cirl.uoregon.edu/jc/beijing

More recently, Hoos and Stutzle have created the SATLIB library at

http://www.informatik.tu-darmstadt.de/AI/SATLIB.

This contains several benchmark problems, as well as links to various solvers and
other resources.
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7 Beyond the propositional

Many of the algorithms developed for Sat have been extended to languages which
are richer than the purely propositional.

7.1 Linear 0-1

Linear 0-1 problems are constraints of the form,

X

i

ci : xi � d

where xi are 0-1 variables, ci; d 2 Z, and � is one of the relations, f=;�; <;�; >g.
Sat problems can be easily encoded as a set of linear 0-1 constraints. Each clause,

x0 _ : : : xi _ :xi+1 _ : : ::xn

is converted into the constraint,

x0 + : : :+ xi + (1� xi+1) : : :+ (1� xn) � 1:

On the other hand, converting linear 0-1 constraints into Sat can result in a
large (but polynomially bounded) number of clauses. For instance, problems
like the pigeonhole problem which involve counting can often be compacting
represented using linear 0-1 constraints but tend to need much larger encodings
in Sat. Optimization problems with linear objective functions are also easily
represented as a sequence of linear 0-1 decision problems Both complete and
approximation methods for Sat have been generalized to deal with linear 0-
1 constraints. For example, Barth has extended the Davis-Putnam procedure
to linear 0-1 constraints [2]. Walser has extended the WalkSat procedure to
linear 0-1 constraints [95]. Both of these approaches show promise on benchmark
problems.

7.2 Modal logics

Propositional modal logics extend the propositional language of Sat with modal
operators like 2 and 3. The exact interpretation of these operators depends on
the particular modal logic. For example, in the modal logic K, if 2(' !  )
and 2' then 2 also holds. There has been revived interest in the satis�ab-
ility of such logics since it was shown that the terminological logic ALC is a
notational variant of K(m), the propositional modal logic K with m modalities
[40]. Giunchiglia and Sebastiani have shown how procedures like Davis-Putnam
can be extended to deal with many di�erent types of propositional modal logics
[39]. They report orders of magntidue improvement over more traditional tableau
based procedures for ALC like Kris. The key observation behind their extension
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of the Davis-Putnam procedure is that the propositional connectives retain the
same semantics. We can therefore use the Davis-Putnam procedure to determ-
ine possible truth values for (potentially boxed or diamond) formulae within a
disjunction. We then recursively call the Davis-Putnam procedure on the formu-
lae that appear within the scope of these boxes and diamonds to check that the
boxes and diamonds can be appropriately satis�ed. Giunchiglia and Sebastiani
also extend the random k-Sat model to modal logics [41]. They identify similar
phase transition behaviour in the modal logics K and S5 to that observed the
random k-Sat model.

7.3 QSAT

Qsat is the problem of deciding the satis�ability of a propositional formula in
which the Boolean variables are either existentially or universally quanti�ed. For
example, 8x9y (x_:y)^ (:x_ y) is satis�able since whatever truth value, True
or False we give to x, there is a truth value for y, namely the same value as x,
which satis�es the quanti�ed formula. Qsat is a more complex decision problem
than Sat. Whilst Sat is NP-complete, Qsat is Pspace-complete[80]. Many two
person games like the generalized versions of checkers, Go, Hex, and Othello are
Pspace-complete. Indeed, we can see Qsat as a game between the existential
quanti�ers, which try to pick instantiations that give a satis�ed formula, and
the universal quanti�ers, which try to pick instantiations that give an unsatis�ed
formula. Cadoli et al. have extended the Davis-Putnam to decide the satis�ability
of Qsat problems [7]. They report qualitiatively di�erent behaviour across the
phase transition for a simple generalization of the random k-Sat model to Qsat.
In [38], we show that, if trivially insoluble problems are eliminated from this
model, behaviour across the phase transition is very similar to that in the random
k-Sat model.

7.4 First-order logic

Propositional reasoning can be used to �nd �nite models of statements in a
richer �rst-order logic. We may then combine the e�ciency of propositional
reasoning with the parsimony of a �rst-order speci�cation. For example, Zhang
and Zhang have developed SEM, a system for generating �nite models of �rst-
order many sorted theories [103]. The input to SEM is a many-sorted �rst-
order logic with functions and equality. We can express concepts in this logic
like 8x : f(x; x) = x where x ranges over the elements in a quasigroup, and
f is the quasigroup multiplication function. This equality constraint enforces
idempotency. This can be instantiated to give n ground equality constraints,
where n is the order of the group.
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8 Conclusions

As this survey article has shown, there has been considerable progress made in
the study of propositional satis�ability over the last decade. Progress has been
both theoretical and practical. On the practical side, we now have complete
and local search procedures able to solve problems with hundreds and, in some
cases, thousands of variables. Many problems of practical interest have also
been solved by encoding them into Sat. On the theoretical side, we have a
more sophisticated picture of what makes Sat problems hard to solve. Research
into phase transition behaviour has been particularly informative. What can
we expect in the future? Sat remains a �eld in which experiment is perhaps
well ahead of theory. We can therefore expect theory to do some catching up,
especially in the theoretical analysis of local search methods. We can also expect
more applications as the message spreads that encoding problems into Sat can
be a viable solution method. Finally, encoding problems into Sat will re-focus
the research community onto representation and problem reformulation. These
are topics that go back to the earliest days of AI and which remain central to the
solution of di�cult search problems.
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