
DirectFlow: Toward a DSL for Infopipes

Chuan-kai Lin Andrew P. Black

Department of Computer Science
Portland State University

{cklin,black}@cs.pdx.edu

Abstract
Information-flow components can be represented as objects,
but this representation is at once too general and overly spe-
cific. This is a problem because the generality makes it pos-
sible to define objects that cannot be treated as components,
while the specificity requires that the programmer code de-
tails that are irrelevant to the information-flow abstraction.
Instead, we advocate defining information-flow components
in a domain-specific language (DSL), and generating the
corresponding objects.

We present a DSL called DirectFlow that exploits the re-
lationship between control flow and dataflow in the object
model to allow programmers to define objects without spec-
ifying how messages are sent and received. We also describe
a compilation algorithm for DirectFlow that infers the mes-
sage sends and generates code for conventional objects. Di-
rectFlow lets the information-flow programmer concentrate
on the dataflow between objects rather than on the details of
how this might be realized by objects.

Categories and Subject DescriptorsD.3.2 [Language
Classifications]: Data-flow languages, Specialized applica-
tion languages; D.3.3 [Language Constructs and Features]:
Classes and objects; D.3.4 [Processors]: Compilers

General Terms Object-Oriented Programming, Dataflow
Programming, Domain-Specific Languages, Communicat-
ing Sequential Processes

Keywords OOP, CSP, DirectFlow, DSL

1. Introduction
Software systems that process large or infinite streams of in-
formation are usually structured to correspond to the flow
of information. Examples include software routers for net-
work traffic [10], data stream query systems [1], real-rate

[copyright notice will appear here]

video streams [12] and highway loop detector data analy-
sis programs [14]. We think of such systems as networks of
information processing components; the output of one com-
ponent streams into the input of another (or multiple others)
to build an “information pipeline”. Given the predominance
of object-oriented technology, it seems reasonable to expect
that these basic components will be implemented as objects.

Previous work by us [3] and by others [10] has indeed fo-
cussed on defining information-flow components as objects,
and on developing the operation protocol that these objects
should use to communicate. Although this approach can be
made to work, we have come to question whether or not ob-
jects are in fact the best tool for information-flow program-
mers.

Objects seem to be both too general and too specific to
be an ideal model for information-flow components; these
problems are discussed in some depth in Sections 2 and
3. The present paper proposes an alternative: describing
information-flow components in a domain-specific language
(DSL). Because the DSL is less expressive than a general-
purpose object-oriented language, excessive generality is
avoided. The same lack of expressivity makes it possible
to infer some important properties of Infopipes — properties
that, in the object-oriented formulation, the programmer was
forced to state explicitly, even though these properties had
nothing to do with the information processing function of
the component. The DSL thus avoids the unnecessary speci-
ficity of the object-oriented formulation.

Since the DSL can be compiled into objects similar to
those that would have been written by hand, there is no
loss of execution efficiency with our proposed approach. We
believe that there will be a significant gain in programmer
productivity: using a DSL, the programmer can specify the
functionality of the Infopipe just once, and leave it to the
compiler to generate the several specialized versions neces-
sary for different execution contexts.

The problem of mapping information-flow components
onto objects is characteristic ofanyinformation-flow system
that uses objects in its implementation, and the general form
of our solution should be applicable to any such system.
For the sake of concreteness, in the remainder of this paper
we will talk about the problem as it arises in an Infopipe

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 1 2005/11/11

system [3], and we will use Infopipe terminology. Another
reason for this choice is that the implementation of our DSL
has so far been restricted to Infopipes.

This paper proceeds to explore the problems that arise
when defining Infopipes as objects, and then proposes a
solution to these problems using theDirectFlow domain-
specific language. We make the following specific technical
contributions.

1. We identify thecauseof various problems that arise when
defining information-flow components as objects: over-
specification due to abstraction mismatch (Sections 2
and 3).

2. We propose the DirectFlow language, which allows the
programmer to define Infopipes without specifying how
object-oriented message send is used to transfer packets
between them (Section 4).

3. We design an algorithm to determine the possible inter-
faces that an Infopipe component defined in DirectFlow
can offer when realized as an object (Section 5).

4. We describe the design and implementation of a compiler
that translates an Infopipe component defined in Direct-
Flow into an object with a suitable interface (Section 6).

2. Context
2.1 Objects and information flow

The fundamental idea of the object-oriented paradigm is that
programs can be made out of objects that interact by sending
and receiving messages. The programmer defines an object
by specifying the messages that it can receive, the actions
that it should take after receiving each of them, and how it
makes use of other objects by sending messages to them.

The prominent role of messages encourages structuring
object-oriented programs according to control flow. Thus,
interaction between objects tends to follow the client–server
model: an objectA requests a service from another object
B by sending it a message. The interface of an object —
the specification of the messages that it can understand —
specifies also the services that the object can provide.

In contrast, information-flow programs, which process
potentially unbounded streams of packets, tend to be struc-
tured around their internal dataflows. Since the purpose of
these programs is to process data streams, it is natural to
think of them as being made of elements that can input, pro-
cess, and then output packets, and not as being made of ob-
jects that provide services.

The generality of the object model is unnecessary: all
information-flow components understand the same limited
protocol of push and pull messages, which say nothing about
the services that they provide. Moreover, unlike objects, they
do not make direct use of other components by sending them
messages; instead components are connected together, and
information flows from one to the next.

2.2 Infopipes

Our model for information-flow systems centers around an
abstraction called anInfopipe, which is the basic unit out of
which systems are composed. An Infopipe can input data
through its input ports (inports) and output data through
its output ports (outports). An Infopipe has no knowledge
of its upstream and downstream neighbors, which are the
source and destination of the packets that it processes; this
information is supplied later, when a number of Infopipes
are composed into an Infopipeline.

Packets pass between Infopipes over channels that link
Infopipe ports; a channel provides unidirectional, unbuffered,
synchronous communication between Infopipes. The Info-
pipe abstraction allows the programmer to concentrate on
the important aspect of information-flow programs (how
data move around in the program) and forget about unim-
portant details (such as the order in which different pieces of
code are invoked).

A prototype implementation uses Smalltalk objects to
represent Infopipes [3]. In this prototype, data transfer be-
tween Infopipes is accomplished by exchanging Smalltalk
messages, and so each port corresponds to either a message
sender or a message receiver. Programmers define Infopipes
using Smalltalk, and channels are built by sending specific
messages (such as−>>) to establish connections between
port objects.

2.3 Active and reactive Infopipes

In the Smalltalk prototype most Infopipes arereactiverather
thanactive; they execute only when sent messages, and are
otherwise idle. There are two exceptions. The first exception
covers Infopipes that representactive source and sinks; these
are external devices such as video cameras, which inject
both a packet and a thread of execution into the system The
second exception covers instances of a particular kind of
primitive Infopipe called aPump, which is used to explicitly
introduce activity. In essence, each pump corresponds to
a process executing at a given rate; there must be at least
one pump on each hardware processor that hosts a segment
of an Infopipeline, because otherwise the Infopipes in that
segment will never execute.

In this paper we consider only reactive Infopipes — the
components that fit between the pumps. Such Infopipes ex-
ecute in response to messages and do not have their own
thread of control. The issue of how to allocate pumps to a
pipeline to maximize parallelism and minimize overhead is
an important one, but is not considered here. However, an
assignment of pumps to an Infopipeline also implicitly de-
fines the reactive segments of the pipeline, to each of which
we can apply the techniques discussed in this paper.

3. Port polarity
Objects are a good match for a dataflow-based abstraction
such as Infopipes. Using objects to represent Infopipes in-

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 2 2005/11/11

Figure 1. Port polarity and the use of messages to transfer
data. InfopipeA transfers data to InfopipeB as an argument
of thepush message, and InfopipeC transfers data to Info-
pipeD as the return value of thepull message. In both cases
data move from the left to the right. The + and− symbols
represent the polarity of the port: positive ports send mes-
sages, and negative ports receives messages.

stead of investing in new language features makes it easy to
integrate Infopipes into an existing object-oriented language,
and message-send can transfer data between objects at low
cost.

One of the key differences between objects and Infopipes
is that objects send and receive messages, whereas Infopipes
input and output data packets. The mapping from exchang-
ing data to exchanging messages is not unique because there
are two ways to transfer data between objects using mes-
sages. A message sender can transfer data to the message
receiver as an argument (push); alternatively, a message re-
ceiver can transfer data to the message sender as a return
value (pull). The difference between a message receiver and
a message sender shows up in both the implementation and
the interface of an object, so it seems that it must somehow
be incorporated into the Infopipe abstraction.

In our previous work [3] we manifested this difference by
adding a polarity attribute to each Infopipe port. A port has
positive polarityif it transfers data by sending messages, and
a port hasnegative polarityif it transfers data by receiving
messages. Two ports can be connected by a channel only if
they have opposite polarity and opposite direction (one is an
inport while the other is an outport). It is important to realize
polarity and direction are orthogonal. For example, positive
output is represented by sendingpush messages, whereas
positive input is accomplished by sendingpull messages.
Figure 1 illustrates how messages are used to transfer data
between different kinds of ports.

3.1 Polarity configurations

We use the termpolarity configurationof an Infopipe to
mean the polarity assignment of all of its ports. The polarity
configuration of a particular Infopipe is fixed1 because the

1 Reference [3] discusses polarity-polymorphic Infopipes, but these are
in reality nothing more than two different Infopipe implementations co-
existing inside the same object. For these Infopipes, the polarity assignment
is fixed at connection time.

set of messages that an object sends and receives is fixed.
Given an Infopipe, it is natural to ask whether there is an-
other Infopipe with a different polarity configuration that
exhibits the same behavior information-flow behavior. For
some Infopipes the answer is yes; Figure 2 shows one such
example. ThePushFilter andPullFilter Infopipes are identi-
cal from the information-flow perspective: they both apply a
transformation function to an information flow, and for every
data packet input a corresponding packet is output. However,
PushFilter and PullFilter are different objects with differ-
ent interfaces:PushFilter sends and receivespush messages,
andPullFilter sends and receivespull messages. The imple-
mentations of these Infopipes also differ because a positive
port corresponds to a set of statements that send messages,
and a negative port corresponds to a method that is invoked
in response to receiving a message. In this paper we will re-
fer to an Infopipe likePushFilter as having multiple valid
polarity configurations.

Given an Infopipe and a polarity configuration, another
natural question is whether there is an Infopipe with the
given polarity configuration that exhibits the same behavior
as the given Infopipe. In many cases the answer is no. For
example, an Infopipe with the same behavior asPushFilter
cannot have a negative inport and a negative outport, because
such an Infopipe would have no way to ensure that there
is an output corresponding to every data packet input. An
Infopipe with the same behavior asPushFilter, and which
has two positive ports, cannot be reactive; it must have an
internal process, and thus lie outside the scope of this paper.

This discussion suggests that there is a connection be-
tween the behavior of an Infopipe and its polarity config-
uration, and that the connection arises from the interaction
between the semantics of message send and receive in the
object model and the data I/O behavior of the Infopipe. We
will characterize the interaction in Section 5 and show how
to use the characterization to compile DirectFlow programs
to objects in Section 6.

3.2 Problems with polarity

Programming Infopipes as objects and using messages to
transfer data between them introduces port polarity into the
Infopipe abstraction, which in turn creates several difficul-
ties for information-flow programmers.

First, if an Infopipe has multiple valid polarity configura-
tions, it is reasonable to expect that the Infopipe be made
available in all valid configurations. This means that the
Infopipe programmer must write (and subsequently main-
tain) multiple Infopipe objects that have the same function-
ality, or that a way must be found to transform an Infopipe
into an equivalent one with different polarity. Transforma-
tion at the level of objects is difficult: since a positive port
corresponds to a set of statements that send messages, and
a negative port corresponds to a method that is invoked in
response to receiving a message, changing the polarity con-
figuration of an Infopipe requires a nontrivial refactoring.

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 3 2005/11/11

PushFilter >> push: packet
outp push: (self transform: packet)

PullFilter >> pull
↑ self transform: (inp pull)

Figure 2. Two filter Infopipes with different polarity configurations that exhibit the same behavior. ThePushFilter Infopipe
inputs data from its negative inport by acceptingpush messages and outputs data to its positive outport by sendingpush
messages. ThePullFilter Infopipe inputs data from its positive inport by sendingpull messages and outputs data to its negative
outport by acceptingpull messages. Even though the Infopipes have exactly the same behavior from the dataflow perspective,
the information-flow programmer using objects is forced to distinguish them.

Koster et al. [11] explored an alternative approach, in which
polarity was transformed by wrapping Infopipe implemen-
tations with co-routines.

Second, when an Infopipe is implemented by multiple ob-
jects with different polarity configurations, these objects will
have different interfaces because they can receive different
messages. This means that the information-flow programmer
cannot just instantiate an Infopipe with a certain dataflow be-
havior, but must instantiate an Infopipe with a specific polar-
ity configuration. The programmer must manually work out
the polarity configurations of all Infopipes in the Infopipe-
line and check for changes whenever the connections in the
pipeline are changed.

Finally, the relationship between the I/O behavior of an
Infopipe and its valid polarity configurations is an open
research problem. The one-inport, one-outport case has been
explored empirically, but we are not aware of any systematic
treatment of this issue, and the intuition of the one-inport,
one-outport case does not seem to generalize to Infopipes
with three or more ports.

The issues raised here may appear to contradict our previ-
ous claim that objects are a good match for Infopipes. We do
not think so: we still maintain thatimplementingInfopipes
as objects is a sound strategy. What needs to change is the
abstractionused to define Infopipes. Specifically, we now
believe that the notion of port polarity, while important in
the implementation, should not be part of the Infopipe ab-
straction at all.

In this paper we show how the DirectFlow language let
programmers define Infopipes without explicitly dealing
with port polarity, and how a completely configured Info-
pipeline can be compiled to objects that interact by send-
ing and receiving messages. Since DirectFlow programs
are compiled to objects, the concept of polarity and the re-
strictions on polarity configurations still apply in theimple-
mentationof DirectFlow. However the DirectFlow language
does not speak about polarity; the programmer need mention
it only when specifying how the implementation of an Info-
pipeline interacts with other, non-Infopipe objects. Polarity
hiding in DirectFlow is similar to type inference in program-
ming languages [7, 13], where the lack of type declarations
does not mean that type rules are no longer enforced. In-

stead it means that the burden of figuring out the types of
expressions has been transferred to the compiler, leaving the
programmer free to concentrate on higher-level tasks.

3.3 Proposals to eliminate push–pull variation

There have been several proposals to eliminate the need for
both push and pull mechanisms in operating systems and
programming languages; as a consequence, these proposals
would also eliminate the need for polarity. Unfortunately,
none of them is general and expressive enough to be com-
pletely satisfactory.

Multiple threads One approach is to put each Infopipe in a
separate thread and let the system scheduler sort things out.
However, thread scheduling introduces additional execution
overhead and makes it difficult to fine-tune the interaction
between Infopipes. It also overloads the channels between
Infopipes with a synchronization role. If the channels are
unbuffered, each data handoff becomes a synchronization
point, which introduces excessive context-switch overhead
and the possibility of deadlock. If the channels are buffered,
it becomes difficult to control the latency of data traveling
between Infopipes, which was one of the chief motivations
for the Infopipe architecture. Neither alternative is satisfac-
tory.

Asymmetric I/O The Eden system [2] explored making
streams asymmetric by eliminating all active (i.e., positive)
output primitives (write, corresponding to ourpush). How-
ever, this meant that performing concurrent inputs that may
block (due to lack of data) requires either polling, the use
of multiple threads (problematic, see previous paragraph),
or using asynchronous callbacks (active output in disguise).
Reactive objects in O’Haskell [15, 16], which eliminates ac-
tive input (read,pull in our terms), face similar problems.

Lazy streams Lazy streams typically appear in programs
written in functional languages like Scheme or Haskell, but
the technique also has close ties with dataflow languages like
SISAL [5]. Lazy streams work under the assumption that
information-flow components are stream transformers (i.e.,
they map one stream to another) which is not true for all
Infopipes. One counterexample is a reordering buffer that
always outputs the packet with the highest priority; in this

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 4 2005/11/11

case the output stream also depends not only on the input
stream, but also on the interleaving of input and output.

Ad hoc treatment Some systems, such as the Click modu-
lar router [10], treats the filter component shown in Figure 2
as a special case and provide language constructs for defin-
ing these components. The work on thread transparency us-
ing coroutines [11] also focuses on the case of filters. None
of these techniques generalizes to the case of Infopipes that
process multiple input or output flows.

These efforts suggest that eliminating port polarity from
Infopipes is a nontrivial problem.

4. DirectFlow for programming Infopipes
Defining Infopipes as objects simplifies their integration
with existing object-oriented libraries and frameworks, but
requiring programmers to define methods (which implicitly
specifies the polarity configuration of an Infopipe object)
leads to all the problems described in the previous section.
We have designed the DirectFlow programming language
to address this problem. DirectFlow provides the best of
both worlds: programmers do not need to define methods
and polarity configurations because Infopipes are modeled
as concurrent processes, but integration with object-oriented
code remains simple because Infopipes defined in Direct-
Flow are compiled to objects. In this section we describe the
design of the DirectFlow programming language.

DirectFlow is based on Hoare’s Communicating Sequen-
tial Processes (CSP) [8] and therefore bears some resem-
blance to Occam [18]. From the programmer’s perspective,
a DirectFlow program is a sequentially executed thread that
uses input and output statements to conduct data transfers
through ports, so port polarity is no longer visible to the
programmer. Another distinguishing feature of DirectFlow
is that it provides nondeterministic branches, so that a Di-
rectFlow program can perform concurrent blocking I/O op-
erations in the style of the POSIXselect system call.

DirectFlow is not a complete programming language that
stands on its own. DirectFlow contains no support for arith-
metic or other data manipulation operations, so to be useful
it must be integrated with a general-purpose programming
language (called thehost language). The embedded design
strategy has the benefit of reducing the difficulty of both lan-
guage design (there is no need to reinvent all the wheels and
do a bad job) and the porting of existing programs (only the
data input–output interface needs to be changed).

Figure 3 shows the syntax of DirectFlow. The most no-
table features of DirectFlow are the five new primitive con-
structs, which we now explain in detail.

Conditional The program evaluates the condition statement
(first parameter). If the result istrue, the program runs
the first branch. If the result isfalse, the program runs the
second branch.

prog = Pipe name‘{|’ ports ‘ |}’ ‘ |’ vars ‘ |’ stmts..
name = Infopipe name
ports = port ports| ε
port = port identifier
vars = var vars| ε
var = Smalltalk variable identifier
stmts = (stmt| cond| par | alt | in | out) . stmts| ε
stmt = Smalltalk statement
cond = cond stmt[stmts] [stmts] (conditional)
par = par [stmts] [stmts] (parallel)
alt = alt [stmts] [stmts] (alternative)
in = var := port ? (packet input)
out = port ! stmt (packet output)

Figure 3. Syntax of Smalltalk DirectFlow. The top level
nonterminal symbol isprog. Port and variable declaration
delimiters are quoted to avoid confusion with alternative
grammar productions.

Parallel The program runs both branches either in parallel
or in some unspecified interleaving.

Alternative The program runs one of the two branches.
The choice between the two branches depends on the
outstanding input or output requests at runtime, and the
programmer has no control over it.

Packet input The program inputs a packet from the speci-
fied inport and stores the packet in the variable.

Packet output The program evaluates the statement and
outputs the result to the specified outport.

The DirectFlow primitive constructs correspond closely
to the ones in CSP, but DirectFlow remains less expressive
than CSP because it does not allow recursion (a DirectFlow
program has no way to invoke itself or another DirectFlow
program). In contrast with the CSP choice operator, thealt
construct in DirectFlow does not place any restrictions on
the first statements of the two branches.

Figure 4 shows two Infopipes defined in DirectFlow-
extended Smalltalk. The literals enclosed in{| |} brackets
are Infopipe port names, the pair of vertical bars delimit
local variables declarations, and a double period ends the
program. Infopipe port names are not values in the host
language and thus cannot be stored in variables; they can
be used only as the subjects of the? and ! constructs. We
choose the concrete syntax of DirectFlow to match that of
Smalltalk, but the concrete syntax can be easily changed
when integrating DirectFlow with other host languages.

5. Relating DirectFlow programs to objects
One attractive feature of DirectFlow is that Infopipes defined
in DirectFlow can be compiled into objects. In this section
we give a general description of how DirectFlow programs
relate to objects by investigating how an object responds to

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 5 2005/11/11

Pipe duplicate {| inp outp1 outp2 |}
| aPacket |
aPacket := inp ?.
par [outp1 ! aPacket]

[outp2 ! aPacket]..

Pipe separate {| inp outp1 outp2 |}
| aPacket |
aPacket := inp ?.
alt [outp1 ! aPacket]

[outp2 ! aPacket]..

Figure 4. Two Infopipes in Smalltalk DirectFlow. Thedu-
plicate Infopipe outputs each data packet it inputs to both
outports, and theseparate Infopipe outputs each data packet
it inputs to one of the outports depending on which down-
stream Infopipe requests data first.

the messages it receives, and in Section 6 we will describe
the compilation algorithm in greater detail.

The analysis here does not consider the effects of inheri-
tance, overloading, reflection, special language features such
as overriding thedoesNotUnderstand method in Smalltalk,
or concurrency control mechanisms on the behavior of an
object. We consider an object only as a reactive entity that
can receive and send messages.

5.1 The role of methods in objects

The standard way to define an object is to define its methods.
Methods play an important role in an object because they
define the following features, which in turn ensure that the
object satisfies the object-oriented message send protocol
described in Section 3.

The set of accepted messagesThe names of methods in an
object represent the set of messages the object can re-
ceive.

The mapping from message names to codeEach method
in an object has a unique name; these names define a
mapping from a received message to the piece of code to
execute.

The key observation here is that we can define an object
in any programming language as long as there is a way to
infer both features from the source code.

5.2 From DirectFlow programs to methods

Even though programmers do not specify the set of messages
that a DirectFlow program accepts (after all, the design goal
of DirectFlow is to free programmers from having to think
in these terms), we can still recover this information by
performing static analysis on the DirectFlow program in the
form of constraint solving. We can also infer the method
bodies corresponding to each message.

Compilation works in two stages.

Infopipe inp outp1 outp2

duplicate
− + +
+ − +
+ + −

separate + − −

Figure 5. Valid polarity configurations of theduplicate and
separate Infopipes in Figure 4. The three valid polarity con-
figurations of theduplicate Infopipe generalizes the case of
the filter Infopipes in Figure 2.

Pipe switch {| inp1 inp2 outp1 outp2 |}
| aPacket |
alt [aPacket := inp1 ?]

[aPacket := inp2 ?].
alt [outp1 ! aPacket]

[outp2 ! aPacket]..

Figure 6. Theswitch Infopipe does not have a valid polarity
configuration because there is no way to satisfy C1 and C2
simultaneously.

1. Compute the valid polarity configurations of the Infopipe
defined in DirectFlow.

2. For each valid polarity configuration, generate a class
with one method for each negative port in the configu-
ration.

For simplicity we require the compiler to generate an
Infopipe object for each valid polarity configuration of the
Infopipe defined in DirectFlow. We outline the compilation
stages in the rest of this section.

Computing polarity configurations The polarity of each
port can be either positive or negative, so an Infopipe with
n ports has at most2n polarity configurations. We want to
find the configurations for which we can generate Infopipe
objects using the characterizations described in Section 5.1.
We define avalid polarity configurationas one in which:

C1. Each execution path contains exactly one negative port
access. This constraint is necessary because invocation
of a method is triggered by receiving one message.

C2. Eachalt branch should access a unique negative port.
This constraint ensures that each received message is
mapped to a single piece of code.

C3. No negative port access should appear in only one
branch of acond construct. This constraint ensures that
the set of accepted messages is fixed.

The compiler computes the valid polarity configurations
by solving these constraints in the context of the DirectFlow
program. Figure 5 shows the valid polarity configurations of
theduplicate and theseparate Infopipes. Some DirectFlow
programs, such as the one shown in Figure 6, do not have a
valid polarity configuration. In that case the compiler signals

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 6 2005/11/11

Code pattern Rewrite result
t1. alt [s1] [s2] alt [t1. s1] [t1. s2]
cond p t1 [alt s1 s2] alt [cond p t1 s1] [cond p t1 s2]
par t1 [alt s1 s2] alt [par t1 s1] [par t1 s2]

Figure 7. The rewrite rules foralt lifting. This table shows
only the rules wherealt appears at the right hand side; the
cases wherealt appears at the left are analogous and thus
not listed.

an error because it cannot compile the DirectFlow program
into an Infopipe object.

Generating Infopipe objects The code generator in the
compiler takes a DirectFlow program and a valid polarity
configuration and produces an Infopipe object by mapping
the execution of the DirectFlow program to the invocation
of a method. The code generator translatescond constructs
to the standard conditional branch constructs in the host lan-
guage, andalt branches to separate methods. The constraint
that eachalt branch accesses a unique negative port ensures
that the code generator can generate a suitablepush or pull
method for each branch.

6. Compiling DirectFlow programs
In Section 5 we gave a high-level view of how DirectFlow
programs relate to objects; we now explain the compilation
process in greater detail. The compiler first normalizes the
DirectFlow source program through a procedure calledalt
lifting, after which it computes the polarity configuration and
generates code as outlined in Section 5.2.

6.1 alt Lifting

The purpose ofalt lifting is to normalize a DirectFlow pro-
gram by lifting allalt constructs to the top level. Analt-lifted
program is a set of nondeterministic alternatives which we
will call branches. Each branch corresponds to a method in
the object that will be generated by the compiler; the object
will rely on the message dispatch mechanism to select the
appropriate branch at run time.

Figure 7 shows the rewrite rules foralt lifting. The alt
construct distributes overcond, par, and the statement se-
quencing operator of the host language (written as a period
in Smalltalk), so thealt lifting process simply performs the
distribution rewriting ofalt iteratively until all thealt con-
structs appear at the top level.

Example: Applying alt lifting to the separate Infopipe

We illustrate thealt lifting process by applying it to the
separate Infopipe in Figure 4. The only applicable rewrite
rule is to distributealt over statement sequencing, which
results in the program shown in Figure 8.

6.2 Computing polarity configurations

The DirectFlow compiler computes the valid polarity con-
figurations of a DirectFlow program by solving a set of con-

Pipe separate {| inp outp1 outp2 |}
| aPacket |
alt [aPacket := inp ?.

outp1 ! aPacket]
[aPacket := inp ?.
outp2 ! aPacket]..

Figure 8. The separate Infopipe afteralt lifting. The alt
construct is moved to the top level by pushing the input
statement into bothalt branches.

straints on thealt-lifted version of the program. We have de-
scribed the constraints and the rationale behind them in Sec-
tion 5.2. Instead of using an off-the-shelf constraint solver,
we have developed an efficient constraint solving algorithm
that takes advantage of the structure of the constraints.

If B is an ordered set of all liftedalt branches in a
DirectFlow program, the constraint-solving algorithm works
by constructing, for each branch inB, the set of ports that
may be negative. We start by assuming that all the ports
may be negative, and then eliminate those ports for which a
negative polarity would violate one of our constraints. More
precisely, we proceed as follows.

S1. For eachb ∈ B, compute the setPb of all the ports ac-
cessed inb. The setPb represents the candidate negative
ports for thealt branchb.

S2. For eachb ∈ B, compute the setQb using the following
equation:

Qb = Pb −
⋃

i∈B−{b}

Pi

Qb is the set of ports that are accessed only in branchb
and nowhere else. This step enforces constraint C2.

S3. For eachb ∈ B, iterate through all thecond constructs.
If a port p is accessed in only one branch of acond
construct, eliminate portp from Qb. This step enforces
constraint C3.

S4. We compute the negative ports in valid polarity config-
urations by choosing one negative port from the setQb

for each branchb. The setN of valid configurations is
given by

N =
∏
i∈B

Qi

whereΠ represents Cartesian product on sets. Once we
know the set of negative ports in a polarity configuration,
we can easily find the positive ports in the configuration.
This step and step S1 together enforce constraint C1.

Example: Polarity configurations for separate

We number thealt branches in Figure 8 according to their
order of appearance and use the program to demonstrate how
to compute valid polarity configurations.

S1. P1 = { inp, outp1 }, P2 = { inp, outp2 }

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 7 2005/11/11

S2. Q1 = P1−P2 = { outp1 }, Q2 = P2−P1 = { outp2 }
S3. No change as there is nocond construct in the program

S4. N = Q1 ×Q2 = { (outp1, outp2) }

The setN has only one element, soseparate has one
valid polarity configuration. The portsoutp1 andoutp2 are
negative, andinp is positive.

Solving the conjunction of all applicable constraints will
result in zero, one, or multiple port polarity configurations. If
a DirectFlow program has no valid polarity configurations,
then there is no way to compile it into an object because
it does not conform to the restrictions on the behavior of
objects described in Section 4.

6.3 Generating object code

Given a valid polarity configuration, a DirectFlow program
can be compiled into an Infopipe object. The goal of the code
generation process is to replace all DirectFlow primitives in
the program with constructs in the host language. Here we
explain the translation of each DirectFlow primitive.

Conditional The cond construct simply translates to the
conditional branch construct in the host language.

Parallel Since the statement sequences in thepar construct
can be interleaved in any order; the compiler simply runs
them in sequence. A multiprocessor implementation may
choose to run the statement sequences in parallel, but we
have not explored that option.

Alternative After alt lifting, all occurrences ofalt will be
at the top level, and each nondeterministicalt branch is
translated to a method in the Infopipe object. The form
of the method depends on the direction of the negative
port; a branch with a negative inport is compiled to apush
method, and a branch with a negative outport is compiled
to apull method.

Packet input and output The compiler replaces the? (in-
put) and! (output) statements with the object-oriented
message send protocol shown in Figure 1. If the subject
port is positive, then? is replaced by sending apull mes-
sage, and! by sending apush message. If the subject port
is negative, then? is replaced by reading the argument of
thepush method, and! is replaced by storing the value to
be sent in a temporary variable, which is returned as the
result of the invocation at the end of thepull method’s
body.

Figure 9 shows the result of compiling theduplicate and
theseparate Infopipes.

7. Implementation
We have implemented a compiler for DirectFlow that uses
Smalltalk as the host language. The compiler is written in

Haskell [9] and produces changesets that can be loaded into
the Squeak Smalltalk environment.

Many Infopipes depend on hand-written code to process
or to transform data packets. Thegeneration gap pattern,
in which hand-written code inherits from machine-generated
code, is often used to integrate code from different sources
[20]. Straightforward application of the pattern requires that
the machine-generated class has a fixed name and interface,
which is not true in our situation because there may be mul-
tiple generated classes that need to interact with the same
piece of hand-written code. We solved this problem by in-
verting the generation gap pattern and make the machine-
generated code inherit from the hand-written code. The com-
piler accepts the name of the hand-written class as an argu-
ment, which makes it possible to use the same DirectFlow
program in different contexts without modifying the source
code.

The source code of the compiler is available at the URL
http://amstel.cs.pdx.edu/infopipes/artifacts/.

8. Related work
The work presented in this paper is part of the Infopipes
project, whose goal is to develop a programming abstraction
and system for the compositional construction of information-
flow programs suitable for a range of application domains.
This work has close ties to several other research fields, and
we discuss some of the most notable ones in this section.

Practical information-flow systems

The Click [10] modular router system supports composi-
tional construction of software routers. A Click router is built
by connecting ports of data-processing elements, and Click
distinguishes betweenpush- andpull-processing in the same
way that Infopipe implementations distinguish between pos-
itive and negative ports. Our techniques should be applicable
to the Click system with little modification. Another exam-
ple of a practical system is Aurora, a data stream manage-
ment system that builds query graphs by connecting stream
operators with data channels [1]. These examples show that
compositional construction of information-flow programs is
an established technology.

Information-flow languages

In addition to DirectFlow, languages like StreamIt [19] and
Spidle [4] are also designed for developing information-flow
systems. None of these languages match the rich feature set
of DirectFlow: multiple input and output streams, dynamic
relationship between input and output rates, and compilation
to objects for efficient execution. These features are essential
for building components like demultiplexers and priority-
reordering buffers.

Dataflow languages

Dataflow programming languages like SISAL [5] typically
adopt single-assignment semantics to facilitate the construc-

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 8 2005/11/11

Duplicate >> inppush: arg Separate >> outp1pull Separate >> outp2pull
| aPacket | | retval aPacket | | retval aPacket |
aPacket := arg. aPacket := inp pull. aPacket := inp pull.
outp1 push: aPacket. retval := aPacket. retval := aPacket.
outp2 push: aPacket ↑ retval ↑ retval

Figure 9. Infopipe objects compiled from the DirectFlow programs in Figure 4. For theduplicate Infopipe, which has three
valid polarity configurations, we choose the configuration with negative inport to illustrate the compilation ofpush methods.

tion of dataflow graphs. As we explained in Section 3.3,
dataflow languages share many features with lazy streams
and thus cannot support Infopipes like reordering buffers.
Dataflow languages are typically designed for program-
ming massively-parallel computers, and we have not yet
considered how DirectFlow might support the development
of highly parallel information-flow programs.

Coordination languages

Infopipes bear some resemblance to control-based coordina-
tion languages [17] in that they model a program as a col-
lection of entities connected by point-to-point channels. Un-
like existing coordination languages, which treat processes
as purely computational entities, DirectFlow separately ad-
dresses both the computation and communication aspects of
a component. DirectFlow also demonstrates that analyzing
the data input–output behavior of an Infopipe can help pro-
grammers produce code that is more reusable.

Communicating sequential processes

The design of DirectFlow is based on Hoare’s CSP [8], and
in practice DirectFlow plays a role similar to CSP-libraries
like JCSP [21]. DirectFlow is designed to support only the
development of information-flow programs instead of as a
general-purpose programming language. We have therefore
eliminated certain features such as recursion and process
creation to enable DirectFlow programs to be more easily
translated to objects.

Design patterns

The way we build information-flow programs by exchanging
messages between Infopipe objects has been documented
under the namefilter pattern [6]. The PushFilter andPull-
Filter Infopipes appear in the filter pattern as sink and source
filters, but the pattern literature does not discuss how to gen-
eralize these two cases to filters with multiple inputs or out-
puts. DirectFlow provides a more general and more elegant
mechanism for building filters because it relieves the pro-
grammer from the responsibility of implementing both the
source and sink variants of a filter by hand.

9. Conclusions and future work
Abstraction mismatch between the programming language
and the application domain makes software development un-
necessarily complicated. This is because making program-
mers use a language that exposes aspects of the system that

are irrelevant to the domain forces over-specification and
thus reduces reusability. Dually, a language that hides as-
pects of the system that are relevant to the domain makes it
more difficult to define and to reason about system behavior
in domain-specific terms.

We have investigated the problem of abstraction mis-
match in the information-flow domain using Infopipes and
have proposed the DirectFlow language to address the short-
comings of programming for this domain directly with ob-
jects. By allowing programmers to define Infopipes without
specifying their polarity configurations, DirectFlow elimi-
nates the need to define multiple Infopipe objects that differ
only in their polarity configurations.

The design of DirectFlow seeks a balance between lan-
guage expressivity and implementation efficiency. The lan-
guage allows an Infopipe to alter its input–output behavior
based on its internal state, which makes it possible to define
demultiplexers and reordering buffers, components that are
commonly found in information-flow programs. At the same
time, DirectFlow is sufficiently restrictive to permit the com-
piler to perform static analysis on DirectFlow programs and
to compile them to objects. Whether DirectFlow is expres-
sive enough to support a wide range of common information-
flow programs is a question that we plan to explore in our
future work.

A collection of DirectFlow components is not useful un-
less it is possible to connect them into an Infopipeline. We
have therefore implemented a companion language, Inter-
Flow, for specifying interconnections between components,
and have started to consider how to specify composite com-
ponents that are built from a library of simpler ones.

In this paper we have demonstrated that DirectFlow sim-
plifies the development of information-flow components by
hiding the control flow interaction between them. It re-
mains to be seen if DirectFlow facilitates reasoning about
information-flow programs. We are in the process of defin-
ing a formal semantics of DirectFlow and establishing the
rate relations between streams processed by Infopipes. We
hope that deeper understanding of the semantics of Direct-
Flow will lead to progress in quality-of-service verification
and in thread allocation for information pipelines.

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 9 2005/11/11

Acknowledgments
This work is partially supported by the National Science
Foundation of the United States under grants CCR–0219686
and CNS–0523474.

References
[1] Daniel J. Abadi, Don Carney, Ŭgur Çetintemel, Mitch Cher-

niack, Christian Convey, Sangdon Lee, Michael Stonebraker,
Nesime Tatbul, and Stan Zdonik. Aurora: a new model and
architecture for data stream management.International Jour-
nal on Very Large Data Bases, 12(2):120–139, August 2003.

[2] Andrew P. Black. An asymmetric stream communication
system. InProceedings of the Ninth ACM Symposium on
Operating System Principles, pages 4–10, New Hampshire,
October 1983.

[3] Andrew P. Black, Jie Huang, Rainer Koster, Jonathan
Walpole, and Calton Pu. Infopipes: an abstraction for
multimedia streaming.Multimedia Systems, 8(5):406–419,
December 2002.

[4] Charles Consel, Hedi Hamdi, Laurent Réveillère, Lenin Sin-
garavelu, Haiyan Yu, and Calton Pu. Spidle: A DSL approach
to specifying streaming applications. In Frank Pfenning and
Yannis Smaragdakis, editors,Generative Programming and
Component Engineering: Second International Conference,
volume 2830 ofLNCS, pages 1–17, Erfurt, Germany, Septem-
ber 2003.

[5] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A
report on the Sisal language project.Journal of Parallel
and Distributed Computing, 10(4):349–366, December 1990.
Special issue: data-flow processing.

[6] Mark Grand. Patterns in Java: a catalog of reusable design
patterns illustrated in UML, volume 1, chapter 6, pages 155–
163. John Wiley & Sons, 1998.

[7] R. Hindley. The principal type scheme of an object
in combinatory logic. Transactions of the American
Mathematical Society, 146:29–60, December 1969.

[8] C. A. R. Hoare.Communicating Sequential Processes. Series
in Computer Science. Prentice-Hall International, Upper
Saddle River, NJ, USA, 1985.

[9] Simon Peyton Jones, editor.Haskell 98 Languages and
Libraries. Cambridge University Press, revised edition, April
2003.

[10] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The Click modular router.ACM
Transactions on Computer Systems, 18(3):263–297, August
2000.

[11] Rainer Koster, Andrew P. Black, Jie Huang, Jonathan
Walpole, and Calton Pu. Thread transparency in information
flow middleware. In Rachid Guerraoui, editor,Middleware
2001: IFIP/ACM International Conference on Distributed
Systems Platforms, volume 2218 ofLNCS, pages 121–140,
Heidelberg, Germany, November 2001. Springer-Verlag.

[12] Charles Krasic, Jonathan Walpole, and Wu-chi Feng. Quality-
adaptive media streaming by priority drop. In Christos

Papadopoulos and Kevin C. Almeroth, editors,Network and
Operating System Support for Digital Audio and Video, 13th
International Workshop, NOSSDAV 2003, pages 112–121,
Monterey, CA, USA, June 2003.

[13] Robin Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17:348–
375, August 1978.

[14] Emerson Murphy-Hill, Chuan-kai Lin, Andrew P. Black, and
Jonathan Walpole. Can Infopipes facilitate reuse in a traffic
application? InCompanion to the 20th OOPSLA Conference,
pages 100–101, San Diego, CA, USA, October 2005. ACM
Press.

[15] Johan Nordlander and Magnus Carlsson. Reactive objects
in a functional language: an escape from the evil “I”. In
Proceedings of the Third Haskell Workshop, Amsterdam, The
Netherlands, June 1997.

[16] Johan Nordlander, Mark P. Jones, Magnus Carlsson,
Richard B. Kieburtz, and Andrew Black. Reactive objects.
In Proceedings of the Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, pages
155–158, Washington, D.C., USA, April 2002.

[17] George A. Papadopoulos and Farhad Arbab.The Engineering
of Large Systems, volume 46 ofAdvances in Computers,
chapter Coordination Models and Languages, pages 329–
400. Academic Press, September 1998.

[18] SGS-THOMSON Microelectronics Ltd.occam 2.1 Reference
Manual, 1995.

[19] William Thies, Michal Karczmarek, and Saman Amaras-
inghe. StreamIt: A language for streaming applications. In
R. Niegel Horspool, editor,Compiler Construction: 11th
International Conference, volume 2304 ofLNCS, pages 179–
195, Grenoble, France, April 2002.

[20] John Vlissides.Pattern Hatching: Design Patterns Applied,
chapter 3, pages 85–101. Addison Wesley, June 1998.

[21] P. H. Welch. Process oriented design for Java: Concurrency
for all. In H. R. Arabnia, editor,Proceedings of the Inter-
national Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’2000), volume 1, pages
51–57. CSREA, CSREA Press, June 2000.

Submitted to PLDI 2006 −Id: pldi-paper.tex,v 1.44 2005/11/12 04:03:54 cklin Exp− 10 2005/11/11

