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SUMMARY

Emerald is a general-purpose language with aspects of traditional object-oriented languages,
such as Smalltalk, and abstract data type languages, such as Modula-2 and Ada. It is strongly-
typed with a non-traditional object model and type system that emphasize abstract types, allow
separation of typing and implementation, and provide the flexibility of polymorphism and subtyp-
ing with compile-time checking. This paper describes the Emerald language and its programming
methodology. We give examples that demonstrate Emerald’s features, and compare and contrast
the Emerald approach to programming with the approaches used in other similar languages.

KEYWORDS: Programming languages, Programming methodology, Object-oriented program-
ming, Abstract data types, Inheritance, Object-based concurrency



1. INTRODUCTION

Emerald!: 2 is a strongly-typed programming language that supports an atypical variant of the object-
oriented paradigm. Although originally developed to simplify the construction of efficient distributed
applications, 4 Emerald provides a general-purpose programming model. This paper describes the main

features of Emerald, comparing and contrasting them with similar features of other languages.

Although Emerald may be bracketed with module- or object-based languages, it differs in several ways
from other such languages. Unlike Ada® or Modula-2,% the sole unit of programming is the object, which
behaves like a dynamic instance of a Modula-2 module or Ada package. Unlike C++7 or Smalltalk,® Emerald
has no notion of class; Emerald provides object constructors for run-time creation of objects and abstract
typing for object classification and comparison. Access to Emerald objects is provided via operations that

are invoked by other objects.

Past experience has suggested that language designers must choose between the security and efficiency of
static typing and the flexibility of dynamic typing. For example, Smalltalk and Self 9 emphasize flexibility
by delaying type checking until run-time, while Modula-2 and Ada are statically typed and preclude the
safe interaction of existing programs with entities of a new type. FEmerald provides both static typing
and flexibility using a simple and efficiently-implemented notion of type that allows compile-time checking,
polymorphism, encapsulated types, and subtyping. A type in Emerald is a collection of operations and
their signatures; significantly, a type is itself an object. The Emerald language includes block structure and

nesting as found in Simula-6710 and Betall but noticeably missing from Smalltalk.

Emerald supports the programming of distributed applications by making the invocation of objects inde-
pendent of their location. Such location independent object invocation allows the application programmer
to treat the distributed system as a single machine. Thus, the Emerald programming model is for the
most part non-distributed. This paper focuses on Emerald’s programming model; we will mention Emer-
ald’s distributed upbringing only when motivating the design of some of its features. Several aspects of the

distributed nature of Emerald are discussed in the companion paper in this publication.1?

This paper discusses, with examples, the main features of Emerald that help in supporting general-purpose
programming. In the next section we describe the Emerald notion of objects, and how they are constructed
and used. Section 3 discusses the Emerald abstract type concept and its usage. We then examine the
Emerald approach to object-based concurrency, and outline other interesting features of Emerald. Finally,

we indicate the current status of our work and summarize its major contributions.

2. EMERALD OBJECTS

The Emerald object is an abstraction for the notions of data and type. Emerald objects consist of private data,
private operations, and public operations. An object is entirely responsible for its own behavior and so must
contain everything necessary to support that behavior; we call this property autonomy. Object autonomy,

originally motivated by the need for object mobility in a distributed environment, also enforces the modular



approach espoused in software engineering.!3 An object may be accessed only by its public operations; this
is done in Emerald by the invocation. An Emerald object may invoke some operation defined in another
object, passing arguments to the invocation and receiving results. Invocations are semantically similar to

procedure calls in traditional languages and to messages in Smalltalk.

Object Creation

In most object-based languages, an object is created by invoking an operation on a class object; Smalltalk
and Eiffell? are examples of this model. The class object has multiple functions: it defines the structure,
interface, and behavior of all its instances; it defines the place of those instances in the graph of all classes;
and it responds to new invocations to create new instances.l® In prototype-based languages such as Self,

objects are typically cloned from existing objects that act as templates.

In contrast, object creation in Emerald is done via the object constructor, an Emerald expression that,
when evaluated, creates a new object. This expression defines the object’s representation, and its public and

private operations. The syntax of an object constructor is:

object anObject

% private state declarations
% operation declarations

end anObject

where anQObject is a local name whose scope is confined to the object constructor itself.

Figure 1 illustrates the creation of an object with an example taken from the Emerald implementation of
the Emerald compiler. As part of its execution, the compiler creates a parse tree whose nodes represent the
various constructs in an Emerald program. The compiler creates such nodes as it discovers each construct,
annotates them with attributes relevant to the construct, and later generates code associated with their
semantics. In this example, the object represents an integer literal whose only attribute is the value of the
literal. The object constructor has the name IntegerLiteral, and the object it creates has public operations
getValue, setValue, and generate. Its private state consists of a single integer variable named value that is
initialized to wal, which may be regarded as a literal constant for the present. The monitor construct, to be

discussed in the concurrency section, is used to serialize concurrent invocations of the object.

When this object constructor expression is evaluated (i.e., executed), it creates the described object,
which is named by the identifier anlntegerNode. By virtue of the const binding, anlntegerNode always
refers to this object, whose state, however, may be changed by invocations of its set Value operation. Objects
may also be declared immutable, which asserts that their abstract state does not change. The compiler
may use such information for optimization, but the language does not attempt to restrict the operations that
can be performed on the concrete state. This allows an object to reorganize its concrete state—for example,
to make future calls more efficient—so long as doing so does not change the result or effect of the future
calls. The export clause lists the operations that can be called from outside the object; invocation of one of

these operations is the only way in which a client can examine or modify the object’s state. Thus, objects



const anlntegerNode —
object IntegerLiteral
export getValue, setValue, generate
monitor
var value : Integer — wal

operation getValue — [v: Integer]
v — value
end getValue

operation setValue[v: Integer]
value — v
end setValue

operation generate[siream : OutStream]
stream.printf[ “LDI %d\n”, value]
end generate
end monitor
end IntegerLiteral

Figure 1: Ezxample use of an Object Constructor

% Assume count and nodes have been suitably declared
count «— 5
loop
exit when count = 0
count < count — 1
nodes(count) —
object IntegerLiteral
% as in Figure 1
end IntegerLiteral
end loop

Figure 2: Creating several integer node objects
in Emerald are fully encapsulated, unlike those of Simula; this makes an Emerald object very similar to a
module in Modula-2 or a package in Ada.

Object constructors perform the following subset of the functions carried out by Smalltalk classes:15

1. they generate new objects,

2. they describe the representation of objects, and

3. they define the code that implements operations (methods in Smalltalk terminology).
The essential point to note is that the object constructor is more primitive than the class; the functions of a
class can be provided in Emerald by using object constructors in combination with other language features.

The control abstractions available in ordinary languages permit expressions to be executed as desired,
i.e., never, once, twice, or as many times as necessary. By treating object constructors as expressions and

providing standard control structures, Emerald allows objects to be created as required. Multiple similar



const IntegerNodeCreator «—
immutable object INC
export new

const Integer Node Type —
type INType
function getValue — [Integer]
operation setValue[Integer]
operation generate[ QutStream]
end INType

operation new[val : Integer] — [aNode : IntegerNode Type]
aNode —
object IntegerLiteral
% as in Figure 1
end IntegerLiteral
end new

end INC

Figure 3: An object that creates integer nodes

objects may be created by placing the constructor in a repetitive construct such as a loop or the body of an
operation of another object. Figure 2 illustrates how a loop may be used to fill an array with integer literals.
Figure 3 presents an example of the usefulness of placing an object constructor within an operation. In this
example, the object named IntegerNodeCreator exports an operation new that returns the object created
by executing the object constructor IntegerLiteral. This object constructor is the same as that in Figure 1,
but the initialization of its value variable is now determined by the argument val of new. Thus, every time
new is invoked on IntegerNodeCreator, a new node is created. In other words, the IntegerNodeCreator object

performs the instance creation function of a class.

There is nothing magical about the use of the operation name new — any other name would be equally
valid. Note that IntegerNodeCreator has been declared immutable, an assertion that the object’s local state,
which in this case consists only of the object named by IntegerNodeType, will never change. Note also that

IntegerNode Type actually names a type object; types are discussed in the next section.

The approach used in Emerald to create class-like objects can be compared and contrasted with the
approach used in a more traditional language such as Ada. An Ada implementation of Integer NodeCreator
could be very similar to the Emerald version, but there will be two notable differences. First, because
Ada is not object-oriented, the data to be manipulated must be passed to each function; second, the Ada
package that implements the creator defines both the operations that create instances and the operations

that manipulate those instances.

One-of-a-kind Objects

The absence of a class mechanism from Emerald illustrates the flexibility of the object constructor. When
an object constructor is executed only once, a “one-of-a-kind” object is created. To our knowledge, the only

other languages that support such a feature are prototype-based languages such as Self.?



const dServer —
object IDS
export getNextld
monitor
var nextld : Integer — 0

operation getNextld — [newld : Integer]
newld «— nextld
nextld «— nextld + 1
end getNextld
end monitor
end IDS

Figure 4: A Unique Id Server

Class-based languages are suited to situations where many objects with the same behavior are needed,
but they are unnecessarily verbose when only one instance of an object is needed. For example, consider the
Boolean objects true and false. In Smalltalk, where one-of-a-kind objects cannot be directly defined, one
needs to define a class for each object and then instantiate it. Two classes, True and False, are defined as
subclasses of Boolean, with the objects true and false as their only instances. However, this arrangement
does not guarantee that only a single instance of class True is created; this is rather awkward in Smalltalk.
For example, this can be done by defining a class for the required object, along with a tailored new class
method that allows only a single instantiation, and then instantiating the required object. In languages such
as Simula, where not all entities are objects and there is no support for metaclasses, one-of-a-kind objects

cannot be created at all.

In practice, it is not just primitive types such as Boolean that use one-of-a-kind objects. Figure 4 depicts
the creation of an object that provides unique identifiers (integers) used in naming the objects produced by
the Emerald compiler. Different invocations of the neztld operation return different identifiers. Only one
such server is required in the compilation environment. Indeed, having more than one server managing the
same identifier space would be disastrous. As another example, in a typical workstation there is exactly
one mouse object, exactly one keyboard object, and perhaps only one console window object. The class
abstraction is redundant for any of these situations when exactly one object with a given behavior is needed.
The more primitive Emerald object constructor provides programmers with the flexibility to create exactly

as many objects as are required in each situation.

No Metaclasses

The fact that Emerald objects are modeled as containing their own operations removes the need for the
multi-level instance/class/metaclass hierarchy found in Smalltalk. Figure 5 illustrates the difference. In
class-based languages, each object depends upon its class object to describe its structure and behavior. In
the Smalltalk hierarchy, each idServer object is described by its class IdServer, which is described by its class

(metaclass of class IdServer), which in turn is described by its class (Metaclass).

Object constructors provide an ability to create not just class-like objects (creators), but also creators of
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(a) Emerald object/creator structure (b) Smalltalk instance/class/metaclass structure

Figure 5: “Metaclass hierarchies” in Emerald and Smalltalk

creators, creators of creators of creators, and so on; multiple levels are indeed useful, as will be illustrated
in the section on Polymorphism. In contrast, the metaclass concept and the termination of metaregress in
Smalltalk have been found to be one of the biggest hurdles to be overcome in learning Smalltalk.16 Like Self,

Emerald avoids this metaregress by making each object completely self-describing.

3. ABSTRACT TYPES

The notion of type serves several purposes in conventional programming languages.17. 18 Types facilitate
the representation independence required for portability and maintainability of programs. Traditionally,
types describe implementations, and the creation of data instances is controlled by their type. When types
describe implementation, having type information available at compile time also permits the generation of

better code. Finally, types enable the early detection of errors, and permit more meaningful error reporting.

In Emerald, these functions are performed by specialized constructs. The object provides representation
independence. The object constructor provides for object creation and encapsulates implementation infor-
mation. What in other languages are type-dependent optimizations are performed by the Emerald compiler
based on how objects are used. Since it is freed from these other concerns, the Emerald type system can

concentrate on the single task of object classification, thus preventing incorrect usage.

Emerald’s type system reflects its design goal of being used for the development of software in constantly
running distributed systems. In such systems, objects may be developed and implemented separately and
differently on different machines at different times. Furthermore, to accommodate situations where the types
of the objects to be bound to an identifier are not known at compile-time, the Emerald type system does

not distinguish between objects based on their implementation.



const IntegerNode Type —
type INType
function getValue — [Integer]
operation setValue[Integer]
operation generate[ QutStream]
end INT Type

Figure 6: An example of a type object

Emerald allows normal type checking to be performed entirely at compile-time. The only occasion on
which types must be checked at run-time is when the programmer explicitly requests that an object should
be treated as if it had a type that is stronger than the type that could be attributed to it at compile time.
For example, a programmer could state that an object retrieved from a list of arbitrary objects is an integer;

this claim can only be verified at run-time.

Type Definition

An Emerald type is a collection of operation signatures, where a signature consists of the operation name
and the types of the operation’s arguments and results. Note that a type contains no information about
implementation; it describes only an interface. For this reason, the term abstract type is often used to refer
to an Emerald type. Abstract types allow for the complete separation of typing and implementation, and

mean that multiple implementations of the same type can co-exist and interoperate.

Each identifier in an Emerald program—this includes the names of constants, variables, arguments and
results—has a declared type, which must be evaluable at compile time; this is called the syntactic type of the
name. Type checking is the process of ensuring that the object to which a name is bound always satisfies the
syntactic type of the name. For example, the argument declaration for val in the new operation in Figure 3,
and the variable declaration for value in the monitor in Figure 1, cause both of these names to be given the
syntactic type Integer. An attempt to assign a string to value, or to pass a file as an argument to new, is

detected as a type error at compile time.

Each Emerald type is an object and as such can be manipulated by the ordinary facilities of the Emerald
language, such as assignment, constant binding, and parameter passing. Type objects may be passed as

parameters to implement polymorphism or inspected at run-time to implement run-time type checking.

An example of an Emerald type is Integer Node Type, which has been extracted from Figure 3 and shown in
Figure 6. This code fragment binds the name IntegerNode Type to the result of evaluating a type constructor,
which is delimited by type INType ... end INType. The type constructor generates an Emerald object whose
type is AbstractType, that is, a type object. Objects of this type must export the three operations get Value,
setValue, and generate with the indicated argument and result types. IntegerNodeType, being an Emerald

object, may be passed as a parameter, assigned to a variable, or invoked at run-time.



Type Conformity

The idea of an object “satisfying” the syntactic type of the name to which it is bound, as discussed above,
is made precise in Emerald by the conformity relation. If an object O is bound to a name I, then the type

of O must conform to the syntactic type of I.

The motivation behind Emerald’s definition of conformity is the notion of substitutability. Informally,
a type S conforms to a type T (written S o> T ) if an object of type S can always be substituted for one
of type T, that is, the object of type S can always be used where one of type T is expected. For S to be
substitutable for 7" in this way requires that:

1. S provides at least the operations of 7' (S may have more operations).

2. For each operation in 7T, the corresponding operation in S has the same number of arguments and

results.
3. The types of the results of S’s operations conform to the types of the results of 7’s operations.

4. The types of the arguments of T’s operations conform to the types of the arguments of S’s operations.

(Notice the reversal in the order of conformity for arguments.)

Properties 1 and 2 are fairly straightforward and do not need further discussion. Why conformity needs

property 3 is illustrated by these types:

type JunkDeliverer
operation Deliver — [Any]
end JunkDeliverer

type PizzaDeliverer
operation Deliver — [Pizza]
end PizzaDeliverer

The keyword Any denotes the type with no operations; any object may be assigned to an identifier that
has type Any. These types describe delivery services that may deliver anything and those that deliver only
pizzas. Whatever one expects to do with what is delivered by a JunkDeliverer can also be done with the pizza
delivered by a PizzaDeliverer. That is, a PizzaDeliverer can be substituted for a JunkDeliverer, but not vice
versa. Formally stated, PizzaDeliverer conforms to JunkDeliverer, but JunkDeliverer does not conform to

PizzaDeliverer.

As motivation for property 4, consider the following types:

type JunkHeap

operation Deposit[ Any]
end JunkHeap
type Bank

operation Deposit[ Money]
end Bank
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operation generate[ QutStream]

const TreeNode —

end TN —> Conformsto
const Fxpression «— TreeNode
type F
function getType — [Expression] generate
operation generate[ QutStream]
end F
const Statement —
type S
operation typeCheck Expression Statement
((l)%eratlon generate[ QutStream] generate generate
o getType typeCheck
(a) Type definitions (b) Relationship between types

Figure 7: Some compiler types

These types define entities where arbitrary objects and money can be deposited (without retrievall) respec-
tively. Intuitively, one knows that where one can deposit anything, one should be able to deposit money, and
conversely, where one deposits only money, one cannot possibly deposit anything else. That is, JunkHeap
can be substituted for Bank but not vice versa. More formally, JunkHeap conforms to Bank, but Bank does

not conform to JunkHeap.

The above properties 1-4 characterize a number of relations on types. Conformity is defined as the
largest relation that satisfies these rules.? The object type matching rules in Modula-3,19 for example, define
a smaller relation. Modula-3 requires that the argument and result types of operations be identical, not

merely that they conform appropriately.

Property 4 is known as contravariance. In mathematics, a function from A to B is also considered to
be a function from A’ to B’ if A’ is a subset of A and B is a subset of B’; this is the contravariance in
the argument of the function space operator.20 In programming, contravariance means that an operation
on objects of a given type should also work on objects of subtypes of that type. Applied to the deposit
operation, contravariance results in Bank not conforming to JunkHeap. Although such a consequence is
sometimes considered to be a limitation of conformity,2l: 22 property 4 is included in Emerald not just
to make the type system safe and consistent—although this would be reason enough—but also because
contravariance helps to enforce correct program design. In other words, contravariance is a feature rather

than a limitation.

The utility of contravariance may be illustrated by additional objects from the Emerald compiler. Nodes
corresponding to integer literals were discussed earlier; additional nodes of other types are used to represent
declarations, control statements, and expressions. The type TreeNode characterizes those properties that are
common to all the elements of the language; consequently the operations in type Tree Node must be exported
by all nodes. Both Ezpression nodes and Statement nodes export more operations than do TreeNodes, but

each has operations that are different from those of the others; these types and the relationships between



them are depicted in Figure 7. Type Statement does not conform to type Fzpression because Statement does
not implement the getType operation, and Ezpression does not conform to Statement because Ezpression

does not implement the typeCheck operation. However, they both conform to TreeNode.

Now consider the objects codeImprover and expressionImprover:

const codelmprover —
object CI
operation optimize[root: TreeNode] — [result: TreeNode]
end Cf
const ezpressionlmprover —

object F1

operation optimize[root: Ezpression] — [result: Expression]

operation factor[root: Ezpression] — [result: Ezpression]
end Ef

Should the type of ezpressionImprover conform to that of codeImprover? The former clearly has more
operations, and this could be reason enough to declare that it conforms. However, expressionImprover is
clearly not substitutable for codeImprover in every context. An invocation of codelmprover.optimize may
legally be presented with a TreeNode as an argument, but an attempt to present the same argument to
expressionImprover.optimize is a type error. This is why Emerald’s conformity rules clearly state that

expressionlmprover does not conform to codelmprover.

Before leaving this example, let us look a little more closely at what would happen if Emerald were
more lenient in its type checking. Then, it would be possible for ezpressionImprover.optimize to be invoked
with a TreeNode object as its argument, which would then be bound to the name root within the optimize
operation, even though the syntactic type of root is Ezpression. Now there are two situations to consider
within the body of ezpressionImprover.optimize (denoted by the ellipsis above). If the operation body invokes
only generate operations on root and never getType operations, the body would execute successfully. If the
operation body does invoke the getType operation on root, the invocation would fail because getType is not

implemented on treeNodes.

It is of course exactly this sort of run-time failure that Emerald’s type system prevents. At first glance,
it may seem that the cost of this security is that a legal and useful program—the first case in which getType
is never invoked—cannot be written in Emerald. But a little thought shows that this is not so. If the body
of ezxpressionImprover.optimize never invokes getType on its argument, then the argument should not be

declared to be of type Ezpression: it need only be of type TreeNode.

const ezpressionlmprover «—
object E1
operation optimize[root: TreeNode] — [result: TreeNode]
operation factor[root: Ezpression] — [result: Expression]

end EJ

10



With this change to the definition of ezpressionImprover, the type of ezxpressionImprover conforms to
that of codeImprover. The type system now permits expressionImprover to be substituted for codeImprover;

the “legal and useful” program mentioned above can be written in Emerald.

The lesson here is that the Emerald programmer should strive to characterize argument and result types
as accurately as possible, listing exactly what is expected of arguments, and describing results as fully
as possible. This is similar to the discipline that must be imposed when writing a program using formal
specifications: the declared precondition of an procedure should characterize the properties of the arguments
that are required for the procedure to work. The precondition should not characterize everything that
happens to be true of the argument in all of the uses of the operation that have been conceived of to date,

for doing so severely limits the reusability of the procedure.

This discipline is dubbed as the use of best-fitting types. Best-fitting types provide good documentation
and encourage good design, as well as permitting the maximum reusability of code. There is a cost, however:
it is harder to reimplement the same operation using a different algorithm. This is because the new algorithm
may want to use some operation of an argument that is not possessed by the syntactic type of the argument,

even though it is available on the actual argument in all real invocations.

Using best-fitting types works only because argument and result conformity can extend to an arbitrary
depth. This makes the Emerald’s programming style different from that used in languages without confor-
mity, where perfect matching of argument and result types is required. Here, the programmer has to decide

a priori on “envelope types” that are weak enough to work correctly in all applications, current and future.

Implicit versus explicit conformity. Implicit conformity can sometimes lead to “mistaken” type-
matches. In Figure 8, since insert and remove have identical signatures in all three objects, Emerald would
regard Stack, Queue, and Stack? as having the same type. This allows the unintended use of the Queue
object as a Stack. On the other hand, because Emerald is an open system where objects can be compiled and
added at run-time, Stack can be replaced by Stack? (which might be a newer version of Stack). In order to
allow the substitution of Stack2 for Stack, but prevent the substitution of Queue for Stack, the type system
would either require the programmer to explicitly declare the conformity relation between types, or need

information about the semantics of the operations.

The subtyping notion of Trellis?? is similar to that of Emerald conformity, but any subtype relationship
between types has to be explicitly declared. The use of such explicit declaration prevents meaningless
substitutions of objects. In the above example, the Trellis programmer would declare Stack2 as a subtype
of Stack but not establish any subtype relationship between Queue and either Stack or Stack2. The price
paid in Trellis is that a type Stack3 defined elsewhere in the type hierarchy cannot be a subtype of Stack
unless that relationship is explicitly stated. Moreover, Stack cannot also be a subtype of Stack2 or Stacks.
Eiffell4 also requires an explicit declaration of type conformance (although the use of covariance in Eiffel’s
notion of conformance has been found to make the type system unsafe?4). In contrast, the implicit nature

of Emerald conformity allows the types of these three stack objects conform as desired.

Languages such as Algol 68 that use structural equivalence and conventional types systems have similar

11



const Stack —
object S
export insert, remove
operation insert[Element] — [ ]
% Suitable body
operation remove — [Element]
% Suitable body
end S

const Queue —
object @
export insert, remove
operation insert[Element] — [ ]
% Suitable body
operation remove — [Element]
% Suitable body
end @

const Stack2 —
object 52
export insert, remove
operation insert[Element] — [ ]
% Suitable body
operation remove — [Element]
% Suitable body
end 52

Figure 8: Three objects with identical types

problems. For example, stacks and queues, implemented using the same singly-linked list and the field names,
have the same structure, and hence the same type. Modula-3,12 which uses structure equivalence, recognizes
this problem and provides the ability to brand types in a unique way. A branded type cannot match another
type, no matter what its structure is, thus providing a name equivalence option in a system based primarily
on structure equivalence. In Emerald, “mistaken” type-matches may be reduced by including operations
that are specific to the type defined. For example, a Queue object (as in Figure 8) supplemented by a

queuelLength operation cannot be mistaken for a stack.

Conformity versus inheritance. It is useful to contrast the Emerald notion of type conformity with
that of inheritance provided in other object-oriented languages. In short, conformity is a mechanism for
object substitution, and inheritance is a mechanism for code (and representation) sharing among objects.
Although conformity and inheritance are fairly distinct concepts, many object-oriented languages such as
C++ have not distinguished clearly between the two concepts, and the use of the same language structure

for providing both conformity and inheritance has caused considerable confusion.

Emerald supports type conformity (and hence object substitution), but it does not support inheritance:
code cannot be shared among object implementations. The absence of code sharing is due to Emerald’s
use in distributed systems, where object mobility is facilitated by self-contained objects and hampered
by dependencies on other objects. Since code sharing promotes software reuse, the lack of inheritance is

sometimes considered to be a deficiency of Emerald.

12



However, several aspects of inheritance actually impede software reuse. Inheritance compromises object
encapsulation to varying degrees.2> The use of a single explicit structure for both object substitution and
code sharing among objects is often restrictive and sometimes unsafe. For example, Trellis restricts code
sharing to its conformity hierarchy, and Eiffel forces inheritance and conformance to be the same with dis-
astrous consequences on type safety.24 Inheritance has other conceptual problems. It violates the principle
of locality,?6 thus preventing the use of local reasoning in understanding and implementing an object. Ad-
equate control is not provided over the granularity of code sharing; the basic inheritance paradigm requires
inheriting objects to share all their ancestors’ implementations. The need for explicit removal via overriding
to prevent undesired parts from being shared shows that there is no easy way of inheriting only the needed

parts of the ancestors” implementations.

To provide inheritance-like software reuse, we have prototyped an Emerald extension called Jade?? in
which object substitution is provided via conformity, and code sharing among objects via composition. The
basic building blocks in Jade are self-describing code components, such as operations and objects, which
may be combined to form larger objects. Since different objects may use the same components, this leads to
conceptual sharing of code among objects but without several shortcomings of inheritance. The noteworthy
point about Jade is the complete orthogonality of the code sharing (composition) and object substitution
(conformity) mechanisms. A detailed discussion of the Jade language and environment is beyond the scope

of this paper, and may be found elsewhere.27, 28

Relationship between Types and Objects
Each Emerald object may belong to several types because an object O belongs to a type T when

typeof O o> T

The application of typeof to an object returns its mazimal type, that is, the largest Emerald type that the
object can belong to. Because this permits objects to be classified by their types, it now becomes possible
to relate implementations and types via conformity. The anlnteger Node of Figure 1 names an object whose

type conforms to the type definition given in Figure 6; we can thus write

typeof anlintegerNode o> IntegerNode Type

A type is any object whose type conforms to:

immutable type AbstractType
function getSignature — [Signature]
end AbstractType

In other words, any object that exports a getSignature operation that returns a Signature is a type. Objects

of type Signature are created by the type constructor syntax (type z ... end z). A Signature is a built-

in implementation of an AbstractType that can be generated only by the compiler. A signature object
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const IntegerNode —
immutable object INC
export getSignature, new

const Integer Node Type —
type INType
function getValue — [Integer]
operation setValue[Integer]
operation generate[ QutStream]
end INType

function getSignature — [sig : Signature]
stg «— IntegerNodeType
end getSignature

operation new[val : Integer] — [aNode : IntegerNode Type]
aNode —
object IntegerLiteral
% as in Figure 1
end IntegerLiteral
end new

end INC

Figure 9: An integer node creator with getSignature

exports a getSignature operation (returning itself) so it conforms to AbstractType. It also exports several
secret operations that enable the Emerald implementation to determine the operations provided by the type,
and the signatures of these operations. Because the names of these operations are secret, no programmer
defined objects will ever have types that conform to Signature; all signature objects must stem from a type
constructor expression in some Emerald program. Consequently, we can guarantee that the type checker is

able to get adequate and consistent information about a type.

The type value denoted by a type object is the result of its getSignature function. Consider the In-
tegerNode in Figure 9. This object was constructed by the addition of a getSignature function to the
IntegerNodeCreator of Figure 3. The code for IntegerNode reveals that typeof IntegerNode is:

type IntegerNode CreatorType
function getSignature — [Signature]
operation new[Integer] — [IntegerNode Type]
end IntegerNodeCreator Type

When IntegerNode is treated as an object, the operations that can be invoked on it are described by In-
tegerNodeCreator Type. However, when IntegerNode is treated as a type, its value is IntegerNodeType, the

result of the getSignature function.

Separation of Type and Implementation

The three features discussed above—object constructors for object creation, abstract types to characterize
interfaces, and conformity for type comparison—allow Emerald to elegantly separate implementations from

types. Emerald allows several different implementations to be used for the same type within a single program.
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const anotherldServer —
object IDS
export getNextld
monitor
operation getNextld — [newld : Integer]
var inF : InStream
var outF : OutStream
inF — InStream.From Uniz[ “/ usr/emerald/ID”)
newld — inF.getInteger
inF.close
outF «— OutStream. ToUniz[ “/ usr/emerald/ID”]
outF.putInteger[newld + 1]
outF.close
end getNextld
end monitor
end IDS

Figure 10: An alternative implementation of an Id Server

Much of the flexibility found in untyped languages such as Smalltalk is thus available within the framework
of the strongly-typed Emerald language. Not only does Emerald’s separation of types and implementations
simplify separate compilation of programs, but it also enables newly defined objects to be added to a running

system, and take the place of previously defined objects, so long as they have conforming types and semantics.

For example, the reliability of the idServer defined in Figure 4 may be enhanced by implementing a
new version, shown in Figure 10, that stores its state in a file in order to survive crashes. The type of this
new server conforms to the type of the original and so may be used anywhere the original was expected.
Note that this substitution can be made into an application that is already executing. Such flexibility is not

normally available in strongly-typed languages.

It is worth noting that the clean separation of type and implementation found in Emerald is not possible in
languages whose objects are not so strongly encapsulated. In CLU or C++, for example, the implementation
of an operation in a class is allowed to access the internals of all the objects that are the same type as the
receiver: these languages assume that ‘same type’ implies ‘same class’. In Emerald, as in Smalltalk, the

implementation of each operation on an object has access to the internals of that object alone.

In Modula-2, separation between abstract typing and implementation is not provided because DEFINITION
and IMPLEMENTATION MODULEs are actually treated as two parts of one module.® The coupling of the def-
inition and implementation modules is done during linking, which precludes multiple implementations at
run-time. In Ada, each specification corresponds to an implementation in the library. When a different im-
plementation for a specification is needed, the program needs to be recompiled, substituting the new one for
the old one, and then relinking the new implementation. Thus, Ada does not allow multiple implementations

of the same abstract type to coexist.

Object-oriented languages such as C++ and Smalltalk support a programming style that allows multiple

implementations of the same abstraction. This is done via the use of abstract classes, which describe only
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object interfaces, but may be extended into concrete subclasses for instantiating multiple implementations.
There are some obvious similarities between such abstract classes and Emerald’s abstract types, but there are
important differences. First, the former represents a conventional use of the class system, while the latter
is a language feature. Second, abstract classes permit the definition of default behavior. Although such
definitions are occasionally useful, they violate the complete separation of a type from its implementations, as
well as the separation of multiple implementations. Finally, the use of abstract classes requires each concrete
implementation to be explicitly declared a subclass of the abstract class. In other words, the abstract class
must exist before multiple implementations are created. In Emerald, there is no such restriction since the

relationship between implementations and abstract types is deduced by the type system.

Support for Polymorphism

At least three broad varieties of polymorphism have been identified in the literature.17, 21, 29, 30

Inclusion polymorphism refers to the situation where an object may belong to many different types that
need not be disjoint, that is, a type may include one or more of the other types. Subtyping is a good
example of this kind of polymorphism. Objects belonging to a type are manipulable as belonging not only
to that type, but also to its supertypes. In implementation terms, object representations are chosen so that

operations can work uniformly on instances of subtypes and supertypes.

Parametric polymorphism allows a function to have an either implicit or explicit type parameter that
determines the type of argument required for each of its applications. This is perhaps the purest form of
polymorphism, permitting the same operation to be applied to arguments of different types. Implicit type

parameters are used in ML29 and explicit type parameters appear in Russell.30

Ad-hoc polymorphism refers to situations where a procedure works, or appears to work, on several types.
It is usually not considered to be true polymorphism because these types are not required to exhibit any
common structure; neither are the results of the procedure required to be similar. Ad-hoc polymorphism
covers the notions of overloading, where the same name denotes different functions in different contexts (e.g.,
the operator “+” in most programming languages), and coercion, where values are (automatically) converted
to the type expected by a function (e.g., in 2+ 3.1, the integer 2 is coerced to the real 2.0); the difference

between these two notions often disappears in untyped languages.

Relating traditional discussions of polymorphism to object-oriented languages has to be done carefully.
Inclusion polymorphism fits naturally into object-oriented programming. However, consider the following

standard example of a polymorphic function:

function length[ t: someType ]

This kind of polymorphism is unnatural in object-oriented languages because functions are not first-class
entities in such languages. That is, rather than applying functions to objects, operations are invoked on

objects. To obtain the length of an object, one invokes the length operation of that object since the object
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const SimplePolyTester —
object SPT

const Printable —
type aPrintable Type
function asString — [String]
end aPrintable Type

operation Printlt[p: Printable]
stdout. PutString[p.asString || “\n”]
end Printlt

process
SPT.Printlt[0]
SPT.Printlt[1.1]
SPT.Printli[true]
SPT.Printli[ “This is rather trivial.”]
end process
end SPT

Figure 11: A polymorphic operation

obviously knows its own type and does not need the type as an argument. Instead of applying a length
function to a list to find its length, the list itself is asked what its length is. In this setting there is no need
for length to be polymorphic. If one implementation of length is shared by many classes, it is polymorphic.
If length is separately defined for every object, it is not polymorphic. One cannot tell from the interface

which case applies.

Although Emerald provides an efficient, practical form of polymorphism, its emphasis on type conformity
and object autonomy makes the above classification scheme inappropriate. Based on the role played by the

different polymorphic entities, an Emerald-oriented classification of polymorphism is proposed below.
1. polymorphic operations, which work “correctly” regardless of the types of their arguments,

2. operations that return types, and

3. polymorphic objects (values), which can be used in situations requiring different types.

Notice that 1 and 3 result from Emerald’s notion of conformity which is a form of inclusion polymorphism.

Polymorphic Operations. All operations are naturally polymorphic because objects (of different types)
may be used as arguments provided they conform to the types declared for the formal parameters of the

operation.

Figure 11 illustrates Emerald’s support for polymorphic operations using the function Printlt. This
function takes a parameter of type Printable, and displays its string form on the standard output. Any
object that understands the asString operation conforms to the type Printable, thus permitting any such

object to be passed to Printlt. Notice the use of SPT to represent the target of the invocation of Printlt.
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const List —
immutable object ListCreator
export of
function of[eType: AbstractType] — [result: ListCreator]
where
ListCreator «—
immutable type LC
function getSignature — [Signature]
operation new — [ListType]
end LC
List Type —
type LT
operation AddAsNth[eType, Integer]
operation Delete Nth[Integer]
function GetNth[Integer] — [eType]
function Length — [Integer]
end LT
end where

result «—
immutable object NewlListCreator
export getSignature, new

function getSignature — [r: Signature]
r — ListType
end getSignature

operation new — [result: ListType]
result —

object thelist
export AddAsNth, Delete Nth, GetNth, Length

% Implementations of the various operations

end thelList
end new
end NewListCreator
end of
end ListCreator

Figure 12: A List type generator

Operations that return types. Most programming languages support the array type constructor, which
is usually a built-in operator that takes a type as an argument and returns a new type as a result, for example,

Array[Integer] and Array[Boolean].

While languages such as Pascal support this kind of polymorphism for arrays and similar built-in types,
such support is not usual for user-defined types. For example, the programmer cannot describe a List type
without also specifying the type of the elements. Some languages such as Modula-2+3! allow elements of
any type to be used, but ensure the homogeneity of the List through a required user-specified run-time
check. Other languages such as ML29 allow the specification of polymorphic operations through implicit

type variables that are instantiated when type-checking is performed.

Emerald supports user-defined operations that return types subject only to the constraint that the types

18



of variables, constants, and formal parameters be evaluable at compile-time. Since types are objects, types
may be passed as arguments to functions that create types. As an example, consider the polymorphic list
creator in Figure 12. List is an object that exports a single function, of. This function takes a type eType as
an argument, and returns a List creator for lists whose elements are of type eType. This resulting class-like
object can be used to create homogeneous lists. For example, a list of integers can be declared and created

as follows:

var iList . List.of[Integer] «— List.of[Integer].new

The above example reveals the expressiveness of Emerald invocations. List is an object that exports the

operation of , whose single argument must be an abstract type. The invocation

List.of[Integer]

returns an object that is used in two ways. First, when used to specify the abstract type of iList, the
denoted type is obtained by invoking getSignature on List.of [Integer]. Second, when used to initialize iList,
the new invocation yields an object that is a list of integers. What is unusual about the of invocation is
that it is a compile-time invocation, that is, the Emerald compiler itself performs this invocation and creates
the resulting object. This is possible because List is immutable, of is a function, and the argument to the
invocation, Integer, is an immutable compile-time constant. As a result, ¢List is just as efficient as a list of

integers that is directly defined; in fact, exactly the same code is generated in either case.

It is interesting to examine the various Emerald features that went into the construction of List in
Figure 12. The function of uses the fact that types are objects to specify a type parameter. The separation
of type and implementation allows restriction of the behavior of the elements in the list without constraining
their implementation. Finally Emerald’s object constructor makes this entire description possible in a self-
contained way. Note that there are three levels of constructor, which is not possible in any other object-

oriented language. Conformity allows List.of [Integer] to act both as a type and as a creator.

The result type of the operation List.of depends on the type of its argument. Result types of Emerald
operations may also depend on the wvalue of their arguments. For example, the Emerald compiler uses
TreeNodes to represent different constructs of the language. Since constructs are identified by different
keywords, the result type of the compiler operation that creates TreeNodes depends on the value of the input

keyword.

Polymorphic Objects. The notion of walue in traditional languages is subsumed by the notion of object
in object-oriented languages. Traditional languages with typed pointers such as Pascal usually support the
notion of nil, which may be assigned to any pointer variable regardless of its type. This is an example of a

polymorphic value.

Emerald supports polymorphic objects. An object may be assigned to any identifier provided that the

object’s type conform to that declared for the identifier. A direct analogue of Pascal’s nil pointer value is the
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const PolyValue —
object pv
const Printable —
type Printable
function asString — [String]
end Printable

process
var aStringOby. String
var aPrintableOby: Printable
var anyOby:. Any

aStringObj — “Fmeralds are green”
aPrintableObj — “Fmeralds are green”
anyObj — “Emeralds are green”
end process
end pv

Figure 13: Some polymorphic objects

object nil in Emerald. None, the type of nil, conforms to every Emerald type. Any identifier in Emerald,
regardless of its declared type may be assigned the object nil. Figure 13 illustrates a more restricted example.
Here, the identifier a PrintableObj may name any object that understands the asString function, and the same
string object “E'meralds are green” may be assigned to aStringObj, aPrintableObj, and anyObj because its
type conforms to the types of all three identifiers.

This kind of polymorphism is naturally available in most class-based languages because each object
belongs to its class as well as the class’s superclasses. However, in these languages, all the classes that an
object can belong to are known before the instantiation of the object. In Emerald, this determination is
made dynamically. As a consequence, Emerald objects are also polymorphic not merely with respect to

existing types, but also to hitherto unthought of types to which they conform.

4. CONCURRENCY

Emerald’s support for concurrency takes the form of active objects. An active object contains a process that
is started after the object is initialized, and executes in parallel with invocations of that object’s operations
and other active objects. This process continues to execute its specified instructions until it terminates. An
object with a simple process is shown in Figure 14. The process in this object performs the repetitive actions

of a philosopher in the well-known dining philosophers’ problem.32

An Emerald process represents an independent thread of control. New threads may be created dynami-
cally simply by creating new objects. For example, in Figure 15, five instances of the philosopher object are
created. Since the object assigned to the elements of philo Array export no operations, the object constructor

is used here to achieve an effect similar to the use of the fork procedure.33

In Emerald, operation invocation is synchronous. Thus, a thread of control can be thought of as passing

through other objects when it invokes operations on those objects, that is, the invocation of an operation
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const aPhilosopher —
object P

% Assume suitable objects Table and Node are defined
% Assume integer objects eatingTime and thinkingTime have been defined

process
loop
Table.pickupForks[p]
Node.sleep|eating Time]
Table.putdownForks[p]
Node.sleep[thinking Time]
end loop
end process
end P

Figure 14: A dining philosopher

const anOrganizer —
object Organizer
process
var count: Integer «— 5
counst philoArray — Array.of[Philosopher].create[5]
loop
philoArray[count] —
object P
% as in Figure 14
end P
count «+— count — 1
exit when count = 0
end loop
end process
end Organizer

Figure 15: An organizer object
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const Clock —
object C
export getTimeOfDay, set TimeOfDay
monitor
var theTime: Integer — 0

operation IncTime
theTime — theTime + 1
end IncTime

function getTime — [r: Integer]
r < theTime
end getTime

operation setTime[r: Integer]
theTime — r
end setTime
end monitor

operation setTimeOfDay[newTime: String]
var t: Integer
% store newTime in some internal form
setTimel[t]

end setTimeOfDay

operation getTimeOfDay — [currentTime: String]
var t: Integer — getTime
% return the String form of t

end getTimeOfDay

process
loop
System. Tock
IncTime
end loop
end process
end C

(a) A clock object

const System —
object S
monitor
const timing «— Condition.Create

% Tick is invoked by a hardware clock
operation Tick
signal timing
end Tick
operation Tock
wait timing
end Tock

end monitor
end S

(b) A system object

Figure 16: Concurrent programming in Emerald

provides the thread of execution for that operation. This means there can be multiple simultaneous invoca-
tions of an operation in the same object. Each invocation can proceed independently, providing fine-grained
parallelism. In other distributed object-oriented languages, such as EPL 34 each object has a message queue

for incoming requests and a set of threads of control to respond to those requests.

Emerald uses monitors to regulate access to an object’s local state that is shared by the object’s operations
and process, and synchronization is achieved using system-defined condition objects.3> The Emerald monitor
is similar to the monitor in Concurrent Pascal36 or Concurrent Euclid 37 but is completely enclosed within
an object. An object’s process commences execution outside the monitor, but can enter the monitor by

invoking monitored operations when it needs access to shared state.

The choice of the monitor mechanism in Emerald for synchronization reflects designer prejudice and fa-
miliarity rather than its clear superiority over other mechanisms. However, monitors were found to provide

a natural protection mechanism within the object-oriented paradigm, and they are also efficient for synchro-
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nization within an object especially when there is no contention—in this case, monitor entry and exit are

performed by a few in-line machine instructions.

Figure 16 illustrates the various aspects of Emerald’s concurrent programming model with a naive imple-
mentation of a clock. The clock object uses a simple internal representation (theTime) that is protected by a
monitor and can be manipulated by several monitored operations. The internal representation is constantly
updated by the clock object’s process, which synchronizes with a timing pulse provided by the system ob-
ject. The expensive operations for converting between the internal and external representations are defined
outside the monitor, thus allowing multiple simultaneous invocations of them to proceed concurrently. The

System object demonstrates a simple use of Emerald condition objects to provide buffering of timing pulses.

5. OTHER FEATURES

In this section we discuss those remaining features of Emerald that contribute to its programming model.

Block Structure and Nesting

The use of object constructors makes block structure and nested object definitions natural. We have already
seen several examples of such nested object constructor definitions, for example, in Figure 12, the object

constructor thelList nested inside NewListCreator which in turn is nested inside aListCreator.

Emerald also supports the notion of blocks. Emerald blocks, similar to those in Algol-60, define a new
scope for identifiers. The scoping of Emerald identifiers is traditional, with the one exception that an identifier
is visible throughout the scope in which it is declared, that is, both before and after the declaration. Examples
of constructs that open new scopes for identifiers are operation definitions, object and type constructors,
monitors, or loop statement bodies. Non-local identifiers are implicitly imported into nested scopes unless

they are re-defined.

Since object constructors and type constructors create new objects that persist beyond the end of the
enclosing block, identifiers imported into these constructs are treated specially. Each imported identifier is
evaluated when the constructor is executed and within the constructor the value is bound to an implicitly

declared constant with the same name.

Consider the full form of the integer literal node creator shown in Figure 17. All objects created by
invocations of IntegerNode.new are identical except for the binding of the identifier value, which is initialized
from the argument val to each invocation. Once an object is created, it cannot see changes to the argument

val, nor is it bothered when that identifier ceases to exist upon return of the new invocation.

Emerald blocks therefore have several similarities with those in Algol-60, and hence Simula and Beta.
Smalltalk abandoned block-structure in favor of the single-level declaration of classes and global access to
class definitions. Multi-level class definitions are not permitted; the Smalltalk programmer cannot declare a

class inside another class.
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const IntegerNode —
immutable object INC
export new

const Integer Node Type —
type INType
function getValue — [Integer]
operation setValue[Integer]

operation generate[ OutStream]
end INType

operation new[val : Integer] — [aNode : IntegerNode Type]
aNode —
object IntegerLiteral
export getValue, setValue, generate
monitor
var value : Integer — wval

operation getValue — [v: Integer]
v — value
end getValue

operation setValue[v: Integer]
value — v
end setValue

operation generate[stream : OutStream]
stream.putString] “LDI %d\n”, value]
end generate
end monitor
end IntegerLiteral
end new

end INC

Figure 17: Block structure and object constructors
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There has been considerable discussion in the literature both supporting and opposing the use of block
structure in programming languages.3® 39 40 By ensuring locality, block structure permits the seclusion of
object constructors to the context in which they make sense, thus emphasizing good programming style. On
the other hand, a nested object constructor has dependencies on enclosing objects, thus making it difficult
for it to be reused in different contexts. Jade, the Emerald extension mentioned in Section 3, improves the

reusability of nested object constructors by parameterizing contextual dependencies.2?

Syntaz

In recent years, as parsing techniques have become better understood, the syntax of a language has usually
come to represent the prejudices of its designers rather than any significant improvement. This has meant
that issues of syntax are generally considered minor and unworthy of comment. Nevertheless, some aspects

of the Emerald syntax are interesting enough to merit a brief discussion.

The reader may have been pleasantly surprised to find the absence of semicolons in Emerald — semicolons
are needed neither to terminate statements nor to separate statements. Emerald uses square brackets
uniformly for invocations and operation definitions. Note that arrays and vectors, although system-defined,
are objects that follow the standard invocation paradigm, and do not need any special syntax. However,
sugared shorthand notations for common operations (such as subscripting) are provided. The shorthands

are available uniformly for both user- and system-defined objects.

Emerald uses the «— symbol uniformly for all instances of the binding operation: assignment, constant
declaration, and collecting the results of an invocation. As part of its distributed programming heritage,
Emerald clearly distinguishes between the use of input parameters and output parameters. Both invocations

that return multiple results such as:

var point :
type T
operation getCoordinates — [Real, Real, Real]
end T
var z, y, z : Real

z, y, z — point.getCoordinates

and multiple assignments such as:

var a, b : Integer
a, b— b, a

are conveniently expressed.
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6. FINAL REMARKS
Current Status

An Emerald prototype is implemented under UNIX* on SUN-3T and vaX? processors. The compiler generates
native code, which is dynamically loaded into a pre-existing Emerald object world. Currently, Emerald does
not have a sophisticated programming environment. The success of Smalltalk (and Trellis to a lesser extent)
clearly demonstrates that an excellent programming environment is a great boon to its user community,
while shortcomings in the programming environment are discouraging to a programmer. The lack of a
proper programming environment is not a criticism of the Emerald language as such; it reveals that the
provision of a complete programming system is a must for getting the most from the language. Despite this
handicap, the development of various applications (such as a prototype mail system, a multi-user calendar

system, and the Emerald compiler itself) reveals the usefulness of the Emerald language features.

The focus of our current work is on improving implementation sharing and software reuse in Emerald. We
are also working on a new, more portable, implementation of the language based on the reimplementation

of the compiler in Emerald.

Conclusions

We have presented and discussed a number of examples that bring out the flavor of the Emerald approach
to programming. Emerald is not just the sum of its parts: it is also the interaction of those parts. Emerald’s
object constructor and nesting allow the simulation of Smalltalk classes. The separation of typing and
implementation, types as objects, and Emerald’s notion of conformity all combine to allow a very natural

form of polymorphism.

A number of factors contribute to the differences between Emerald and several other object-based lan-
guages. These include its emphasis on abstract typing and compile-time type-checking, the clear separation
of types and implementations, and the use of simple mechanisms for each identifiable paradigm. For example,
Emerald has the object constructor for object creation, the abstract types and conformity for the classification
of objects, and objects themselves contain their own methods. This unbundling of the functions of Smalltalk

classes has been found appealing by other researchers.21

Our experience with Emerald has shown that it is an interesting and useful general-purpose programming

language. Indeed, we are now convinced that the Emerald model of objects is a good foundation on which

*UNIX is a trademark of AT&T Bell Laboratories.
TSUN-3 is a trademark of Sun Microsystems.
{VAX is a trademark of Digital Equipment Corporation.
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future object-oriented systems can be built.
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