
Applying Traits to the Smalltalk Collection Classes ∗

Andrew P. Black
OGI School of Science &

Engineering, Oregon Health and
Science University, USA

black@cse.ogi.edu

Nathanael Schärli
Software Composition Group

University of Bern
Switzerland

schaerli@iam.unibe.ch

Stéphane Ducasse
Software Composition Group

University of Bern
Switzerland

ducasse@iam.unibe.ch

ABSTRACT

Traits are a programming language technology that promote the
reuse of methods between unrelated classes. This paper reports
on a refactoring of the Smalltalk collections classes using traits.
The original collection classes contained much duplication of code;
traits let us remove all of it. We also found places where the proto-
cols of the collections lacked uniformity; traits allowed us to correct
these non-uniformitieswithout code duplication. Traits also make
it possible to reuse fragments of collection codeoutsideof the ex-
isting hierarchy; for example, they make it easy to convert other
collection-like things into true collections. Our refactoring reduced
the number of methods in the collection classes by approximately
10 per cent. More importantly, understandability maintainability
and reusability of the code were significantly improved.

Categories and Subject Descriptors

D.3.3 [Language Constructs and Features]: Classes and objects;
D.2.3 [Coding Tools and Techniques]: Object-oriented program-
ming

General Terms

Design, Languages

Keywords

Reuse, Mixins, Traits, Smalltalk, Collection hierarchy, Stream
classes, Refactoring, Inheritance, Multiple Inheritance

1. INTRODUCTION

We have long believed that classes have too many responsibilities
in object-oriented programming [3]. In many languages, classes
are the prime (or only) mechanism for the conceptual classification

∗This research was partially supported by the National Science Foundation
of the United States under awards CDA-9703218, CCR-0098323 and CCR-
0313401, and by Swiss National Foundation project 2000-067855.02.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’03,October 26–30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00.

of objects. Classes also provide for reuse in two different ways:
as factories, they can be used to instantiate many similar objects,
while as superclasses, they group methods so that they can be in-
corporated into new subclasses. These two kinds of reuse often
have conflicting requirements. As factories, classes must be com-
plete; when creating new subclasses, it is more convenient to be
able to incorporate incomplete fragments of behavior.

We have developed a new programming construct, which we call
a trait, to address this problem. Traits are intended as fine-grained
units of code reuse. In essence, traits are first class collections of
methods that can be reused by classes anywhere in the inheritance
hierarchy.

The contributions of this paper are:

• a study of the internal structure of the existing Smalltalk col-
lections classes, with particular attention to the problems of
code duplication, unnecessary inheritance, and method re-
definition in inheritance chains;

• a report of our experience using traits to refactor the collec-
tion classes so as to remove these problems; and

• a description of the organization of the new classes that re-
sulted from our refactoring.

2. WHAT IS THE PROBLEM?

Single inheritance is a very popular programming technology, and
has been adopted widely since its introduction in Simula 67 [2]. In-
heritance is also very powerful, and the basis for several major suc-
cess stories, including Smalltalk and Java. But success and power
should not blind us to the fact that sometimes single inheritance is
just not up to the task of supporting the wide range of abstractions
that we expect to find in a modern object-oriented framework.

Let us illustrate this point with a small example. The class
RectangleMorph in the Squeak dialect of Smalltalk represents a
rectangular block of color that can be manipulated on the display.
As such, it is a subclass ofBorderedMorph, from which it inherits
and reuses many methods;BorderedMorph in turn is a subclass of
Morph. Squeak also defines a classRectangle, which inherits from
Object. However, aRectangleMorph is not a Rectangle; that is,
RectangleMorph does not implement all of the protocol understood
by Rectangle objects.

Rectangle adds 83 messages to the protocol ofObject. Of these,
only 13 messages are also understood by aRectangleMorph; the
other 70 are missing fromRectangleMorph’s protocol. We say
“missing” because, to the client, aRectangleMorph clearly is a
Rectangle; moreover, the state of aRectangleMorph includes a field
namedbounds that represents theRectangle that it occupies.

1

trait

U

c a q
d a r

trait

T

a a x
b a y
c a ↑self i

trait

T+ U

a a x
b a y
c a conflict
d a r

sum

+

trait

V

a a x
b a y
c a p
d a v

composite trait
definition

Trait named:
#V uses: T

b a y
c a p
d a v

overriding

trait

T

a a x
b a conflict
c a ↑self i

class

C

var0

a a m
d a n
e a k composite subclass

definition

C subclass:
#D uses: T

var1

b a j
d a w
i a ↑var1

subclass

D

var0 var1

a a x
b a j
c a ↑self i
d a w
e a k
i a ↑var1

class

C

var0

a a m
d a n
e a k composite subclass

definition

C subclass:
#D uses: T

var1

b a j
d a w
i a ↑var1

subclass

D

var0 var1

a a x
b a j
c a ↑self i
d a w
e a k
i a ↑var1

inheritance trait

T

a a x
b a y
c a ↑self i

These diagrams illustrate the
three composition operations
involving traits. The ellipses
depict the operations; the fat
arrows show their
inputs and outputs. The open
arrow represents sub-
classing. The notation a a m
represents a method with
name a and body m.

The sum operation takes two traits T and U as input;
the result is a trait T+U that contains the union of all of
the non-conflicting methods. Where T and U conflict
(e.g., at c), the resulting method is an explicit conflict
marker.

The overriding operation combines some explicit defi-
nitions with an existing trait. In the figure, the explicit
definitions of methods b and c override those
obtained from the trait T, and the definition of d is
added. The resulting trait V contains no conflicts
because the definition of b has been overridden.

The inheritance operation is used to create a new
subclass D from an existing superclass C, an existing
trait T, and some new, explicitly given, definitions.
Explicit definitions (e.g., of b) override those obtained
from the trait; definitions in the trait (e.g., of a) override
those obtained from the superclass.

Figure 1: The major operations on traits: sum, overriding, and inheritance.

2

A programmer who wishes to fix this problem is faced with
a number of unpleasant alternatives. One option is to copy
the 70 missing methods fromRectangle and paste them into
RectangleMorph. This is a clear violation of theDRY (don’t repeat
yourself) principle [20].

Another option is to provide a conversion method
RectangleMorph>>asRectangle1, and expect the client to re-
member to use this conversion method whenever there is a need
to send a message that aRectangleMorph does not understand.
For example, instead of sayingmyMorph area, the client must say
myMorph asRectangle area. This moves a burden onto the morph’s
client that we feel should be borne by the morph itself.

A third option is to delegate the 70 missing methods. The sim-
plest way of doing this is to implement each of them as a one line
method that converts the receiver to a rectangle and resends the
message. So thearea method would actually be implemented in
RectangleMorph as follows.

RectangleMorph >>area
↑ self asRectangle area

This seems like the best choice, but it increases the size of the ob-
ject code and makesRectangleMorph harder to understand because
it adds a lot of conceptually uninteresting“noise”. Constructing all
70 delegation methods requires tool support; using them introduces
run-time overhead.

Multiple inheritance has been proposed as another solution to
this problem; multiple inheritance would allowRectangleMorph
to haveRectangle and BorderedMorph as its superclasses and to
inherit methods from both. But multiple inheritance is complex,
and may introduce more problems than it solves. For example,
with multiple inheritance,RectangleMorph would inherit two sets
of state variables that represent the same information (the position
of the rectangle), and two sets of methods that access and change
these variables. A whole literature has developed on how to resolve
these problems; Taivalsaari [30] provides a good starting point.

Traits provide a solution to the problem of giving
RectangleMorph the behavior of aRectangle while retaining
the simplicity of single inheritance. The trait solution avoids dupli-
cation of both source and object code, eliminates indirection, and
improves modularity, thus making the classes easier to understand.

3. WHAT ARE TRAITS?

A trait is a first-class collection of named methods. The methods
must be “pure behavior”; they cannot directly reference any in-
stance variables. The purpose of a trait is to be composed into other
traits and eventually into classes. A trait has no superclass; if the
keywordsuper is used in a trait method, it remains unbound until
the trait is eventually used in a class.

Mixins are also collections of methods intended to be used as
components of classes [6, 15]. The major difference between mix-
ins and traits is that whereas mixins must be applied to classes one
at a time using the inheritance operation, traits are subject to a
richer set of composition operators, giving the programmer more
freedom in the way that they can be combined. Figure 1 illustrates
the sum, overriding and inheritance operations. The sum traitT+U
contains all of the non-conflicting methods ofT andU. However, if
there is aconflict, that is, ifT andU both define a method with the
same name (as they they do forc in the figure), then inT + U that
name is bound to a distinguishedconflict method. The+ operation
is associative and commutative.
1The notationc>>name refers to the methodname in classc.

The overriding operation constructs a new compositeTrait
named: #V uses: T . . . by extending an existing traitT with some
explicit local definitions. The local definitions override methods of
the same name in the traitT; because the local definitions are ex-
plicit, it is always clear what is being overridden. Thus, in the
figure, we see that the method forc with bodyp overrides the one
with body↑ self i.

Traits are incorporated into classes by means of an extended
form of inheritance. In conventional inheritance, a new subclass
B is constructed from a superclassC and from some local defini-
tions of instance variables and methods. In Smaltalk we would
write C subclass: #B . . . and then add the local definitions toB.
Our extended form of inheritance is similar; a new subclassD is
constructed from a superclass and a traitT in addition to the lo-
cal definitions. In Smalltalk we writeC subclass: #D uses: T
We call D a composite class. Methods defined locally in as part
of the inheritance operation (such asb in figure 1) replace meth-
ods obtained from the traitT. Methods defined locally (such asd)
and methods fromT (such asa) both override methods inherited
from the superclassC, and can access the overridden methods us-
ing super . In practice, the trait that is used to build a composite
class is often the sum of several more primitive traits.

The aliasing operator@ creates a new trait by providing an addi-
tional name for an existing method. For example, ifU is a trait that
defines methods onc andd, thenU@{e → c} is a trait that defines
methods forc, d ande. The additional methode has the same body
as the old methodc. Aliases are used to make conflicting methods
available under another name, perhaps to meet the requirements of
some other trait, or to avoid overriding. Note that because the body
of the aliased method is not changed in any way, an alias to a re-
cursive method is not recursive.

Finally, a trait can be constructed byexcludingmethods from an
existing trait using the exclusion operator−. Thus,U − {c} has
a single methodd. Exclusion is used to avoid conflicts, or if one
needs to reuse a trait that is “too big” for one’s application.

Associated with each trait is a set ofrequired messages. Any
concrete class that uses a trait must provide methods for all of the
required messages. For example, if the methods in a trait use the
expressionself size but the trait itself does not define a methodsize,
thensize will be in the requiresset of the trait. When this trait is
eventually incorporated into a class that is intended to be concrete,
size will have to be defined, perhaps as a method that fetches the
value of an instance variable, or perhaps as a method that calculates
the size.

Figure 2: Flattening. The classColoredCircle on the left sup-
plies an overriding local definition of draw. The bodies of the
corresponding methods are identical on the left and the right.

3

Figure 3: The programmer examines the list of overrides created whenRectangularMorph uses the traitTRectangle as a component.
The = method from TRectangle is inappropriate, and is excluded.

Because of the way that we define the operations on traits, the se-
mantics of a method is independent of whether it is defined in a trait
T, or in a class (or a trait) that usesT as a component. Consequently,
provided that all trait conflicts have been resolved, it is always pos-
sible to convert a program that uses traits into an equivalent pro-
gram that uses only ordinary classes, at the cost of possible code
duplication. We call this processflattening; it is similar to inlining
of procedures or expansion of macros. Similarly, a (conflict-free)
composite trait can always be flattened into a simple trait. Flaten-
ing is illustrated in figure 2: the composite classColoredCircle on
the left, composed from two traits and a local definition fordraw, is
semantically equivalent to the flat classColoredCircle on the right.

It is important that flattening never requires the bodies of the
methods to be modified. Thus, a complex composite entity can be
viewed as such; it can be completely flattened to remove all the
internal structure; or it can be viewed at any partially structured
point in between these extremes. We believe that theflattening
propertyis crucial in making traits easy to use; it is another critical
differences between traits and mixins.

The reader interested in a deeper understanding of traits and their
composition operators, and in how traits avoid the difficulties that
have beset multiple inheritance and mixins, is referred to compan-
ion papers [28, 29].

4. APPLYING TRAITS TO
RECTANGLEMORPH

Now that the reader has at least a superficial understanding of what
traits are, we can return to the example ofRectangleMorph and
show how traits can be used to make aRectangleMorph understand

the 70Rectangle methods missing from its protocol. Besides illus-
trating one way to use traits, this example shows how a class can
be transformed into a trait, illustrates the difficulties that may be
encountered when using the trait, and gives a glimpse of the tool
support that we have built.

The first step is to construct a trait that contains the missing
methods. This is easy to do, because the appropriate code already
exists in classRectangle. In the traits browser, which is an exten-
sion of the standard Smalltalk browser that understands traits, we
use thenew trait from classmenu item to create a new trait from
classRectangle. We call the new traitTRectangle; the initial T in
the name of a trait is a convention that we follow throughout this
paper.TRectangle contains all of the methods ofRectangle, except
that theabstract variablerefactoring2 is first applied to any method
that accesses an instance or class variable directly.

For example, aRectangle has two instance variables,origin and
corner, which represent its top left and bottom right coordinates.
So this method

Rectangle >>width
" Answer the width of the receiver."

↑ corner x − origin x

is converted into
TRectangle >>width

" Answer the width of the receiver."

↑ self corner x − self origin x

2This refactoring is given different names by different authors. Opdyke
[25] calls it “abstract access to member variable”, and Fowler [16] calls it
“encapsulate field”. We follow the lead of the Refactoring Browser [27] by
using the name “abstract variable”.

4

Once this refactoring is completed, the new trait has all of
Rectangle’s methods, but those methods that depended on the in-
stance variables ofRectangle now depend instead on the existence
of methodsorigin andcorner. The traits browser lets us examine the
methods in traitTRectangle, and also shows its requires set, which
comprises the three messagesorigin, corner andspecies.

We can now use the browser to constructRectangularMorph as a
new subclass ofRectangleMorph. The process is similar to creat-
ing a new subclass in the ordinary Smalltalk browser, but uses the
extended form of inheritance that lets us specify a trait (or a trait-
valued expression) that will beusedas a component. We define

RectangleMorph subclass: #RectangularMorph
uses: TRectangle
. . .

As a result of this definition, a new classRectangularMorph is
created that has the 70 methods it needs fromRectangle. But the
new class is incomplete; the traits browser shows us that it still
requires methods fororigin andcorner. We define these methods
directly in the new class.

RectangularMorph >>origin
↑ self bounds origin

RectangularMorph >>corner
↑ self bounds corner

The requirementspecies has already been satisfied, because a
species method is provided by our superclassRectangleMorph.

The browser also shows us a list ofoverriddenmethods, that is,
places where the new classRectangularMorph defines a method that
would otherwise have been inherited fromRectangleMorph. An ex-
ample iscenter, which is present in the traitTRectangle but which
is also defined inRectangleMorph. Each overridden method must
be examined to see whether it is appropriate to keep the version
from TRectangle, to keep the version from the superclass, or to
write a new method. Buttons in the browser let us examine both of
the alternatives and make our choice quickly.

In the case ofcenter and most of the other overrides, the meth-
ods fromTRectangle are appropriate, because they useself origin
and self corner to access the rectangle’s coordinates. However,
TRectangle’s methods for=, hash, and printOn: are inappropri-
ate. We use a browser menu to exclude these methods from
RectangularMorph. We choose to do this bysetting an exclusion
(see figure 3), the effect of which is to modify the definition of
RectangularMorph so that certain methods fromTRectangle are
never used; the equivalent declaration would be

RectangleMorph subclass: #RectangularMorph
uses: TRectangle − {#=. #hash. #printOn:}
. . .

Throughout this process, the traits browser helps us to focus on
just those methods that require our attention. Once we have exam-
ined all of the overrides and satisfied all of the requirements, our
task is complete: we have created a new class that has the function-
ality of both RectangleMorph and Rectangle. The only methods
that we needed to write were the two “glue methods”origin and
corner, which express how the abstract state of a rectangle is ex-
tracted from aRectangleMorph.

Small examples like this are fun, but they are not by themselves a
compelling test of a language extension that is intended to improve
the structure of large class libraries. To evaluate traits in a realistic
setting, they must be applied to a framework of significant size.
We chose the Smalltalk collections classes as the target for such an
evaluation.

5. THE SMALLTALK COLLECTION CLASSES

The collection classes are a loosely defined group of general pur-
pose subclasses ofCollection andStream. The group of classes that
appears in the “Blue Book”[18] contains 17 sub-classes of collec-
tion and 9 sub-classes of Stream, for a total of 28 classes, and had
already been redesigned several times before the Smalltalk-80 sys-
tem was released. This group of classes is often considered to be a
paradigmatic example of object-oriented design.

In Squeak, the abstract classCollection has 98 subclasses, and
the abstract classStream has 39 subclasses, but many of these
(like Bitmap, FileStream andCompiledMethod) are special purpose
classes and hence not categorized as “Collections” by the system
organization. For the purposes of this study, we use the term “Col-
lection Hierarchy” to meanCollection and its 37 subclasses that are
also in the system categoryCollections. We use the term “Stream
Hierarchy” to meanStream and its 10 subclasses that arealso in
the system categoryCollections. The full list is shown in figure 4.

Page 1

Collection
Bag

IdentityBag
CharacterSet
SequenceableCollection

ArrayedCollection
Array

WeakArray
Array2D
ByteArray
ColorArray
FloatArray
IntegerArray
RunArray
String

Symbol
Text
WordArray

WordArrayForSegment
Heap
Interval
LinkedList
MappedCollection
OrderedCollection

SortedCollection
Set

Dictionary
IdentityDictionary
PluggableDictionary
WeakKeyDictionary

WeakIdentityKeyDictionary
WeakValueDictionary

IdentitySet
PluggableSet
WeakSet

SkipList
IdentitySkipList

WeakRegistry

Stream
AttributedTextStream
PositionableStream

ReadStream
WriteStream

LimitedWriteStream
ReadWriteStream

RWBinaryOrTextStream
Transcripter

TextStream
TranscriptStream

Figure 4: The collection classes in Squeak. Indentation indi-
cates subclassing. Abstract classes areItalicized ; the classes that
we refactored are named inBold .

5

These 49 classes respond to 794 messages and define a total of 1236
methods.

5.1 The Varieties of Collection

To understand the challenge of refactoring the collection hierarchy,
the reader needs at least a superficial knowledge of the wide va-
riety of collections in these classes, their commonalities and their
differences. Those familiar with the Smalltalk collection classes
may safely skip this section.

Programming with aggregates rather than individual elements is
an important way of raising the level of abstraction of a program.
Suppose you have a data structure containing a collection of student
records, and wish to perform some action on all of the students that
have a particular property. Programmers raised to use an impera-
tive language will immediately reach for a loop. But the Smalltalk
programmer will write

students select: [:each | each gpa < threshold]

which evaluates to a new collection containing precisely those ele-
ments ofstudents for which the bracketed function returnstrue 3.

It is important to note that the messageselect: is understood by
all collections in Smalltalk. There was no need to find out if the
student data structure was an array or a linked list: theselect: mes-
sage is understood by both. Note that this is quite different from
using a loop, where one must know whetherstudents is an array or
a linked list before the loop can be set up.

In Smalltalk, when one speaks of a collection without being more
specific about the kind of collection, one means an object that sup-
ports well-defined protocols for testing membership and enumerat-
ing the elements.All collections understand the testing messages
includes:, isEmpty andoccurrencesOf:. All collections understand
the enumeration messagesdo:, select:, reject: (which is the oppo-
site of select:), collect: (which is like lisp’s map), detect:ifNone:
inject:into: (which performs a left fold) and many more. It is the
ubiquity of this protocol, as well as its variety, that makes it so
powerful.

Beyond this basic uniformity, there are many different kinds of
collection. For example, some collections are sequenceable, that is,
an enumeration of the collection starts from afirst element and pro-
ceeds in a well-defined order to alast element.Array andLinkedList
are examples (see figure 5).Array and many other collections
are also indexable, that is,anArray at: n retrieves thenth element
of anArray, andanArray at: n put: v changes thenth element tov.
However,LinkedList, although sequenceable, is not indexable, that
is, its instances they understandfirst andlast, but notat:.

The classOrderedCollection is more general thanArray; the size
of anOrderedCollection grows on demand, and it has methods for
addFirst: andaddLast: as well asat: andat:put:. An Interval is an
immutable collection defined by a computational rule when it is
created. For example,5 to: 16 by: 2 is an interval that contains the
elements 5, 7, 9, 11, 13 and 15. It is indexable withat:, but cannot
be changed withat:put:.

The differences between the various kinds of sequenceable col-
lection manifest themselves in several different dimensions.

1. How is the order established? Sorted collections use a sup-
plied total ordering function, intervals are implicitly ordered,
while arrays and ordered collections are ordered explicitly
when elements are inserted.

3The expression in brackets can be thought of as aλ-expression defining an
anonymous functionλx.x gpa < threshold.

2. Is the size fixed (intervals and arrays) or variable (sorted col-
lections, ordered collections, and linked lists)?

3. Is the collection immutable (Interval andSymbol) or mutable
(the others)?

4. Is the collection constrained to hold a particular kind of ob-
ject, or is it completely general? For example,LinkedLists are
constrained to hold elements that conform to theLink proto-
col, whileCharacterArrays,Strings andSymbols must contain
characters.4

The non-sequenceable collections (sets, bags and dictionaries)
can be categorized in a different set of dimensions.

1. Are duplicates allowed (dictionary and bag) or disallowed
(set)?

2. Can the elements be accessed by a key (dictionaries), or not
(sets and bags)?

3. How are the keys (in a dictionary) or the values (in a set or
a bag) compared,e.g., what test is used to ascertain whether
two elements added to a set are “equal”?

These categorizations by functionality are not our only concern;
as re-implementors of the collection hierarchy we must also un-
derstand how the collection classes are implemented. As shown in
Figure 6, five main implementation techniques are employed.

1. Arrays store their elements in the (indexable) instance vari-
ables of the collection object itself; as a consequence, arrays
must be of a fixed size, but can be created with a single mem-
ory allocation.

2. OrderedCollections and SortedCollections store their ele-
ments in an array that is referenced by one of the instance
variables of the collection. Consequently, the internal array
can be replaced with a larger one if the collection grows be-
yond its storage capacity.

3. The various kinds ofSet andDictionary also reference a sub-
sidiary array for storage, but use the array as a hash table.
Bags use a subsidiaryDictionary, with the elements of the
bag as keys and the number of occurrences as values.

4. LinkedLists use a standard singly-linked representation.

5. Intervals are represented by three integers that record the
bounds and the step size.

Readers interested in learning more about the Smalltalk collections
are referred to LaLonde and Pugh’s excellent book [22].

5.2 Streams

The collection protocol supports the storage, removal and enumer-
ation of the elements of a collection, but does not allow these op-
erations to be intermingled. For example, if the elements of an
OrderedCollection are processed by ado: method, it is not possible
to add or remove elements from inside the do block. Nor does the
collection protocol allow us to perform a merge sort by sequenc-
ing through twoOrderedCollections and repeatedly removing the
smallest first element. Procedures like these require that a traversal
index or position reference is maintained outside of the collection
itself, as captured in the Iterator pattern [17]. SmalltalkStreams
perform exactly this function. All stream objects are defined to

4A Symbol is a unique immutable string, used heavily in the language
implementation. The unique instance property means that equality tests
are particularly efficient.

6

Sequenceable Not Sequenceable

Accessible by Index Not Indexable Accessible by Key Not Keyed

Interval
SortedCollection
Array
ByteArray
OrderedCollection
String
Symbol

LinkedList
SkipList

Dictionary
IdentityDictionary
PluggableDictionary

Set
IdentitySet
PluggableSet
Bag
IdentityBag

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array
String
Symbol

OrderedCollection
SortedCollection
Text
Heap

Set
IdentitySet
PluggableSet
Bag
IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

LinkedList
SkipList

Interval

Figure 5: Collections can be categorized according to whether or not they are sequenceable,i.e., whether there are clearly defined
first and last elements. All of the sequenceable collections exceptLinkedLists and SkipLists can also be indexed by an integer key. Of
the non-sequenceable collections,Dictionaries can be accessed by an arbitrary key, such as a string, whileSets and Bags cannot.

Sequenceable Not Sequenceable

Accessible by Index Not Indexable Accessible by Key Not Keyed

Interval
SortedCollection
Array
ByteArray
OrderedCollection
String
Symbol

LinkedList
SkipList

Dictionary
IdentityDictionary
PluggableDictionary

Set
IdentitySet
PluggableSet
Bag
IdentityBag

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array
String
Symbol

OrderedCollection
SortedCollection
Text
Heap

Set
IdentitySet
PluggableSet
Bag
IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

LinkedList
SkipList

Interval

Figure 6: Some collection classes categorized by implementation technique.

stream oversome collection. For example:

r := ReadStream on: (1 to: 10).
r next. prints 1
r next. prints 2
r atEnd. prints false

WriteStreams are analogous:

w := WriteStream on: (String new: 5).
w nextPut: $a
w nextPut: $b
w contents. prints ’ ab’

It is also possible to createReadWriteStreams that support both
the reading and the writing protocols; defining such a class with-
out code duplication is a challenge for single inheritance. Squeak
chooses to makeReadWriteStream a subclass ofWriteStream, as
shown in figure 4.

6. ANALYSIS OF THE
COLLECTION CLASSES

This section presents the results of an analysis of the collection
hierarchy as it existed before our refactoring. We will see that the
collection hierarchy contains unnecessary inheritance, duplicated
code, and other shortcomings.

Given the many dimensions in which the Smalltalk collection
classes can be categorized, it is inevitable that any attempt to or-
ganize them into a single inheritance hierarchy will run into severe
difficulties. As Cook showed[11], the hierarchy attempts to max-
imize reuse at the expense of conceptual categorization, with the
consequence that, for example,Dictionary is a subclass ofSet be-
cause it shares much of the same implementation, even though it
presents a very different interface.

Another way that the designers of the hierarchy attempted
to maximize reuse was to move methods high up, so that all

possible classes have a chance to inherit them. For exam-
ple, collect: is implemented inCollection, but the implementa-
tion is appropriate only for those collections that understand
add:. Consequently, this implementation is overridden by the ab-
stract classSequenceableCollection in favor of an implementa-
tion using at:put:. This second implementation is inherited by
all of the ArrayedCollections, but also byOrderedCollection and
SortedCollection, for which it is not appropriate, and which over-
ride it again. All told, there are 10 implementations ofcollect: in
the collections hierarchy.

The following subsections examine these effects more systemat-
ically.

6.1 Unnecessary Inheritance

Inheritance is used quite heavily in the collection classes, mostly
for sharing implementation, but also for classification [11]. As
a measure of the complexity of the inheritance relationships, we
counted the number of inheritance chains in which a method is de-
fined three or more times. Figure 7 illustrates two examples: the
methodsat:put: andadd: in the inheritance chains terminating in the
classWeakValueDictionary. We found 79 such inheritance chains.

There is nothing intrinsically wrong with redefining a method
inherited from one’s superclass. On the contrary, the ability to use
super to call the inherited definition from within the new method
gives inheritance much of its power, and many people consider
that adding behavior before or after a super-send is the epitome
of inheritance-oriented programming.

However, for the most part, redefinition usingsuper is not what
is going on here. A total of 258 methods are involved in the 79
method redefinition chains mentioned above. Since 79 methods are
at the top of a chain, 258− 79 = 179 methods have the opportu-
nity of sending tosuper : only 15 actually do so. Neither are these
redefinitions examples of “hook” methods that are being used to

7

Figure 7: Redefinition of at:put: and add: in the superclasses of
WeakValueDictionary

parameterize the behavior of a template method [1]: all of the re-
defined methods are part of the functional interface. We deduce
that for the most part these redefinitions arecorrecting, rather than
augmenting, the behavior of the inherited method so that it is ap-
propriate for the new subclass. In other words, we have identified
164 places where a method was inherited unnecessarily.

What is the problem with unnecessary inheritance? The cost is
not in execution time nor in code space but in lost development
time. The task of understanding a class that inherits several meth-
ods but does not use them is more complicated than necessary. In-
heritance is often considered to be an aid to understanding a com-
plex class, since the programmer can work down the inheritance
chain, comprehending only thedifferencesbetween a subclass and
its superclass, rather than having to comprehend the entirety of the
final subclass in a single step. To the extent that methods are in-
herited unnecessarily, this process is made more difficult, and in-
heritance begins to hinder rather than to assist us in understanding
legacy code.

6.2 Code Duplication

When a new subclassdoeswant to re-use a method from an ex-
isting class, it may nevertheless be unable to do so because of
the nature of single inheritance. For example,PluggableSet and
PluggableDictionary share some methods, but there is no place from
which both classes could inherit them.PluggableDictionary is a sub-
class ofDictionary, andPluggableSet is a subclass ofSet; there is
no appropriate common superclass in which methods shared by the
two pluggable classes can be placed. There is aninappropriatesu-
perclass:Set. The programmer is left with the choice of placing a
method “too high” in the hierarchy (inSet), or duplicating it.

The Stream classes provide a classic example of methods be-
ing implemented too high. Conceptually, aPositionableStream
is an accessor for a sequence of objects named by external in-
dices (such as characters in a string or a file). Theposition-
able protocol includes messages to set and reset the position
of this index. However,PositionableStream is also the lowest

common superclass of bothReadStream and WriteStream. Be-
causeReadWriteStream is a subclass ofWriteStream (see fig-
ure 4), many of the methods that support reading (for example,
reader next: 4 into: anotherCollection, andreader nextDelimited: $.)
are implemented inPositionableStream in terms ofself next.

The methodnext itself is explicitly disabled inWriteStream, and
re-enabled (and duplicated) inReadWriteStream andReadStream.
The other “reading” methods inPositionableStream arenot explic-
itly disabled in WriteStream, but are inherited byReadStream and
ReadWriteStream. Thus, to avoid code duplication, methods spe-
cific to reading are implemented in the superclass ofWriteStream.
The tactic succeeds (except in the case ofnext itself), but the price
is high: PositionableStream is polluted by many methods that have
nothing to do with positioning, andWriteStream appears to imple-
ment many reading methods, although these methods will fail if
they are ever used.

There is no easy way to ascertain how much duplication is caused
by the fact that methods can be inherited only from a superclass.
We made a superficial check by looking for methods whose de-
compile strings were identical. This check detected as duplicates
methods those that differed only in formatting, comments, or the
names of temporary variables. We excluded from our count error
methods such asself shouldNotImplement, which is used to cancel
an inherited method. Using this check we found 28 pairs of du-
plicated methods, and 3 triples. In most cases the duplication
was of a method from another part of the hierarchy, which con-
sequently could not be inherited, or of a method defined in a su-
perclass’ superclass. For example,Dictionary andCollection both
implementoccurrencesOf: identically, but even thoughDictionary
is a subclass ofCollection, there is an intervening definition of
occurrencesOf: in Set that preventsDictionary from reusing the
method fromCollection.

However, these duplication counts are just the tip of the iceberg.
Our primitive duplicate detection technique certainly misses many
methods that differ in structure but not in semantics. For example,
if two methods comparex and y for equality, but one expresses
this asx = y while the other usesy = x, this duplication will not be
revealed by our search. During our refactoring of the collections
classes we also noticed many deeper examples of code duplication,
where a method had clearly been copied from an established class
into a newly created class, and then a single crucial statement had
been changed to obtain a different semantics. In addition, there is
also undoubtably duplication of collection code in classes outside
of the collection hierarchy, which we did not attempt to quantify.

6.3 Conceptual Shortcomings

In addition to the above implementation problems, the collection
classes also suffer from some conceptual shortcomings.

One of the reasons that there are so many collection classes is
that the designers have attempted to compensate for the fact that
classes are hard to reuse by providing all possible combinations
of features. For example, Sets, Bags and Dictionaries must com-
pare elements (or keys) for equality. Thus, each structure needs
three variants: one that uses equality (=) between elements, one
that uses identity (==), and one that uses an equality function that is
“plugged in” when the structure is created. Thus, we have the three
classesSet, IdentitySet, andPluggableSet; the same is true for Dic-
tionary and Bag, except thatPluggableBag is missing. A similar
situation exists with the “weak” variants of the collection classes,
which hold onto their elements weakly,i.e., in a way that does not
prevent them from being garbage collected. It would be nice if
these characteristics could be captured as reusable components, so

8

that programmers could combine pluggability with, say, SkipLists,
so that they could build the data structure that suits their applica-
tion. This would simultaneously simplify the collection hierarchy
(by eliminating the combinatorial explosion of features)and give
the programmer the flexibility to choose from a wider range of col-
lections.

Immutability is a “feature” not provided in the current hierarchy
except in two special cases: Symbols and Intervals. Nevertheless,
immutable collections can be useful in many contexts. Strings are
almost always used as if they are immutable, as are literal arrays,
but this cannot be captured by the current collection classes.

The stream classes also exhibit many orthogonal features, such
as readvs. write, binaryvs. text, positionable (seekable)vs. not-
positionable. The more necessary combinations are implemented
by duplicating code; many other combinations are simply unavail-
able.

Another problem with the collection hierarchy, also observed by
Cook, is that sometimes the interfaces of the classes are not what
one would expect: certain methods are missing. The classesString
and Text provided an example.String adds 142 new methods to
the protocol of its superclass (the abstract classArrayedCollection).
Most of these methods are related to parsing, converting to HTML,
searching for substrings and regular expressions, and other opera-
tions specific to character strings, and so inevitably these methods
must be defined specifically for the classString. However, Squeak
also defines a classText, for representing character strings that have
been attributed with font changes, hyperlining,etc. All 142 String
messages ought to be understood byText objects, but in the stan-
dard Squeak system, only 15 of them actually are. The remaining
127 are missing. Why is this?Text is not a subclass ofString, so
the “missing” methods cannot be inherited; the situation is similar
to the problem withRectangleMorph and Rectangle described in
section 2. Fixing this problem in Squeak would require either code
duplication or 127 delegation methods.

Finally, we mention that collection-like behavior is often desired
for objects that are not primarily collections. For example, the class
Path is a subclass ofDisplayObject and thus not able to inherit from
Collection. A Path represents an ordered sequence of points; arcs,
curves, lines and splines are all implemented as subclasses ofPath.
Path implements some of the more basic kinds of collection-like
behavior; for example, it has methods forat:, at:put:, andcollect:.
But Path doesnot attempt to implement the full range of collection
behavior. For example,Path does not provide methods forselect:
and do:: there are simply too many such methods to make it vi-
able to re-implement them, and the existing implementation cannot
be reused. Section 7.4 discusses how traits make collection-like
behavior available outside of the collection hierarchy.

7. RESULTS

In this section we explain how traits are used in the collection hi-
erarchy that emerged from our refactoring efforts. We start by de-
scribing how we distributed behavior from the pre-existing abstract
and concrete classes into traits, and how those traits are used to
construct a new set of classes. We then analyze the new hierarchy
with respect to code duplication, possibilities for reuse, and other
issues. The source code for the whole hierarchy and the tools that
produced it are available on the web athttp://www.iam.unibe.ch/-

˜schaerli/smalltalk/traits/OOPSLACollectionRefactoring.zip

7.1 The New Collections Hierarchy
Figure 8 shows the new hierarchy for the 23 common concrete col-
lection classes that we have re-implemented, and 6 abstract super-
classes. In addition to the name of each class, the figure also
shows the traits from which the class is composed. The classes are
divided into three layers. At the top of the figure 8 is the abstract
classCollection, which is composed from two traits, and provides a
small amount of behavior for all collections. Next we have a layer
of 5 abstract classes that represent different combinations of the ex-
ternally visible properties of collections. We call these properties
functional, to distinguish them from theimplementationproperties,
that is, properties that characterize the internal data structures used
in the implementation rather than the external behavior. Inheriting
from the functionalclasses we have 23 concrete classes, each of
which also uses one or more traits that specifies its implementa-
tion. We now describe the functional and the implementation traits
in turn.

The Functional Traits.

Each kind of collection can be characterized by several proper-
ties such as being explicitly ordered (e.g., Array), implicitly or-
dered (e.g., SortedCollection), unordered (e.g., Set), extensible
(e.g., Bag), immutable (e.g., Interval), or keyed (e.g., Dictionary);
see section 5.1 for more discussion. The various combinations of
these properties can be represented by combining the respective
traits. All that is necessary is to create a trait for each property
(see figure 9) and then combine them to build the abstract classes
of figure 8. In order to allow maximal reuse, we ensured that the
combinations of property traits are available in two forms: as com-
posite traits that can be reused outside of the collection hierarchy,
and as superclasses that can be inherited within it.

We modularized the primitive properties more finely than would
have been necessary if our only goal were to avoid code duplica-
tion. This fine structure gives us, and future programmers, more
freedom to extend, modify and reuse parts of the new hierarchy.
In addition, some of the property traits contain many methods, and
creating subtraits corresponding to individual sub-properties gives
them internal structure that makes them easier to understand. Be-
cause of the flattening property, there is no cost to this fine-grained
structure: it is always possible to flatten it out and to work with the
code in a less structured view.

Figure 9 also shows how the composite property traits are built
from each other and from the more primitive traits. We use the
following naming convention. Some names have a suffix consisting
of letters from the sets{S, U} and{M, I}. The letterS indicates that
all of the methods in the trait require the collection to be sequenced,
whereasU means that none of the methods in the trait requires the
collection to be sequenced. Similarly,M means that all the methods
require the collection to be mutable, andI means that no method
requires the collection to be mutable. If the suffix does not contain
a letter from one of these sets, the trait contains some methods with
each characteristic.

As an example, the traitTEnumerationUI contains the part
of the enumeration behavior that does not require sequencing
(U), whereasTEnumerationI—which usesTEnumerationUI as a
subtrait—contains both methods that require sequencing and meth-
ods that do not. Furthermore, none of the methods in these traits
treats the target object as mutable (I).

The Implementation Traits.

Besides the functional properties, which are visible to a client, each
collection class is also characterized by an implementation, which

9

Figure 8: The refactored collection hierarchy. Classes with italicized names are abstract; below the class name we show the top-level
trait(s) from which the class is composed. Each of these traits is in turn composed from several subtraits, as shown in figures 9 and 10.
The names of implementation traits end in “impl”. Individual methods and instance variables are not shown.

10

Figure 9: The traits corresponding to functional properties are built from each other and from more primitive traits. The 11 boxes
represent the larger composite traits; subtrait relationships between them are shown by arrows. The remaining subtraits are listed
in the bottom part of each box, using indentation to show sub-subtraits.

is normally hidden from a client. The functional and implementa-
tion traits that capture these properties are largely independent.

The refactored hierarchy separates the traits specifying the im-
plementation of a collection from the traits specifying the func-
tional properties. This allows us to combine the different func-
tional property traits (e.g., TExtensibleSequencedExplicitly and
TExtensibleSequencedImplicitly) with any of the suitable imple-
mentations (e.g., linked and array-based). In one place we also
extended the functionality of a concrete class: ourLinkedLists are
indexable,i.e., they understandat:.

Figures 10 and 11 show the structure of the implementation
traits. The 9 implementation traits shown in figure 10 are “com-
mon” in the sense that they are used as components of several
implementations. As an example, the behavior for creating new
instances (new, with:, withAll:, etc.) is collected into the trait
TInstanceCreationImpl, which is then used byTOrderedImpl and
four other implementation traits. Each of the 12 traits in figure 11
captures the behavior of a specific concrete class, and is built from
a combination of local methods and the common implementation
traits. The traitTBasicImpl contains default implementations for
methods likeincludes: andhash. These defaults are written so as to
be independent of the implementation of the underlying collection,
but may be unnecessarily slow for certain implementations. For
example,includes: is implemented usinganySatisfy:; this is always
correct, but isO(n), whereas in hashed collectionsincludes: should
be O(1). Instead of usingTBasicImpl as a subtrait of all the spe-
cific implementation traits, we decided to use it in the root class of
the collection hierarchy, from where its methods are inherited (and
possibly overridden) by the various implementations. For example,
THashedImpl andTIntervalImpl have their own implementations of
includes:.

7.2 The New Stream Hierarchy

The refactored version of theStream hierarchy retains the abstract
classPositionableStream from the standard Squeak hierarchy, but
uses it only to capture the notion of positionability, and not as a
place to put methods just so that they can be shared. Thus, the
protocol ofPositionableStream is reduced from 84 messages to 29.
ReadWriteStream, which was formerly a subclass ofWriteStream,
is now a direct subclass ofPositionableStream, and shares traits
with bothReadStream andWriteStream, as shown in figure 12.

Seven traits are used to build the Stream classes; they have the
simple structure shown in figure 13.TReadablePositionable and
TWriteablePositionable actually adddifferent sets of methods to
TReadable andTWriteable because “positionability” means differ-
ent things for readers and writers.

7.3 Measurements of the Refactored Classes

The refactored part of the collection class hierarchy shown in fig-
ure 8 contains 23 concrete classes and 6 abstract classes. These
classes are built from a total of 52 traits. The Stream hierar-
chy shown in figure 12 contains 7 concrete classes and 2 abstract
classes, which are composed from 15 traits.

The average number of traits used to build a class is more than 5;
the maximum that we used in any one class is 22. Further statistics
are presented in table 1.

BecauseString is something of an anomaly, containing many
methods that do not appear elsewhere in the hierarchy (as explained
in section 6.3), we initially excludedString andText from our mea-
surements (see the first column of table 1). Most of the numbers
are self-explanatory. “Methods saved” is the difference between
the number of methods in the original and the trait versions of the

11

Figure 10: Common implementation traits. Each of these traits provides behavior common to more than one of the specific imple-
mentation traits shown in figure 11.

Figure 11: Specific implementation traits. Each of these traits supplies the implementation methods for a particular concrete class.

Figure 12: Classes in the refactoredStream hierarchy.

12

Collection Collection Stream Totals
Classeswithout Classeswith Classes without with

String & Text String & Text String & Text String & Text
Number of concrete classes 21 23 7 28 30
Number of methods in original version 635 1 044 208 843 1 252
Number of methods in trait version 567 840 190 757 1 030
Methods saved (m) 68 204 18 86 222
Methods saved (ratio) 10.7% 19.5% 8.7% 10.2% 17.7%
Source code saved (in bytes) 9 527 14 586 1 307 10 834 15 893
Source code saved (ratio) 11.9% 10.4% 4.4% 9.9% 9.4%
Methods “too high” in original (h) 55 55 76 131 131
Methods “too high” as percentage of original 8.7% 5.3% 36.5% 15.5% 10.5%
Methods “too high” not explicitly disabled 40 40 66 106 106
Total methods saved (m + h) 123 259 94 217 353
Total methods saved (ratio) 19.4% 24.8% 45.2% 25.7% 28.2%

Table 1: Summary of the Refactoring

Figure 13: Traits used to build the Stream classes.

subject code. “Source code saved” is the difference in the size of
the two versions, measured in bytes, and computed by decompiling
the methods. This excludes comments and automatically adjusts
for differences in formatting, naming of variables, and so on.

The phenomenon of methods being implemented “too high” was
mentioned briefly in section 6.2. Suppose that one needs to use a
method in two classesA andB that are not in a subclass relation-
ship. In a single inheritance language, the only way to do this (other
than duplicating the code) is to promote the method to the common
superclass ofA andB. Thus, each instance of a method being im-
plemented “too high” represents a method thatwould have had to
be duplicatedif it were implemented in the logically correct place.
In fact, some of these methods would have to be duplicated several
times. Thus, the “Total savings” row in table 1 is simply the sum
of the number of methods that were found to be implemented too
high, and the number that were duplicated.

Although the evils of duplication are well-known, the prob-
lem with implementing methods too high may not be so obvi-
ous. Implementing methods too high means that inherited behav-
ior is inappropriate and must be cancelled. For example, in the
part of the collections hierarchy that we refactored, 15 messages
are explicitly disabled in subclasses (typically by defining them
as self shouldNotImplement). More problematic are the other 40
methods that areimplicitly disabled because they directly or indi-
rectly call explicitly disabled methods. Implementing methods too
high may be better than code duplication, but it nevertheless makes
the whole hierarchy very much harder to understand. For example,
the methodaddAll: in Collection sendsself add: for each element of
the argument. Consequently, itappearsthat every collection under-
standsaddAll:, although an attempt to use this method on, say, an
Array, will always cause a runtime error. In the trait implementa-

tion, there is no need to resort to this tactic: each method is present
in exactly the classes that need it, and in no others. This makes the
classes much easier for a programmer to understand: browsing the
protocol of a class tells one exactly which methods can be used.

The second column of the table includes the refactoredString
andText classes. The comparison is between the refactored classes
and a version of the collection hierarchy containing an augmented
Text class that defines all of the methods found inString but missing
from the standardText class. Because regularity of the interfaces of
objects is so important to object-oriented programming, we argue
that this augmentedText class is the one that really ought to be pro-
vided by standard Squeak—if it were feasible to do so with existing
technology. The refactored version uses traits to provideText with
all the methods ofString, and thus achieves the same interfaces with
far fewer methods.

The third column shows the situation with the stream classes.
Note that in this hierarchy there were fewer duplicated methods,
and so the reduction in the number of methods achieved with traits
is slightly lower. However, the reason that there was less dupli-
cation is that an enormous number of methods were implemented
“too high”, precisely so that they could be shared. Moreover, many
of these methods were not explicitly disabled. This makes the
Stream classes hard to understand, because it appears that these
methods ought to work, but in fact they will break when they call
another method thatis explicitly disabled.

The final two columns present the totals for Collections and
Streams, excluding and including theString andText classes.

7.4 Assessment of the Refactored Classes

Besides the quantitative improvements in the refactored part of the
collection classes noted above, the trait implementation has other
advantages that will have impact both inside and outside the collec-
tion hierarchy.

We undertook the refactoring in two phases. In the first phase we
refactored 13 concrete collection classes, and none of the Stream
classes. This phase set up the basic structure of the functional traits
and the implementation traits; we developed 46 traits in all. We
did not need to use exclusion or aliasing, because we were free to
split any trait that was too large for our needs. As we continued
our refactoring of the collection hierarchy, we found anincreasing
percentage reduction in code size as we applied the same reusable
traits to remove code from more and more classes.

13

Returning to the refactoring three months later, we found that we
were able to reuse many of our traits when we extended our refac-
toring to other parts of the hierarchy. Some of the traits were split
into smaller pieces, but since these could be recombined without
any change in semantics, the classes that had already been refac-
tored were not affected. In some places we used exclusion to avoid
disturbing an existing trait.

The traits that we have written will also allow us to construct new
kinds of collection in the future, simply by composing the neces-
sary traits and implementing a few glue methods. For example, we
can build a classPluggableBag by using the traitTPluggableAdaptor
in a subclass ofBag, and we can create immutable variants of col-
lections by omitting the mutable interface traits. In addition, the
availability of these traits frees the implementors of the collections
framework from the need to ship pre-built collection classes for
rarely used special cases. Instead, the main responsibilities of the
implementor become the provision of (1) a basic class hierarchy
that contains the more common collection classes and (2) a set of
well-designed set of traits that can be composed with these classes.
Using this basis, another programmer can then easily recompose
the traits in order to build special-purpose collections.

Another advantage of the new framework is that some of the
traits can be usedoutsideof the collection classes. As an example,
the trait TEmptyness, which requiressize and providesisEmpty,
notEmpty, ifEmpty:, isEmptyOrNil ifEmpty: and ifNotEmpty:, can
be used inany class that definessize. Similarly, the trait
TEnumerationUI can be used to provide a class with 24 methods
from the enumeration protocol, provided that it implementsdo:,
emptyCopyofSameSize, and errorNotFound. Why is this impor-
tant? We believe that much of the power of the object-oriented
paradigm comes from having manydifferentobjects understand the
sameprotocol in corresponding ways. For example, it can be quite
frustrating to find that aSoundBuffer, although it understandssize
andisEmpty, doesnotunderstandifEmpty:. The availability of fine-
grained traits at last makes it possible to make protocols more uni-
form across all of the classes in the system, with no cost in code
size or maintainability, and with areductionin the effort required
to find one’s way around the system.

7.5 Design Decisions

The availability of both trait composition and single inheritance
gave us a lot of freedom in designing the new collection classes.
Why did we choose the particular combination of trait reuse and
inheritance described above? An alternative approach would have
been to use trait composition exclusively and to minimize—or
eliminate—the use of inheritance. If we had done this, all the con-
crete collection classes would have been built using trait composi-
tion alone, and every collection class would be a direct subclass of
Object (or of an empty common superclassCollection).

We decided against this approach primarily for reasons of fa-
miliarity. Using both inheritance and trait composition in the new
hierarchy makes it easier for programmers who are familiar with
single inheritance code, and especially for programmers who know
the old collection classes, to understand and extend the new ones.
Indeed, a flattened view of the new collection classes exhibits a
structure quite similar to the old ones, although the abstract super-
classes do not correspond one-to-one.

The combination of single-inheritance and trait composition also
turns out to be well-suited for explicitly representing a functional
property layer with abstract classes and a implementation layer
with concrete classes. This is particularly true because the sepa-
ration between functional methods and implementation methods is

not always very clear. For example, it is sometimes the case that
a particular implementation trait defines a optimized variant of a
method that is generically defined in a functional trait. Because the
concrete classes arecomposedfrom the implementation traits but
inherit from superclasses built from the functional traits, we can be
sure that in these situations the implementation methods override
the functional methods.

8. DISCUSSION

In this section we first discuss some of the things we learned about
traits during our refactorings. Then we examine some places where
the theoretical benefits of traits were of practical importance, and
argue that a similarly fine-grained decomposition would be much
harder to accomplish with mixins or multiple inheritance.

8.1 Lessons Learned

During this refactoring we learned a number of things about traits
and our programming tools, and also some more general things
about refactoring.

Traits Simplify Refactoring

Using traits, refactoring a major hierarchy such as the Smalltalk
collections is not as hard a task as one might think. We are not
wizards; when we started refactoring we did not have a very clear
plan of where we would end up. We just started pair programming,
doing the simplest thing that could possibly work, until we found
that it didn’t work—at which point we did something just slightly
more sophisticated.

When we started dragging methods out of existing classes and
dropping them into traits, it was quite easy to identity the necessary
traits. We had a superficial familiarity with the Smalltalk collection
classes, and had re-read Cook’s 1992 study [11]. So we expected
to find traits related to the five different implementations and the
major categories of functionality described in section 5.1. When
we found a method that did not seem to fit into one of the traits that
we had already defined, we simply created a new trait. Often, the
hardest part was finding appropriate names for the traits. Naming
is important and difficult; the naming scheme used in this paper
can surely be improved upon, even though it represents our third or
fourth attempt.

Tools are Important

During the refactoring project, both the standard Smalltalk pro-
gramming tools (which allow one to look at not just classes but also
all the implementors of and senders of a particular message) and the
trait specific tools (abstracting away from instance variables, view-
ing unsatisfied requirements, being able to move a method and have
instance variable accesses automatically turn into message sends,
etc.) turned out to be an enormous help. It was particularly useful
to know that a layer of subtraits could be introduced or eliminated
without changing the semantics of any of the methods. Thus, we
could consider our refactoring task as simply grouping the existing
collection behavior into coherent traits. For each of the newly con-
structed traits, therequirescategory in the browser always showed
us which methods were missing in order to make the trait complete.
Naturally, some of these missing methods belonged most logically
in other traits; we simply continued adding methods to the trait until
all of the unsatisfied requirements belonged in other traits.

14

Use Fine-grained Components

As our refactoring progressed, we realized that the methods in the
collection hierarchy could be grouped into traits at a much finer
granularity than we had initially thought. Given good tools, traits
do not impose any cost for the finer-grained structure: we didn’t
have to make the trade-off between the elegance of the implemen-
tation and the understandability and usability of the functional in-
terface that characterizes both mixins and multiple inheritance.

Defer the design of the Class Hierarchy

Getting a class hierarchy “right” is known to be hard. The problem
is that one is usually forced to make decisions too early, before
enough is known about the implementation.

Our response was to put off making decisions for as long as pos-
sible, which turned out to be almost to the end of the first phase of
the refactoring. The theoretical properties of traits made us confi-
dent that things would turn out well in the end, provided that we
collected behavior into logically coherent traits. Whether these
traits would eventually be combined into complete classes or be
used to build a deep hierarchy of abstract and concrete classes did
not matter, because we knew that trait composition and inheritance
could be freely combined.

Once we had built the first few implementation and interface
traits, it became obvious how to combine them. The more we com-
bined traits, the more important the flattening property became.
However, we also realized the importance of the structured view,
because it shows the traits from which a class is composed and
how they are interconnected.

To summarize: we were able to put off the hard decisions until
we knew enough about the system to make them correctly. This
was because of the combination of

• a language technology with the right properties, particularly
flattening, and

• a set of tools that exploited those properties to provide mul-
tiple views of the program.

8.2 A Comparison to Mixins

In arguing that traits are a valuable contribution to the language
designer’s arsenal, we must address the question of whether we
could not have obtained equally impressive results using mixins or
multiple inheritance. We are convinced that the answer is “no”, and
in this section will attempt to explain why.

We have previously presented theoretical arguments for the su-
periority of traits over mixins and multiple inheritance[28]. Here
we will focus on experience rather than theory. We will compare
traits with mixins, since multiple inheritance can be considered as
a stylized application of mixins.

Our refactored collection classes are built from up to 22 traits;
on average each class contains more than 5 traits. This is feasible
because the sum operation lets us build a subclass from a group
of traits in parallel. In contrast, mixins must be applied one at a
time; this would result in huge and hard to understand inheritance
chains with up to 22 levels. Even worse, there are places where we
use exclusion to avoid a method conflict in a way that could not
be simulated using mixins. For example, if traitsTA andTB both
define methodsa andb, then the expression(TA - {a}) + (TB - {b})
denotes a trait containing thea method fromTB and theb method
from TA. If TA andTB were mixins rather than traits, there would
be no way to mix both of them in and obtain this effect.

Using mixins, the solution would be to either modifyTA, or to
introduce a new intermediate mixin corresponding toTA - {a}. Nei-
ther choice is desirable. Modifying the components is bad because
it may break other places where these components are used. Intro-
ducing intermediate components makes the inheritance chains even
longer and harder to understand. This is particularly problematic
because the use ofsuper in mixins means that they do not support
the flattening property, and thus there is no way in which these long
inheritance chains can be “inlined”.

With traits, these problem did not arise: sum and exclusion al-
lowed us to obtain the right composite behavior quite easily. One
example of this is the traitTSortedImpl where we had two con-
flicts: at:ifAbsent: and collect:, but no single subtrait that takes
precedence for both of them. This is exactly the situation exclusion
is designed for, and we obtained the desired behavior by exclud-
ing at:ifAbsent: from the subtraitTExtensibleSequencedImpl and
collect: from TOrderedSortedCommonImpl.

Aliasing provides a way to access overridden behavior with-
out compromising the flattening property, and thus without reduc-
ing the understandability of composite traits. We used aliasing in
this way in the traitsTHeapImpl, TDictionaryImpl, and in the class
WriteStream.

In the process of our refactoring work, we also encountered
many situations where adding a new method to a component caused
a conflict with another component in distant code. Thanks to the
requirement of explicit conflict resolution all of these places were
immediately detected, and we were able to re-establish the correct
semantics by making an appropriate adjustment to the appropriate
trait composition clause. It was never necessary to modify other
components, so we never found ourselves in a situation where re-
solving one conflict created two more.

With mixins, this would not have been the case. First, we would
not have detected conflicting methods so easily because the order
of the mixins automatically “resolves” each conflict, although not
necessarily in the way that the programmer intends! Second, even
if we had noticed that a conflict had been resolved in an incorrect
way, it would have been much harder to actually re-establish the
correct behavior.

A comparison of our refactored collection classes to the mixin-
based collection framework of Strongtalk (Animorphic Smalltalk)
[7] provides more data on the effectiveness of mixins and traits.
Both frameworks are based on Smalltalk-80 and are therefore quite
comparable. Strongtalk has more collection classes, but uses only
10 different mixins, compared to 67 traits in our hierarchy. In par-
ticular, Strongtalk doesn’t factor out characteristics such as exten-
sible, implicitly sequenced, and explicitly sequenced; it also does
not make aspects like enumeration reusable outside of the collec-
tion framework.

Of course, the fact that the designers of Strongtalk decided not
to pursue a fine-grained decomposition into mixins does not mean
that doing so would be impossible. However, it is an indication that
the Strongtalk designers decided that the disadvantages of a finer
structure outweighed the advantages. In contrast, we have found
that with traits the fine-grained decomposition has only advantages.

9. RELATED WORK

The work presented here was inspired in part by Cook’s study
of conformance and inheritance in the Smalltalk-80 collection
classes[11]. Cook first extracts an interface hierarchy based on
conformance[4, 8] between the sets of public methods of the var-
ious classes. Then, to solve problems raised by messages being

15

interpreted differently in different classes, he writes formal specifi-
cations for the methods and corrects some method names. Cook’s
results show that there is a wide divergence between the inheritance
mechanism used to build the hierarchy and the conformance rela-
tionship between the interfaces.

Our work is complementary to Cook’s. We did not attempt to
merge the implementation and conformance hierarchies. Instead
we moved almost all of the implementation into traits, where it can
be widely reused; this frees the inheritance hierarchy to capture
conformance.

Few other workers have reported measurements of the impact of
mixin-like abstractions on non-trivial class hierarchies. Moore re-
ports on the use of a “Self improvement” tool called Guru, which
automatically restructures inheritance hierarchies and also refac-
tors the methods in Self programs [24]. Moore applied Guru to the
indexables, a fragment of the Self library that includes strings, vec-
tors and sequences, and which contains 17 objects (most of which
play the role of classes). The restructured version of the hierarchy
reduced the number of methods from 316 to 311, and the number
of overridden methods from 86 to 72. However, his method-level
refactoring introduced 79 additional methods.

Moore’s analysis finds some of the same problems with inheri-
tance that we have described in this paper, and also notes that some-
times it is necessary to manually move a method higher in the hier-
archy to obtain maximal reuse. Our work differs from Moore’s in
that he uses a tool toautomaticallyrestructure and refactor inher-
itance hierarchies, whereas we developed a new language concept
and associated tools tosupport the programmerin writing better
(e.g., less duplicative) and more reusable code in the first place.
Our focus is on improving understandability; Moore’s approach,
used by itself, may have a negative impact on understandability,
because it introduces methods with generated names. However, it
would be very interesting to adapt the techniques used in Guru to
help the programmer identify traits by, for example, identifying du-
plication in an existing hierarchy.

Our work also shares some similarity with research efforts in
hierarchy reorganization and refactoring. Casais [9, 10] proposes
algorithms for automatically reorganizing class hierarchies. These
algorithms not only help in handling modifications to libraries of
software components, but they also provide guidance for detecting
and correcting improper class modeling. Dickyet al. propose a new
algorithm to insert classes into a hierarchy that takes into account
overridden and overloaded methods [12]. The key difference from
the results presented here is that all the work on hierarchy reorgani-
zation focuses on transforming hierarchies using inheritance as the
only tool. In contrast, we are interested in exploring other mecha-
nisms, such as composition, in the context of mixin-like language
abstractions. Mirza [23] also explores the use of fine-grained com-
position in a collections framework, but with different goals (e.g.,
binary deployment), and using different techniques,e.g., simulated
delegation.

Refactorings—behavior preserving program transformations—
have become an important topic in the object-oriented reengineer-
ing community [27, 31, 32]. Research on refactoring originates
with the seminal work of Opdyke [25], which defines refactorings
for C++ [21, 26]. In this context, Tokuda and Batory [32] eval-
uate the impact of using a refactoring engine in C++. Fanta and
Rajlich report on a reengineering experience where dedicated tools
for the refactoring of C++ were developed [14]. However, they do
not analyze the two versions of their code to compare the degree of
reuse.

Some other programing languages do have constructs similar to
traits, although they differ in some important details. (A study of

this issue is available in a companion paper [28].) The language
Self [33] even uses the name “traits”, although Self traits are ba-
sically objects that play the role of method dictionaries shared by
prototypes. As mentioned in section 8.2, Strongtalk is a typed ver-
sion of Smalltalk that uses mixins at a deep level. However, to the
best of our knowledge there has been no scientific study evaluating
the level of code reuse engendered by such approaches.

The Larch family of specification languages[19] is also based on
a construct called a trait; the relationship turns out to be more than
name deep. Larch traits are fragments of specifications that can be
freely reused at fine granularity. For example, it is possible to de-
fine a Larch trait such asIsEmpty that adds a single operation to
an existing container data-type. There are, of course, significant
differences, since our traits are not intended to be used to prove
properties of programs, and adding a trait to a class does not for-
mally constrain the behavior of existing methods.

10. FUTURE WORK
We feel that our refactoring of the Collections classes has reached a
natural conclusion; although it is not complete, we have dealt with
a wide enough variety of classes that we do not believe that we
will learn very much more from filling in the remaining corners.
However, we would like to conduct a more sophisticated analysis
of code duplication, perhaps using a tool such as Duploc [13] or
Guru (see section 9). Both the Squeak Foundation and Cincom
have expressed interest in incorporating traits into the main devel-
opment stream of their Smalltalk systems. If this happens, it would
motivate the inclusion of all of the remaining classes into the refac-
tored framework. A thorough testing of the new collection classes
is also necessary. We believe that this can be accomplished using a
random test generator and the existing classes as a test oracle.

We are pleased with how well the tools that we have built actu-
ally support the process of programming with traits. There are a
few missing features, but the tools are quite usable by others and
are available for download; we hope to hear reports of their appli-
cation to other domains. We will use this widening base of expe-
rience to influence the still-evolving design of traits; we also plan
to study how traits might be incorporated into typed languages and
into languages in which instance variables can be part of an object’s
interface.

Taking a wider view, we do not see traits as just another pro-
gramming construct, but as one of the enabling technologies for a
grander vision called multi-view programming. This vision is grad-
ually being realized in the Perspectives project [5]. Rather than
thinking of a refactoring of a program as creating a new (equiv-
alent) program, the idea behind Perspectives is to treat both the
original and refactored programs as differentviewson the same ab-
stract entity. Like views on a database, this would raise the level of
abstraction at which the user works. A new language technology
like traits, which greatly extends the range of possible refactorings,
also defines a new set of views, and thus permits programming at
a more abstract and powerful level. A fuller discussion of these
possibilities is outside of the scope of this paper.

11. CONCLUSION
We undertook this refactoring primarily to obtain some practical
experience with the use of traits. We believed that the theoreti-
cal properties that we had given to traits—especially flattening, but
also the retention of explicit conflicts in the sum operation—were
the right ones. But programing languages are tools, and theoreti-
cal elegance is no substitute for usability. Only extensive use on a
realistic codebase could validate these beliefs.

16

It did. Although we had designed them, we were surprised how
well the tools and the trait concepts worked in practice. The the-
oretical characteristics do really seem to give the tools desirable
practical properties.

However wonderful a language technology may be to those who
use it, new language features can be a real obstacle to those who
have not previously met them. One of the pleasant properties
of traits is that they do not change the method-level syntax of
Smalltalk at all. Thus, an ordinary Smalltalk programmer can open
an ordinary Smalltalk browser on our new hierarchy and understand
everything that she sees. All of the concrete classes will be there,
with all of their methods. Trait methods will appear to be defined
directly in a subclass or inherited from a superclass exactly as in
ordinary Smalltalk, and the semantics will be exactly the same. If
the programmer modifies a method in a conventional class view,
and the method is actually defined in a shared trait, then the effect
will be to define a customized (unshared) version of the method
local to the class. Again, this is exactly the semantics of ordinary
Smalltalk.

This property is critically important, because we believe that one
of the reasons that previous technologies such as mixins and mul-
tiple inheritance have not become popular is because of the com-
plexity that they force on every programmer. For example, the rules
for linearizing multiple inheritance chains must be understood by
every programmer who looks at or modifies a multiple inheritance
hierarchy.

While our experiences with traits validated our expectations,
there were also some surprises. For example, it turned out that the
fine-grained trait structure has no disadvantages: not only does it al-
low better code reuse, but italsoassists in program understanding,
because it makes it easier to see how something is built up. How-
ever, this is only true as long as the flattened view is also available.
We are not experts in human perception, but all the evidence that
we have seen indicates that humans grasp things more quickly and
more accurately if they can observe them though multiple views
tailored to the task at hand.

Another surprise was that the refactoring process turned out to
be quite enjoyable and very straightforward. Trait-based refactor-
ing seems to be compatible with an extreme programming style of
development: it does not require one to do all of the design “up
front”, when one knows nothing about the system, but lets one start
by identifying related methods and putting them into traits. The
shape of the inheritance hierarchy can emerge later.

Good tool support proved to be critical: it had a tremendous im-
pact on the efficiency of the refactoring task. It is hard to imag-
ine undertaking this refactoring with an ordinary Smalltalk browser
that does not show therequiresandsuppliessets and that does not
support the abstract instance variable refactoring. Performing the
same task with a file-based tool such as emacs is inconceivable to
us. The incremental nature of the Smalltalk environment played
an important role, because the current state of the composition was
instantly visible at all times.

To summarize: we have successfully refactored a significant sub-
set of the Smalltalk collections classes. In the process we:

• removed code duplication;

• increased uniformity;

• improved understandability;

• provided reusable traits that make it easier to write new col-
lection classes; and

• made it possible to reuse collection codeoutsideof the col-
lection hierarchy.

The third claim, improved understandability, is necessarily sub-
jective. However, we argue that twoobjectivefeatures of the refac-
tored hierarchy support it. First, there is no discrepancy between
the apparent and actual interfaces of a class. In other words, we
never needed to resort to implementing a method “too high” in the
hierarchy just to enable reuse. As a consequence, when brows-
ing the hierarchy, “what you see is what you get”: all of the pub-
lic methods in a class are actually available. Second, the struc-
tured view (with fine grained traits) provides a lot of insight about
the functional properties of the methods: which mutate the object,
which require sequenceability, which do enumeration, and so on.
Since the structured view containing this extra information is op-
tional, there is no tradeoff to be made in supplying it: programmers
who do not find it useful can simply not use it.

Acknowledgments.This work was initiated during a sabbati-
cal visit by Andrew Black to the University of Bern, and continued
during a visit by Nathanael Schärli to OGI. We would like to thank
Oscar Nierstrasz and the other members of the Software Compo-
sition Group in Bern for making the sabbatical possible, and for
being such intellectually stimulating and congenial hosts. We also
thank the National Science Foundation and the late Professor Paul
Clayton, then Provost of the Oregon Graduate Institute, for the fi-
nancial support that made the visits possible.

12. REFERENCES

[1] Sherman R. Alpert, Kyle Brown, and Bobby Woolf.The
Design Patterns Smalltalk Companion. Addison Wesley,
1998.

[2] G. Birtwistle, Ole Johan Dahl, B. Myhrtag, and Kristen
Nygaard.Simula Begin. Auerbach Press, Philadelphia, 1973.

[3] Andrew Black, Norman Hutchinson, Eric Jul, and Henry
Levy. Object structure in the Emerald system. InProceedings
OOPSLA ’86, ACM SIGPLAN Notices, volume 21, pages
78–86, November 1986.

[4] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy,
and Larry Carter. Distribution and abstract data types in
emerald.IEEE Transactions on Software Engineering,
SE-13(1):65–76, January 1987.

[5] Andrew P. Black and Mark P. Jones. Perspectives on
software. InOOPSLA 2000 Workshop on Advanced
Separation of Concerns in Object-oriented Systems, 2000.

[6] Gilad Bracha.The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. Ph.D. thesis, Dept. of
Computer Science, University of Utah, March 1992.

[7] Gilad Bracha and David Griswold. Strongtalk: Typechecking
Smalltalk in a production environment. InProceedings
OOPSLA ’93, ACM SIGPLAN Notices, volume 28, pages
215–230, October 1993.

[8] Luca Cardelli. A semantics of multiple inheritance.
Information and Computation, 76:138–164, 1988.

[9] Eduardo Casais.Managing Evolution in Object Oriented
Environments: An Algorithmic Approach. Ph.D. thesis,
Centre Universitaire d’Informatique, University of Geneva,
May 1991.

[10] Eduardo Casais. An incremental class reorganization
approach. In O. Lehrmann Madsen, editor,Proceedings
ECOOP ’92, volume 615 ofLNCS, pages 114–132, Utrecht,
the Netherlands, June 1992. Springer-Verlag.

17

[11] William R. Cook. Interfaces and specifications for the
Smalltalk-80 collection classes. InProceedings OOPSLA
’92, ACM SIGPLAN Notices, volume 27, pages 1–15,
October 1992.

[12] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On
automatic class insertion with overloading. InProceedings of
OOPSLA ’96, pages 251–267, 1996.

[13] St́ephane Ducasse, Matthias Rieger, and Serge Demeyer. A
language independent approach for detecting duplicated
code. In Hongji Yang and Lee White, editors,Proceedings
ICSM ’99 (International Conference on Software
Maintenance), pages 109–118. IEEE, September 1999.

[14] Richard Fanta and Vaclav Rajlich. Reengineering
object-oriented code. InProceedings of the International
Conference on Software Maintenance, 1998.

[15] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. InProceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 171–183. ACM Press, 1998.

[16] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts.Refactoring: Improving the Design of Existing
Code. Addison Wesley, 1999.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, Mass.,
1995.

[18] Adele Goldberg and David Robson.Smalltalk 80: the
Language and its Implementation. Addison Wesley, Reading,
Mass., May 1983.

[19] John V. Guttag, James J. Horning, and Jeannette M. Wing.
The larch family of specification languages.IEEE
Transactions on Software Engineering, 2(5):24–36,
September 1985.

[20] Andrew Hunt and David Thomas.The Pragmatic
Programmer. Addison Wesley, 2000.

[21] Ralph E. Johnson and William F. Opdyke. Refactoring and
aggregation. InObject Technologies for Advanced Software,
First JSSST International Symposium, volume 742 ofLecture
Notes in Computer Science, pages 264–278. Springer-Verlag,
November 1993.

[22] Wilf LaLonde and John Pugh.Inside Smalltalk: Volume 1.
Prentice Hall, 1990.

[23] Yahya H. Mirza. A Compositional Component Collections
Framework. Seventh International Workshop on
Component-Oriented Programming (WCOP 2002) at
ECOOP 2002, Malaga, Spain, June 2002.

[24] Ivan Moore. Automatic inheritance hierarchy restructuring
and method refactoring. InProceedings of OOPSLA ’96
Conference, pages 235–250. ACM Press, 1996.

[25] William F. Opdyke.Refactoring Object-Oriented
Frameworks. Ph.D. thesis, University of Illinois, 1992.

[26] William F. Opdyke and Ralph E. Johnson. Creating abstract
superclasses by refactoring. InProceedings of the 1993 ACM
Conference on Computer Science, pages 66–73. ACM Press,
1993.

[27] Don Roberts, John Brant, and Ralph E. Johnson. A
refactoring tool for Smalltalk.Theory and Practice of Object
Systems (TAPOS), 3(4):253–263, 1997.

[28] Nathanael Scḧarli and Andrew Black. A browser for
incremental programming. Technical Report CSE-03-008,
OGI School of Science & Engineering, Beaverton, Oregon,
USA, April 2003.

[29] Nathanael Scḧarli, Oscar Nierstrasz, Stéphane Ducasse, Roel
Wuyts, and Andrew Black. Traits: The formal model.
Technical Report IAM-02-006, Institut für Informatik,
Universiẗat Bern, Switzerland, November 2002. Also
available as Technical Report CSE-02-013, OGI School of
Science & Engineering, Beaverton, Oregon, USA.

[30] Antero Taivalsaari. On the notion of inheritance.ACM
Computing Surveys, 28(3):438–479, September 1996.

[31] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and
Oscar Nierstrasz. A meta-model for language-independent
refactoring. InProceedings ISPSE 2000, pages 157–167.
IEEE, 2000.

[32] Lance Tokuda and Don Batory. Automating three modes of
evolution for object-oriented software architecture. In
Proceedings COOTS ’99, May 1999.

[33] David Ungar and Randall B. Smith. Self: The power of
simplicity. In Proceedings OOPSLA ’87, ACM SIGPLAN
Notices, volume 22, pages 227–242, December 1987.

18

