Computational Photography

Prof. Feng Liu

Spring 2022

http://www.cs.pdx.edu/~fliu/courses/cs510/

03/29/2022

Today

- Course overview
 - Admin. Info
 - Computational Photography

People

- Lecturer: Prof. Feng Liu
 - Room: email for a Zoom appointment
 - Office Hours: TR 3:30-4:30pm
 - fliu@pdx.edu
- □ TA: Zhan Li
 - Zoom: https://pdx.zoom.us/j/84063267395
 - Office Hours: TR 2:30-3:30pm
 - lizhan@pdx.edu

Web and Computer Account

- Course website
 - http://www.cs.pdx.edu/~fliu/courses/cs510/
 - Class mailing list
 - □ Google Chat
 - If you have not received an invitation to your pdx.edu account, let me know.
- Everyone needs a Computer Science department computer account
 - Get account at CAT
 - http://cat.pdx.edu

Recommended Textbooks & Readings

- Computer Vision: Algorithms and Applications
 - By R. Szeliski
 - Available online, free
- □ Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library
 - By Adrian Kaehler and Gary Bradski
 Or its early version
 - □ Learning OpenCV: Computer Vision with the OpenCV Library
 - By Gary Bradski and Adrian Kaehler
- Papers recommended by the lecturers

Grading

- ☐ 30%: Readings
- □ 20%: In-class paper presentation
- □ 50%: Project
 - 10%: final project presentation
 - 40%: project quality

Readings

- About 2 papers every week
 - Write a brief summary for one of the papers
 - ☐ Totally less than 500 words
 - 1. What problem is addressed?
 - 2. How is it solved?
 - 3. The advantages of the presented method?
 - 4. The limitations of the presented method?
 - 5. How to improve this method?
 - ☐ Submit to lizhan@pdx.edu by 4:00 pm every Thursday
 - Write in the plain text format in your email directly
 - No attached document

Paper Presentation

- One or two papers each student
- □ 30 minutes, including 3-5 minutes of Q&A
 - Title
 - Introduction
 - Outline
 - Method
 - Experiments/Results
 - Conclusion

Project

- □ Literature Study Option
 - OK, not exciting...
 - Read a rich set of literature on one topic
 - And write a survey paper
- System Option
 - Good and popular
 - Implement an easy-to-use system based on an existing algorithm
- Research Option
 - Excellent, challenging, and less popular
 - Define a new problem and solve it
 - Or, develop a new solution to an existing problem

Project

- ☐ Group options
 - 1 or 2 members for the System and Research Options
 - Credits will be evenly divided among group members
 - Only 1 member for the Literature Study Option

Project Timeline

- □ 04/14: Project proposal due
 - Submit a short project proposal
 - 300 to 500 words
- □ 05/31-06/01: In-class project presentation
 - Around 20 minutes
- □ 5pm, 06/06: Final report due
 - Submit a report, test data set and source code
 - Late submission policy
 - ☐ Your project will be accepted until 5pm, 06/08
 - But, will be penalized according to G=G0*(1-n*0.05/24), where n is the number of hours delayed, G0 is the raw score, and G is your final score.

Programming tools

- Python
 - Highly recommended
- □ C/C++ under Windows
 - Highly recommended
 - You can use the OpenCV libraries
 - Other graphics and vision libraries
- Others
 - OK
 - As long as it works for you

OpenCV

- □ Open Source Computer Vision library
 - http://opencv.org/
 - We recommend V 3.4, but you can use any other versions that work for you
 - Perhaps the most popular toolkits for computer vision
 - Provides APIs for a wide range of vision algorithms
 - Highly recommended for your project

Admin Questions?

Today

- Course overview
 - Admin. Info
 - Computational Photography
- Computational Photography

What Is Computational Photography

An extension of traditional (digital) photography that combines computational techniques from computer vision and computer graphics for improving image making

Filter: De-noise

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

De-Blur

Original photograph

Output

Slide credit: Fergus et al., 2016

Super-resolution

Super-resolution

(a) Low-res input

(b) Hallucinated by our system (c) Original high-res

Color2Gray

Color

New Algorithm

Grayscale

Slide credit: Gooch et al., 2005

Tone Adjustment

Input Output

High Dynamic Range Imaging

Photography in the Dark

SmartHDR of iPhone XS

Night Sight of Pixel 3

Photography in the Dark

(a) Camera output with ISO 8,000

(b) Camera output with ISO 409,600

(c) Our result from the raw data of (a)

Shadow Editing

Input Output

Shallow Depth of Field

3D Photography

MovingStills

Panorama

Rotoscoping

Picturing Place: Building Rome in a Day

Input

Output

Picturing Place: Photo Tourism

Photo Tourism

Exploring photo collections in 3D

Stabilization

Hyperlapsing

https://www.microsoft.com/en-us/research/product/computational-photography-35 applications/microsoft-hyperlapse-pro/

Stereoscopic 3D

Stereoscopic 3D

Stereoscopic 3D

Computational Stereoscopic Cinematography

Computational Stereoscopic Cinematography

Virtual Reality

Virtual Reality Imaging

Google Jump

Facebook VR Camera

Stereoscopic 360 Video

Enabling visual experience of being there

Augmented Reality

Automatic Photography

Google Clips is "a new hands-free camera that automatically captures interesting moments in your life"[1]

Facebook Portal features a smart camera that "frames shots much as an experienced camera operator would, so that people using Portal feel like they are right beside each other"[2]

Google Clips

"A new hands-free camera that automatically captures interesting moments in your life"

- y
- All computations are performed on-device.
 - Extending battery life and reducing latency
 - Offering strong privacy control as clips stay in the device unless users save or share them
- Record short videos instead of still photographs.
 - "Moments with motion can be more poignant and true-to-memory, and it is often easier to shoot a video around a compelling moment than it is to capture a perfect, single instant in time" *
- Capture candid moments of people and pets
 - Not dedicated to optimize composition, color balance, light, etc
 - Focus on "selecting ranges of time containing people and animals doing interesting activities" *

Facebook (Meta) Portal

"Frames shots much as an experienced camera operator would, so that people using Portal feel like they are right beside each other"[1]

Follow action

"No more "Wait... I can't see you." Portal's Smart Camera intelligently adjusts to stay with the action, whether you're moving around the kitchen or chasing the kids through the living room"[2]

Automatic framing

"As more people enter a room, Smart Camera automatically widens to keep everyone in view, so you don't miss a moment" [2]

□ Privacy

"Uses Al technology that runs locally on Portal, not on Facebook servers. Portal's camera does not use facial recognition and does not identify who you are" [2]

Next Time

Camera