Computational Photography

Prof. Feng Liu

Spring 2022
http://www.cs.pdx.edu/~fliu/courses/cs510/
04/28/2022

With slides by C. Dyer, Y. Chuang, R. Szeliski, S. Seitz, M. Brown and V. Hlavac

Last Time

\square Panorama

- Feature detection
- Feature matching

Today

\square Panorama

- Homography estimation

■ Cylindrical panorama

- Blending

Stitching Recipe

\square Align pairs of images

- Feature Detection
- Feature Matching
- Homography Estimation

\square Align all to a common surface
\square Adjust (Global) \& Blend

What can be globally aligned?

\square In image stitching, we seek for a model to globally warp one image into another. Are any two images of the same scene can be aligned this way?
■ Images captured with the same center of projection

- A planar scene or far-away scene

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Mosaic as an image reprojection

\square The images are reprojected onto a common plane
\square The mosaic is formed on this plane
\square Mosaic is a synthetic wide-angle camera

Changing camera center

Planar scene (or a faraway one)

$\square \mathrm{PP} 3$ is a projection plane of both centers of projection, so we are OK!
\square This is how big aerial photographs are made

Motion models

\square Parametric models as the assumptions on the relation between two images.

2D Motion models

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Motion models

Determine pairwise alignment?

\square Feature-based methods: only use feature points to estimate parameters
\square We will study the "Recognising panorama" paper published in ICCV 2003
\square Run SIFT (or other feature algorithms) for each image, find feature matches.

Determine pairwise alignment

$\square \mathrm{p}^{\prime}=\mathrm{Mp}$, where M is a transformation matrix, p and p' are feature matches
\square It is possible to use more complicated models such as affine or perspective
\square For example, assume M is a 2×2 matrix

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{x}{y}
$$

\square Find M with the least square error

$$
\sum_{i=1}^{n}\left(M p-p^{\prime}\right)^{2}
$$

Determine pairwise alignment

$$
\begin{aligned}
\binom{x^{\prime}}{y^{\prime}}= & \left(\begin{array}{cc}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{x}{y} \quad \begin{array}{r}
x_{1} m_{11}+y_{1} m_{12}=x_{1}^{\prime} \\
x_{1} m_{21}+y_{1} m_{22}=y_{1}^{\prime} \\
\left(\begin{array}{cccc}
x_{1} & y_{1} & 0 & 0 \\
0 & 0 & x_{1} & y_{1} \\
x_{2} & y_{2} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
x_{n} & y_{n} & 0 & 0 \\
0 & 0 & x_{n} & y_{n}
\end{array}\right)\left(\begin{array}{l}
m_{11} \\
m_{12} \\
m_{21} \\
m_{22}
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right)
\end{array}
\end{aligned}
$$

Normal equation

Given an over-determined system

$$
\mathbf{A x}=\mathbf{b}
$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Why?

Normal equation

$$
\begin{aligned}
& E=(\mathbf{A x}-\mathbf{b})^{2} \\
& =(\mathbf{A x}-\mathbf{b})^{T}(\mathbf{A x}-\mathbf{b}) \\
& =\left((\mathbf{A x})^{T}-\mathbf{b}^{T}\right)(\mathbf{A x}-\mathbf{b}) \\
& =\left(\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}-\mathbf{b}^{\mathrm{T}}\right)(\mathbf{A x}-\mathbf{b}) \\
& =\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A x}-\mathbf{b}^{\mathrm{T}} \mathbf{A x}-\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{b}+\mathbf{b}^{\mathrm{T}} \mathbf{b} \\
& =\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-\left(\mathbf{A}^{\mathrm{T}} \mathbf{b}\right)^{\mathrm{T}} \mathbf{x}-\left(\mathbf{A}^{\mathrm{T}} \mathbf{b}\right)^{\mathrm{T}} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{b} \\
& \frac{\partial E}{\partial \mathbf{x}}=2 \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

Determine pairwise alignment

$\square p^{\prime}=M p$, where M is a transformation matrix, p and p' are feature matches
\square For translation model, it is easier.

$$
\begin{aligned}
& E=\sum_{i=1}^{n}\left[\left(m_{1}+x_{i}-x_{i}^{\prime}\right)^{2}+\left(m_{2}+y_{i}-y_{i}^{\prime}\right)^{2}\right] \\
& 0=\frac{\partial E}{\partial m_{1}}
\end{aligned}
$$

Stitch with Homography

Stitch with Homography

Stitching Recipe

\square Align pairs of images

- Feature Detection
- Feature Matching
- Homography Estimation

\square Align all to a common surface
\square Adjust (Global) \& Blend

A case study: cylindrical panorama

\square What if you want a 360° field of view?

Cylindrical panoramas

\square Steps

- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic

Cylindrical panorama

1. Take pictures on a tripod (or handheld)
2. Warp to cylindrical coordinate
3. Compute pair-wise alignments
4. Fix up the end-to-end alignment
5. Blending
6. Crop the result and import into a viewer

It is required to do radial distortion correction for better stitching results!

Taking pictures

Kaidan panoramic tripod head

Where should the synthetic camera be

\square The projection plan of some camera
\square Onto a cylinder

Rectlinear projection

Cylindrical projection

Cylindrical projection

67.5 degrees \longrightarrow Linstitched Photographs

45 degrees

Cylindrical Projection

Cylindrical projection

$(\sin \theta, h, \cos \theta) \propto(x, y, f)$

$$
\theta=\tan ^{-1} \frac{x}{f}
$$

Cylindrical projection

$(\sin \theta, h, \cos \theta) \propto(x, y, f)$

Cylindrical projection

unwrapped cylinder

$$
\begin{gathered}
y_{\leftrightarrow x} \\
x^{\prime}=s \theta=s \tan ^{-1} \frac{x}{f}
\end{gathered}
$$

Cylindrical reprojection

top-down view Focal length - the dirty secret...

Image $384 \times 300 \quad f=180$ (pixels) $f=280 \quad f=380$

A simple method for estimating f

Or, you can use other software, such as AutoStich, to help.

Input images

Cylindrical warping

Alignment

a rotation of the camera is a

Blending

\square Why blending: parallax, lens distortion, scene motion, exposure difference
\square Alpha-blending
\square Poisson blending
\square Adelson's pyramid blending

Blending

Linear Blending

Linear Blending

Linear Blending

Multi-band Blending [BURT and ADELSON 83]

Linear blending

Multi-band blending

A multi-resolution spline with application to image mosaics.
Peter J. Burt and Edward Adelson. ACM Transactions on Graphics, 1983.

Multi-band Blending

1. Laplacian pyramids LA and LB are constructed for images A and B respectively.
2. A third Laplacian pyramid LS is constructed by copying nodes from the left half of LA to the corresponding nodes of LS, and nodes in the right half of LB to the right half of LS
3. The final image S is obtained by expanding and summing the levels of LS.

Multi-band Blending

2-band Blending

Low frequency (l>2 pixels)

Credit: Y.Y. Chuang
High frequency (l < 2 pixels)

Linear Blending

fis
都
B

,

2-band Blending

Assembling the panorama

\square Stitch pairs together, blend, then crop

Problem: Drift

\square Error accumulation

- small errors accumulate over time

Problem: Drift

- add another copy of first image at the end
- there are a bunch of ways to solve this problem
\square add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
\square compute a global warp: $y^{\prime}=y+a x$
\square run a big optimization problem, incorporating this constraint
- best solution, but more complicated
- known as "bundle adjustment"

End-to-end alignment and crop

Credit: Y.Y. Chuang

Viewer: panorama

example:

http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html Credit: Y.Y. Chuang

Student paper presentation

Color Image Colorization

R. Zhang, P. Isola, and A. Efros ECCV 2016

Presenter: Seward, Garrett

Student paper presentation

Burst photography for high dynamic range and low-light imaging on mobile cameras

Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T. Barron, Florian Kainz, Jiawen Chen, and Marc Levoy SIGGRAPH Asia 2016

Presenter: Peters, Emerson

Next Time

\square Image segmentation
\square Student paper presentations
■ 05/03: Little, Samuel
\square Deep High Dynamic Range Imaging of Dynamic Scenes.
N. K. Kalantari and R. Ramamoorthi, SIGGRAPH 2017

- 05/03: Joshi, Vijay
\square Night Sight: Seeing in the Dark on Pixel Phones
■ https://ai.googleblog.com/2018/11/night-sight-seeing-in-dark-on-pixel.html
■ https://www.blog.google/products/pixel/see-light-nightsight/

