Computational Photography

Prof. Feng Liu

Spring 2022

http://www.cs.pdx.edu/~fliu/courses/cs510/

05/05/2022

With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C. Rother

Last Time

Image segmentation

Normalized cut and segmentation

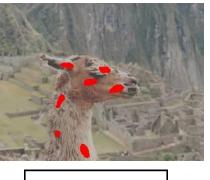
Today

Segmentation

Interactive image segmentation

Magic Wand (Photoshop)

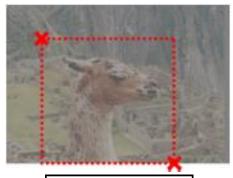
User Input



Result

Intelligent Scissors Mortensen and Barrett (1995)

GrabCut Rother et al. 2004



Start

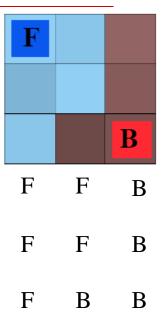
Segmentation

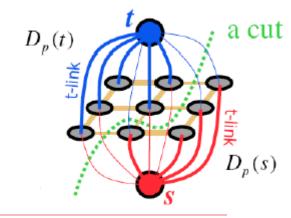
Interactive image segmentation



Segmentation by Graph Cut

- Interactive image segmentation using graph cut
- Binary label: foreground vs. background
- User labels some pixels
 - usually sparser
- Exploit
 - Statistics of known Fg & Bg
 - Smoothness of label
- Turn into discrete graph optimization
 - Graph cut (min cut / max flow)



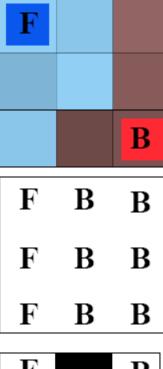


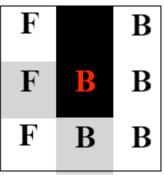
Energy function

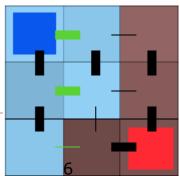
- Segmentation as Labeling
 - one value per pixel, F or B
- Energy(labeling) = data + smoothness
 - Very general situation
 - Will be minimized
- Data: for each pixel
 - Probability that this color belongs to F (resp. B)
- Smoothness (aka regularization): per neighboring pixel pair
 - Penalty for having different label
 - Penalty is down-weighted if the two pixel colors are very different
 - Similar in spirit to bilateral filter

One labeling

(ok, not best)



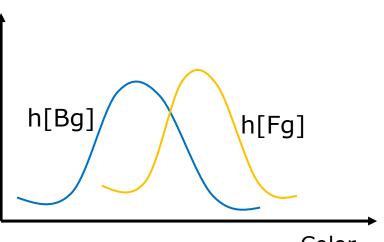




Data

Data term

- A.k.a regional term (because integrated over full region)
- $\square D(L) = \sum_i -\log h[L_i](C_i)$
- Where *i* is a pixel
 L_i is the label at *i* (F or B),
 C_i is the pixel value
 h[L_i] is the histogram of
 the observed Fg (resp Bg)
- Note the minus sign



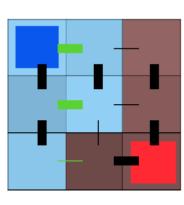
Color

Hard constraints

- □ The user has provided some labels
- The quick and dirty way to include constraints into optimization is to replace the data term by a huge penalty if not respected.
- D(L_i)=0 if respected
- D(L_i)=K if not respected
 - e.g. K= #pixels

Smoothness term

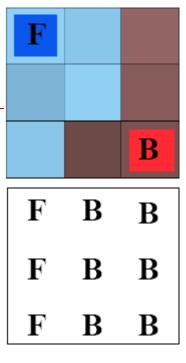
- a.k.a boundary term, a.k.a. regularization
- $\Box S(L) = \sum_{\{j, i\} \text{ in } N} B(C_i, C_j) \delta(L_i L_j)$
- □ Where i,j are neighbors
 - e.g. 8-neighborhood (but I show 4 for simplicity)
- \Box $\delta(L_i-L_j)$ is 0 if $L_i=L_j$, 1 otherwise
- B(C_i, C_j) is high when C_i and C_j are similar, low if there is a discontinuity between those two pixels
 - e.g. $exp(-||C_i-C_j||^2/2\sigma^2)$
 - where σ can be a constant or the local variance
- Note positive sign

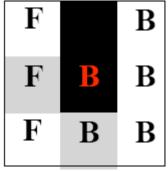


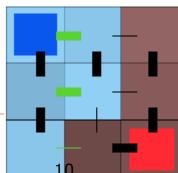
F	В	В
F	В	B
F	В	B

Optimization

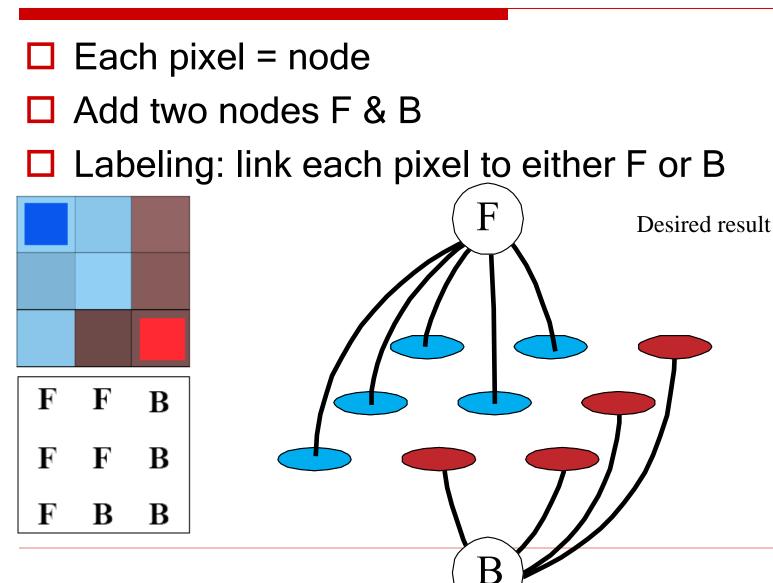
- E(L)=D(L)+λ S(L)
- \square λ is a black-magic constant
- □ Find the labeling that minimizes E
- In this case, how many possibilities?
 - ²⁹ (512)
 - We can try them all!
 - What about megapixel images?







Labeling as a graph problem



Data term

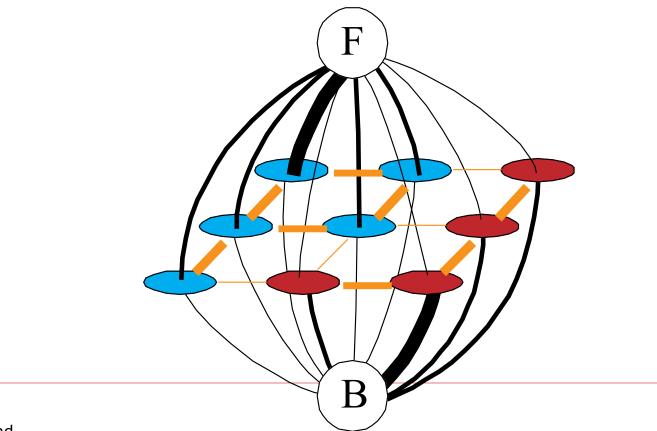
- Put one edge between each pixel and F & B
- Weight of edge = minus data term
 - Don't forget huge weight for hard constraints

F

Careful with sign

Smoothness term

Add an edge between each neighbor pair
 Weight = smoothness term



Min cut

Energy optimization equivalent to min cut Cut: remove edges to disconnect F from B Minimum: minimize sum of cut edge weight H cut Slide credit: F. Durand 14

Min cut <=> labeling

□ In order to be a cut:

For each pixel, either the F or G edge has to be cut

□ In order to be minimal

Only one edge label per pixel can be cut (otherwise could be added)

Computing a multiway cut

□ With 2 labels: classical min-cut problem

- Solvable by standard flow algorithms
 - polynomial time in theory, nearly linear in practice
 - □ Code: C++ from OpenCV
 - Matlab wrapper: http://www.wisdom.weizmann.ac.il/~bagon/matlab.html
- More than 2 terminals: NP-hard [Dahlhaus et al., STOC '92] Code: http://vision.ucla.edu/~brian/gcmex.html
- Efficient approximation algorithms exist
 - Within a factor of 2 of optimal
 - Computes local minimum in a strong sense
 - even very large moves will not improve the energy
 - Yuri Boykov, Olga Veksler and Ramin Zabih, <u>Fast Approximate Energy</u> <u>Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

GrabCut Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother Vladimir Kolmogorov Andrew Blake

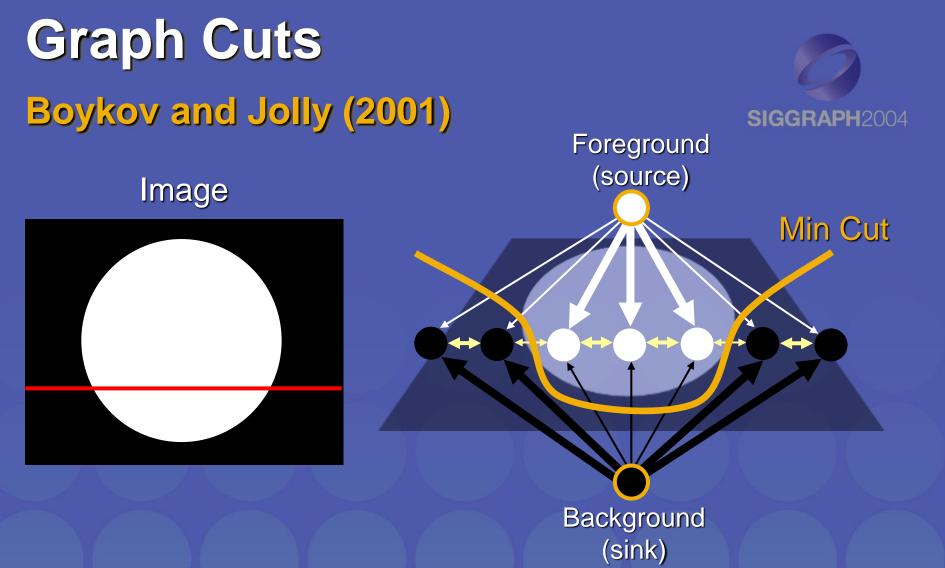
Microsoft Research Cambridge-UK

Photomontage

Microsoft Research

ambridge

• Input: Image $\mathbf{x} \in {\{\mathbf{R}, \mathbf{G}, \mathbf{B}\}}^{\mathbf{n}}$ • Output: Segmentation $S \in \{0, 1\}^n$ Solution Θ Parameters: Colour Θ , Coherence λ **Solution** Energy: $E(\Theta, \mathbf{S}, \mathbf{x}, \lambda) = E_{Col} + E_{Coh}$ **Optimization:** arg min $E(\mathbf{S}, \Theta, \mathbf{x}, \lambda)$ \mathbf{S}, Θ



Cut: separating source and sink; Energy: collection of edges *Min Cut:* Global minimal enegry in polynomial time

Iterated Graph Cut

User Initialisation

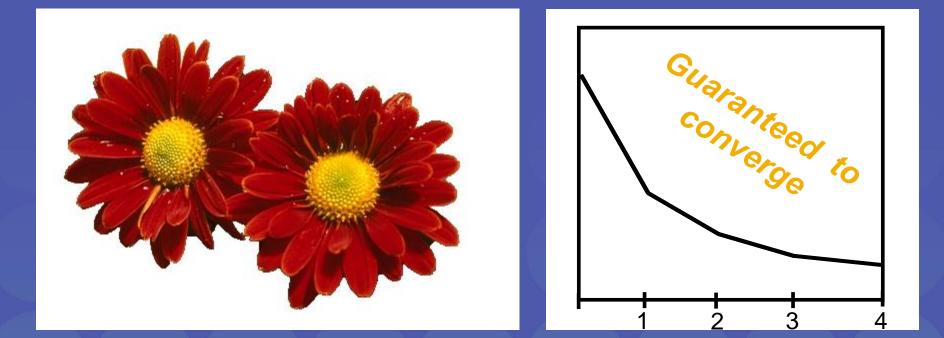
 $\arg\min_{\Theta} E(\mathbf{S}, \Theta, \mathbf{x}, \lambda)$

 $\operatorname{arg\,min}_{\mathbf{S}} E(\mathbf{S}, \mathbf{\Theta}, \mathbf{x}, \lambda)$

K-means for learning colour distributions

Graph cuts to infer the segmentation

Iterated Graph Cuts



Result

Energy after each Iteration

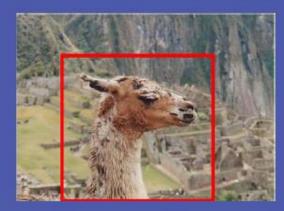
Colour Model



Gaussian Mixture Model (typically 5-8 components)

 $E_{Col}(\Theta, \mathbf{S}, \mathbf{x}) = \sum_{\mathbf{n}} \mathbf{D}(\mathbf{S}_{\mathbf{n}}, \Theta, \mathbf{x}_{\mathbf{n}})$

Coherence Model



SIGGRAPH2004 An object is a coherent set of pixels: $E_{coh}(\mathbf{S}, \mathbf{x}, \lambda) =$ $\lambda \sum_{i,j \text{ adj.}} (S_i \neq S_j) exp\{-\frac{1}{2\sigma^2}||x_i - x_j||^2\}$

 $\lambda = 50$

 $\lambda = 1000$

Blake et al. (2004): Learn Θ , λ jointly

Moderately straightforward examples



... GrabCut completes automatically

Difficult Examples

Camouflage & Low Contrast

Fine structure

No telepathy

Initial Result

Evaluation – Labelled Database

Available online: http://research.microsoft.com/vision/cambridge/segmentation/

Boykov and Jolly (2001)

User Input

GrabCut

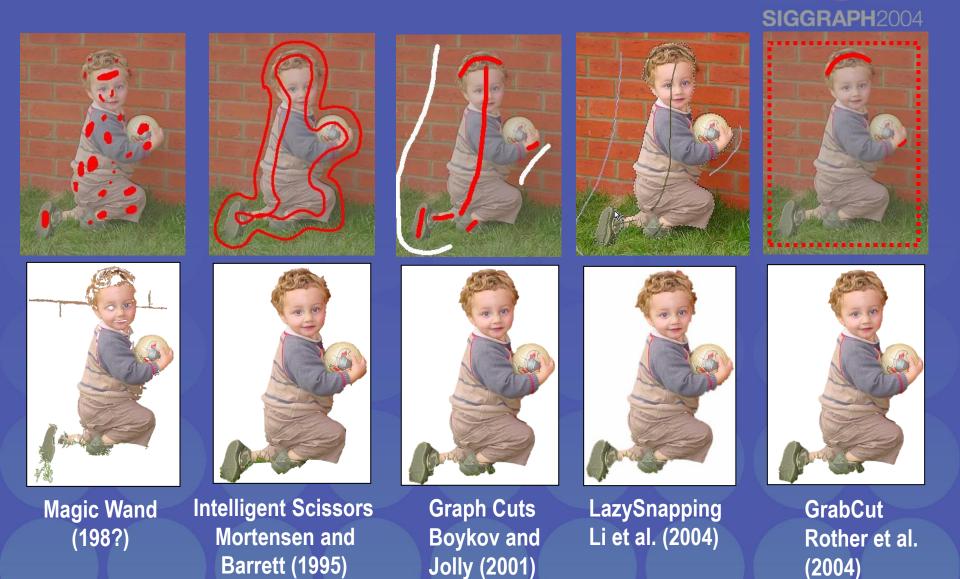
Result



Error Rate: 0.72%

Microsoft Research Cambridg

Microsoft Research



Interactive Digital Photomontage

- Combining multiple photos
- Find seams using graph cuts
- Combine gradients and integrate

Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless, David Salesin, Michael Cohen, "Interactive Digital Photomontage", SIGGRAPH 2004

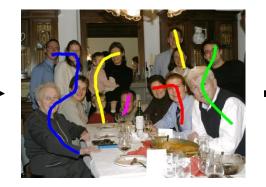
set of originals

photomontage

Source images

Brush strokes

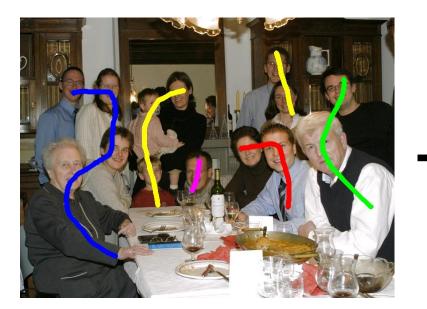
Computed labeling



Composite

Brush strokes

Computed labeling



Student paper presentation

AutoCollage

C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake SIGGRAPH 2006

Presenter: Elmusraty, Gusaue S Abdullatef (Pref: Kai)

Student paper presentation

Rectangling Panoramic Images via Warping

Kaiming He, Huiwen Chang, and Jian Sun SIGGRAPH 2013

Presenter: Loveless, Blake

Next Time

Matting

- □ Student paper presentations
 - 05/10: Mcgowan, Travis
 - □ Learning to See in the Dark
 - C. Chen, Q. Chen, J. Xu and V. Koltun. IEEE CVPR 2018
 - 05/10: McKinney, Drew
 - Video Tapestries with Continuous Temporal Zoom
 C. Barnes, D. Goldman, E. Shechtman, and A. Finkelstein SIGGRAPH 2010