Computational Photography

Prof. Feng Liu

Spring 2022

http://www.cs.pdx.edu/~fliu/courses/cs510/

04/05/2022

Last Time

- Digital Camera
 - History of Camera
 - Controlling Camera
- Photography Concepts

Today

- ☐ Filters and its applications
- Paper presentation schedule available
 - https://docs.google.com/spreadsheets/d/1a6biKmsEFtEzkrNcGCZLbKF1egn QydiN2svN9uETIGs/edit#gid=0
 - Log in using your pdx.edu to view this link
 - Up to Week 5
 - More will be added

Today

☐ Filters and its applications

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

The raster image (pixel matrix)

Slide credit: D. Hoiem

The raster image (pixel matrix)

Slide credit: D. Hoiem

Perception of Intensity

Perception of Intensity

Color Image

Slide credit: D. Hoiem

- Image filtering: compute function of local neighborhood at each pixel position
- One type of "Local operator," "Neighborhood operator," "Window operator"
- Useful for:
 - Enhancing images
 - Noise reduction, smooth, resize, increase contrast, etc.
 - Extracting information from images
 - Texture, edges, distinctive points, etc.
 - Detecting patterns
 - Template matching, e.g., eye template

Source: D. Hoiem

Blurring in the Real World

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of image

http://lullaby.homepage.dk/diy-camera/bokeh.html

Slide credit: C. Dyer

Image Correlation Filtering

- ☐ Select a filter matrix *g*
 - g is also called a *filter*, *mask*, *kernel*, or *template*
- Center filter g at each pixel in image f
- Multiply weights by corresponding pixels
- ☐ Set resulting value in output image *h*
- Linear filtering is sum of dot product at each pixel position
- □ Filtering operation called *cross-correlation*, and denoted $h = f \otimes g$

Example: Box Filter

	٤	g[· ,·	
1	1	1	1
<u> </u>	1	1	1
9	1	1	1

Slide credit: David Lowe

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}\frac{1}{1}\frac{1}{1}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieves smoothing effect (i.e., removes sharp features)

$$g[\cdot,\cdot]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Weaknesses:
 - Blocky results
 - Axis-aligned streaks

Smoothing with Box Filter

Slide credit: C. Dyer

Gaussian Filtering

Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

$$5 \times 5$$
, $\sigma = 1$

- Constant factor at front makes volume sum to 1
- Convolve each row of image with 1D kernel to produce new image; then convolve each column of new image with same 1D kernel to yield output image

Smoothing with a Gaussian

- Smoothing with a box actually doesn't compare at all well with a defocused lens
- Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square
- ☐ Gaussian is *isotropic* (i.e., rotationally symmetric)

- A Gaussian gives a good model of a fuzzy blob
- It closely models many physical processes (the sum of many small effects)

What does Blurring take away?

original

What does Blurring take away?

smoothed (5x5 Gaussian)

Slide credit: C. Dyer

Smoothing with Gaussian Filter

Smoothing with Box Filter

box average

Gaussian Filters

- What parameters matter here?
- Standard deviation, σ, of Gaussian: determines extent of smoothing

Source: D. Hoiem

Effect of σ

Slide credit: C. Dyer

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing

Gaussian filters

Gaussian Filters

- What parameters matter here?
- ☐ Size of kernel or mask

How big should the filter be?

- Gaussian function has infinite "support" but need a finite-size kernel
- Values at edges should be near 0
- \square ~98.8% of area under Gaussian in mask of size $5\sigma x 5\sigma$
- □ In practice, use mask of size $2k+1 \times 2k+1$ where $k \approx 3\sigma$
- □ Normalize output by dividing by sum of all weights

Properties of Smoothing Filters

- Smoothing
 - Values all positive
 - Sum to $1 \Rightarrow$ constant regions same as input
 - Amount of smoothing proportional to mask size
 - Removes "high-frequency" components
 - "low-pass" filter

Sharpening Filters

Original

0	0	0	1	1	1	1
0	2	0	– $\frac{1}{9}$	1	1	1
0	0	0	9	1	1	1

•

(Note that filter sums to 1)

Sharpening Filters

Original

(Note that filter sums to 1)

Sharpening Filters

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Sharpen an out of focus image by subtracting a multiple of a blurred version

Sharpening

before after

Sharpening by Unsharp Masking

 $h = f + k(f^* g)$ where k is a small positive constant and $g = \frac{1}{2}$

0	1	0
1	-4	1
0	1	0

called a Laplacian mask

☐ Called *unsharp masking* in photography

Sharpening using Unsharp Mask Filter

Original

Filtered result

Application: Edge Detection

1	0	-1
2	0	-2
1	0	-1

Sobel

Application: Edge Detection

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Application: Edge Detection

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Application: Hybrid Images

Application: XDoG Filters

Gaussian filtering results

$$D_X(\sigma, k, \tau) = G(\sigma) - \tau \cdot G(k \cdot \sigma)$$

$$E_X(\sigma, k, \tau, \epsilon, \varphi) = \begin{cases} 1, & \text{if } D_X(\sigma, k, \tau) < \epsilon \\ 1 + \tanh(\varphi \cdot (D_X(\sigma, k, \tau)), \\ & \text{otherwise.} \end{cases}$$

Application: Painterly Filters

- Many methods have been proposed to make a photo look like a painting
- ☐ Today we look at one:

 Painterly-Rendering with

 Brushes of Multiple Sizes
- Basic ideas:
 - Build painting one layer at a time, from biggest to smallest brushes
 - At each layer, add detail missing from previous layer

A. Hertzmann, Painterly rendering with curved brush strokes of multiple sizes, SIGGRAPH 1998.

Algorithm 1

```
function paint(sourceImage,\mathbf{R}_1 \dots \mathbf{R}_n) // take source and several brush sizes
        canvas := a new constant color image
        // paint the canvas with decreasing sized brushes
        for each brush radius R_{ij}, from largest to smallest do
       // Apply Gaussian smoothing with a filter of size const * radius
        // Brush is intended to catch features at this scale
                referenceImage = sourceImage * G(f s R_i)
                // Paint a layer
                paintLayer(canvas, referenceImage, Ri)
        return canvas
```

Algorithm 2

```
procedure paintLayer(canvas,referenceImage, R) // Add a layer of strokes
   S := a new set of strokes, initially empty
   D := difference(canvas,referenceImage) // euclidean distance at every pixel
           for x=0 to imageWidth stepsize grid do // step in size that depends on brush radius
                       for y=0 to imageHeight stepsize grid do {
                       // sum the error near (x,y)
                       M := \text{the region } (x-grid/2..x+grid/2, y-grid/2..y+grid/2)
                                    areaError := sum(D_{i,j} \text{ for } i,j \text{ in } M) / grid^2
                                   if (areaError > T) then {
                                               // find the largest error point
                                               (x1,y1) := \max D_{i,i} in M
                                               s :=makeStroke(R,x1,y1,referenceImage)
                                               add s to S
           paint all strokes in S on the canvas, in random order
```

Slide credit: S. Chenney

Results

Slide credit: S. Chenney

Next Time

- More Filters
- □ De-noise
- ☐ Student paper presentation
 - Accelerating Spatially Varying Gaussian Filters.
 Baek, J., Jacobs, D. E., SIGGRAPH Asia 2010
 - By Dave Howell